#include #include #include #include #include #include /* for max_low_pfn */ #include #include #include #include #include #include #include #include #include #include #include /* for MAX_DMA_PFN */ #include "mm_internal.h" unsigned long __initdata pgt_buf_start; unsigned long __meminitdata pgt_buf_end; unsigned long __meminitdata pgt_buf_top; static unsigned long min_pfn_mapped; /* * Pages returned are already directly mapped. * * Changing that is likely to break Xen, see commit: * * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve * * for detailed information. */ __ref void *alloc_low_pages(unsigned int num) { unsigned long pfn; int i; #ifdef CONFIG_X86_64 if (after_bootmem) { unsigned int order; order = get_order((unsigned long)num << PAGE_SHIFT); return (void *)__get_free_pages(GFP_ATOMIC | __GFP_NOTRACK | __GFP_ZERO, order); } #endif if ((pgt_buf_end + num) >= pgt_buf_top) { unsigned long ret; if (min_pfn_mapped >= max_pfn_mapped) panic("alloc_low_page: ran out of memory"); ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT, max_pfn_mapped << PAGE_SHIFT, PAGE_SIZE * num , PAGE_SIZE); if (!ret) panic("alloc_low_page: can not alloc memory"); memblock_reserve(ret, PAGE_SIZE * num); pfn = ret >> PAGE_SHIFT; } else { pfn = pgt_buf_end; pgt_buf_end += num; } for (i = 0; i < num; i++) { void *adr; adr = __va((pfn + i) << PAGE_SHIFT); clear_page(adr); } return __va(pfn << PAGE_SHIFT); } /* need 4 4k for initial PMD_SIZE, 4k for 0-ISA_END_ADDRESS */ #define INIT_PGT_BUF_SIZE (5 * PAGE_SIZE) RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE); void __init early_alloc_pgt_buf(void) { unsigned long tables = INIT_PGT_BUF_SIZE; phys_addr_t base; base = __pa(extend_brk(tables, PAGE_SIZE)); pgt_buf_start = base >> PAGE_SHIFT; pgt_buf_end = pgt_buf_start; pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT); } int after_bootmem; int direct_gbpages #ifdef CONFIG_DIRECT_GBPAGES = 1 #endif ; struct map_range { unsigned long start; unsigned long end; unsigned page_size_mask; }; static int page_size_mask; static void __init probe_page_size_mask(void) { #if !defined(CONFIG_DEBUG_PAGEALLOC) && !defined(CONFIG_KMEMCHECK) /* * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages. * This will simplify cpa(), which otherwise needs to support splitting * large pages into small in interrupt context, etc. */ if (direct_gbpages) page_size_mask |= 1 << PG_LEVEL_1G; if (cpu_has_pse) page_size_mask |= 1 << PG_LEVEL_2M; #endif /* Enable PSE if available */ if (cpu_has_pse) set_in_cr4(X86_CR4_PSE); /* Enable PGE if available */ if (cpu_has_pge) { set_in_cr4(X86_CR4_PGE); __supported_pte_mask |= _PAGE_GLOBAL; } } #ifdef CONFIG_X86_32 #define NR_RANGE_MR 3 #else /* CONFIG_X86_64 */ #define NR_RANGE_MR 5 #endif static int __meminit save_mr(struct map_range *mr, int nr_range, unsigned long start_pfn, unsigned long end_pfn, unsigned long page_size_mask) { if (start_pfn < end_pfn) { if (nr_range >= NR_RANGE_MR) panic("run out of range for init_memory_mapping\n"); mr[nr_range].start = start_pfn<> PAGE_SHIFT) > max_low_pfn) continue; #endif if (memblock_is_region_memory(start, end - start)) mr[i].page_size_mask |= 1<> PAGE_SHIFT; pos = start_pfn << PAGE_SHIFT; #ifdef CONFIG_X86_32 /* * Don't use a large page for the first 2/4MB of memory * because there are often fixed size MTRRs in there * and overlapping MTRRs into large pages can cause * slowdowns. */ if (pos == 0) end_pfn = 1<<(PMD_SHIFT - PAGE_SHIFT); else end_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT); #else /* CONFIG_X86_64 */ end_pfn = ((pos + (PMD_SIZE - 1)) >> PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT); #endif if (end_pfn > (end >> PAGE_SHIFT)) end_pfn = end >> PAGE_SHIFT; if (start_pfn < end_pfn) { nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0); pos = end_pfn << PAGE_SHIFT; } /* big page (2M) range */ start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT); #ifdef CONFIG_X86_32 end_pfn = (end>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT); #else /* CONFIG_X86_64 */ end_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT); if (end_pfn > ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT))) end_pfn = ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT)); #endif if (start_pfn < end_pfn) { nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, page_size_mask & (1<>PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT); end_pfn = (end >> PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT); if (start_pfn < end_pfn) { nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, page_size_mask & ((1<>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT); end_pfn = (end >> PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT); if (start_pfn < end_pfn) { nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, page_size_mask & (1<>PAGE_SHIFT; end_pfn = end>>PAGE_SHIFT; nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0); /* try to merge same page size and continuous */ for (i = 0; nr_range > 1 && i < nr_range - 1; i++) { unsigned long old_start; if (mr[i].end != mr[i+1].start || mr[i].page_size_mask != mr[i+1].page_size_mask) continue; /* move it */ old_start = mr[i].start; memmove(&mr[i], &mr[i+1], (nr_range - 1 - i) * sizeof(struct map_range)); mr[i--].start = old_start; nr_range--; } if (!after_bootmem) adjust_range_page_size_mask(mr, nr_range); for (i = 0; i < nr_range; i++) printk(KERN_DEBUG " [mem %#010lx-%#010lx] page %s\n", mr[i].start, mr[i].end - 1, (mr[i].page_size_mask & (1<= pfn_mapped[i].start) && (end_pfn <= pfn_mapped[i].end)) return true; return false; } /* * Setup the direct mapping of the physical memory at PAGE_OFFSET. * This runs before bootmem is initialized and gets pages directly from * the physical memory. To access them they are temporarily mapped. */ unsigned long __init_refok init_memory_mapping(unsigned long start, unsigned long end) { struct map_range mr[NR_RANGE_MR]; unsigned long ret = 0; int nr_range, i; pr_info("init_memory_mapping: [mem %#010lx-%#010lx]\n", start, end - 1); memset(mr, 0, sizeof(mr)); nr_range = split_mem_range(mr, 0, start, end); for (i = 0; i < nr_range; i++) ret = kernel_physical_mapping_init(mr[i].start, mr[i].end, mr[i].page_size_mask); add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT); return ret >> PAGE_SHIFT; } /* * would have hole in the middle or ends, and only ram parts will be mapped. */ static unsigned long __init init_range_memory_mapping( unsigned long range_start, unsigned long range_end) { unsigned long start_pfn, end_pfn; unsigned long mapped_ram_size = 0; int i; for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) { u64 start = (u64)start_pfn << PAGE_SHIFT; u64 end = (u64)end_pfn << PAGE_SHIFT; if (end <= range_start) continue; if (start < range_start) start = range_start; if (start >= range_end) continue; if (end > range_end) end = range_end; init_memory_mapping(start, end); mapped_ram_size += end - start; } return mapped_ram_size; } /* (PUD_SHIFT-PMD_SHIFT)/2 */ #define STEP_SIZE_SHIFT 5 void __init init_mem_mapping(void) { unsigned long end, real_end, start, last_start; unsigned long step_size; unsigned long addr; unsigned long mapped_ram_size = 0; unsigned long new_mapped_ram_size; probe_page_size_mask(); #ifdef CONFIG_X86_64 end = max_pfn << PAGE_SHIFT; #else end = max_low_pfn << PAGE_SHIFT; #endif /* the ISA range is always mapped regardless of memory holes */ init_memory_mapping(0, ISA_END_ADDRESS); /* xen has big range in reserved near end of ram, skip it at first */ addr = memblock_find_in_range(ISA_END_ADDRESS, end, PMD_SIZE, PAGE_SIZE); real_end = addr + PMD_SIZE; /* step_size need to be small so pgt_buf from BRK could cover it */ step_size = PMD_SIZE; max_pfn_mapped = 0; /* will get exact value next */ min_pfn_mapped = real_end >> PAGE_SHIFT; last_start = start = real_end; while (last_start > ISA_END_ADDRESS) { if (last_start > step_size) { start = round_down(last_start - 1, step_size); if (start < ISA_END_ADDRESS) start = ISA_END_ADDRESS; } else start = ISA_END_ADDRESS; new_mapped_ram_size = init_range_memory_mapping(start, last_start); last_start = start; min_pfn_mapped = last_start >> PAGE_SHIFT; /* only increase step_size after big range get mapped */ if (new_mapped_ram_size > mapped_ram_size) step_size <<= STEP_SIZE_SHIFT; mapped_ram_size += new_mapped_ram_size; } if (real_end < end) init_range_memory_mapping(real_end, end); #ifdef CONFIG_X86_64 if (max_pfn > max_low_pfn) { /* can we preseve max_low_pfn ?*/ max_low_pfn = max_pfn; } #else early_ioremap_page_table_range_init(); load_cr3(swapper_pg_dir); __flush_tlb_all(); #endif early_memtest(0, max_pfn_mapped << PAGE_SHIFT); } /* * devmem_is_allowed() checks to see if /dev/mem access to a certain address * is valid. The argument is a physical page number. * * * On x86, access has to be given to the first megabyte of ram because that area * contains bios code and data regions used by X and dosemu and similar apps. * Access has to be given to non-kernel-ram areas as well, these contain the PCI * mmio resources as well as potential bios/acpi data regions. */ int devmem_is_allowed(unsigned long pagenr) { if (pagenr < 256) return 1; if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) return 0; if (!page_is_ram(pagenr)) return 1; return 0; } void free_init_pages(char *what, unsigned long begin, unsigned long end) { unsigned long addr; unsigned long begin_aligned, end_aligned; /* Make sure boundaries are page aligned */ begin_aligned = PAGE_ALIGN(begin); end_aligned = end & PAGE_MASK; if (WARN_ON(begin_aligned != begin || end_aligned != end)) { begin = begin_aligned; end = end_aligned; } if (begin >= end) return; addr = begin; /* * If debugging page accesses then do not free this memory but * mark them not present - any buggy init-section access will * create a kernel page fault: */ #ifdef CONFIG_DEBUG_PAGEALLOC printk(KERN_INFO "debug: unmapping init [mem %#010lx-%#010lx]\n", begin, end - 1); set_memory_np(begin, (end - begin) >> PAGE_SHIFT); #else /* * We just marked the kernel text read only above, now that * we are going to free part of that, we need to make that * writeable and non-executable first. */ set_memory_nx(begin, (end - begin) >> PAGE_SHIFT); set_memory_rw(begin, (end - begin) >> PAGE_SHIFT); printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10); for (; addr < end; addr += PAGE_SIZE) { ClearPageReserved(virt_to_page(addr)); init_page_count(virt_to_page(addr)); memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE); free_page(addr); totalram_pages++; } #endif } void free_initmem(void) { free_init_pages("unused kernel memory", (unsigned long)(&__init_begin), (unsigned long)(&__init_end)); } #ifdef CONFIG_BLK_DEV_INITRD void __init free_initrd_mem(unsigned long start, unsigned long end) { /* * end could be not aligned, and We can not align that, * decompresser could be confused by aligned initrd_end * We already reserve the end partial page before in * - i386_start_kernel() * - x86_64_start_kernel() * - relocate_initrd() * So here We can do PAGE_ALIGN() safely to get partial page to be freed */ free_init_pages("initrd memory", start, PAGE_ALIGN(end)); } #endif void __init zone_sizes_init(void) { unsigned long max_zone_pfns[MAX_NR_ZONES]; memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); #ifdef CONFIG_ZONE_DMA max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN; #endif #ifdef CONFIG_ZONE_DMA32 max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN; #endif max_zone_pfns[ZONE_NORMAL] = max_low_pfn; #ifdef CONFIG_HIGHMEM max_zone_pfns[ZONE_HIGHMEM] = max_pfn; #endif free_area_init_nodes(max_zone_pfns); }