/* * Copyright (C) 2007 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include #include "ctree.h" #include "disk-io.h" #include "transaction.h" #include "print-tree.h" static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, int level); static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_key *ins_key, struct btrfs_path *path, int data_size); static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *dst, struct extent_buffer *src); static int balance_node_right(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *dst_buf, struct extent_buffer *src_buf); static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, int level, int slot); inline void btrfs_init_path(struct btrfs_path *p) { memset(p, 0, sizeof(*p)); } struct btrfs_path *btrfs_alloc_path(void) { struct btrfs_path *path; path = kmem_cache_alloc(btrfs_path_cachep, GFP_NOFS); if (path) { btrfs_init_path(path); path->reada = 1; } return path; } void btrfs_free_path(struct btrfs_path *p) { btrfs_release_path(NULL, p); kmem_cache_free(btrfs_path_cachep, p); } void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p) { int i; for (i = 0; i < BTRFS_MAX_LEVEL; i++) { if (!p->nodes[i]) break; free_extent_buffer(p->nodes[i]); } memset(p, 0, sizeof(*p)); } static int __btrfs_cow_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *buf, struct extent_buffer *parent, int parent_slot, struct extent_buffer **cow_ret, u64 search_start, u64 empty_size) { struct extent_buffer *cow; int ret = 0; int different_trans = 0; WARN_ON(root->ref_cows && trans->transid != root->last_trans); cow = btrfs_alloc_free_block(trans, root, buf->len, search_start, empty_size); if (IS_ERR(cow)) return PTR_ERR(cow); cow->alloc_addr = (unsigned long)__builtin_return_address(0); copy_extent_buffer(cow, buf, 0, 0, cow->len); btrfs_set_header_bytenr(cow, cow->start); btrfs_set_header_generation(cow, trans->transid); btrfs_set_header_owner(cow, root->root_key.objectid); WARN_ON(btrfs_header_generation(buf) > trans->transid); if (btrfs_header_generation(buf) != trans->transid) { different_trans = 1; ret = btrfs_inc_ref(trans, root, buf); if (ret) return ret; } else { clean_tree_block(trans, root, buf); } if (buf == root->node) { root->node = cow; extent_buffer_get(cow); if (buf != root->commit_root) { btrfs_free_extent(trans, root, buf->start, buf->len, 1); } free_extent_buffer(buf); } else { btrfs_set_node_blockptr(parent, parent_slot, cow->start); btrfs_mark_buffer_dirty(parent); WARN_ON(btrfs_header_generation(parent) != trans->transid); btrfs_free_extent(trans, root, buf->start, buf->len, 1); } free_extent_buffer(buf); btrfs_mark_buffer_dirty(cow); *cow_ret = cow; return 0; } int btrfs_cow_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *buf, struct extent_buffer *parent, int parent_slot, struct extent_buffer **cow_ret) { u64 search_start; int ret; if (trans->transaction != root->fs_info->running_transaction) { printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid, root->fs_info->running_transaction->transid); WARN_ON(1); } if (trans->transid != root->fs_info->generation) { printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid, root->fs_info->generation); WARN_ON(1); } if (btrfs_header_generation(buf) == trans->transid) { *cow_ret = buf; return 0; } search_start = buf->start & ~((u64)BTRFS_BLOCK_GROUP_SIZE - 1); ret = __btrfs_cow_block(trans, root, buf, parent, parent_slot, cow_ret, search_start, 0); (*cow_ret)->alloc_addr = (unsigned long)__builtin_return_address(0); return ret; } static int close_blocks(u64 blocknr, u64 other, u32 blocksize) { if (blocknr < other && other - (blocknr + blocksize) < 32768) return 1; if (blocknr > other && blocknr - (other + blocksize) < 32768) return 1; return 0; } static int should_defrag_leaf(struct extent_buffer *leaf) { struct btrfs_key key; u32 nritems; if (btrfs_buffer_defrag(leaf)) return 1; nritems = btrfs_header_nritems(leaf); if (nritems == 0) return 0; btrfs_item_key_to_cpu(leaf, &key, 0); if (key.type == BTRFS_DIR_ITEM_KEY) return 1; btrfs_item_key_to_cpu(leaf, &key, nritems - 1); if (key.type == BTRFS_DIR_ITEM_KEY) return 1; if (nritems > 4) { btrfs_item_key_to_cpu(leaf, &key, nritems / 2); if (key.type == BTRFS_DIR_ITEM_KEY) return 1; } return 0; } int btrfs_realloc_node(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *parent, int cache_only, u64 *last_ret) { struct extent_buffer *cur; struct extent_buffer *tmp; u64 blocknr; u64 search_start = *last_ret; u64 last_block = 0; u64 other; u32 parent_nritems; int start_slot; int end_slot; int i; int err = 0; int parent_level; int uptodate; u32 blocksize; if (trans->transaction != root->fs_info->running_transaction) { printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid, root->fs_info->running_transaction->transid); WARN_ON(1); } if (trans->transid != root->fs_info->generation) { printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid, root->fs_info->generation); WARN_ON(1); } if (btrfs_buffer_defrag_done(parent)) return 0; parent_nritems = btrfs_header_nritems(parent); parent_level = btrfs_header_level(parent); blocksize = btrfs_level_size(root, parent_level - 1); start_slot = 0; end_slot = parent_nritems; if (parent_nritems == 1) return 0; for (i = start_slot; i < end_slot; i++) { int close = 1; blocknr = btrfs_node_blockptr(parent, i); if (last_block == 0) last_block = blocknr; if (i > 0) { other = btrfs_node_blockptr(parent, i - 1); close = close_blocks(blocknr, other, blocksize); } if (close && i < end_slot - 1) { other = btrfs_node_blockptr(parent, i + 1); close = close_blocks(blocknr, other, blocksize); } if (close) { last_block = blocknr; continue; } cur = btrfs_find_tree_block(root, blocknr, blocksize); if (cur) uptodate = btrfs_buffer_uptodate(cur); else uptodate = 0; if (!cur || !uptodate || (parent_level != 1 && !btrfs_buffer_defrag(cur)) || (parent_level == 1 && !should_defrag_leaf(cur))) { if (cache_only) { free_extent_buffer(cur); continue; } if (!cur) { cur = read_tree_block(root, blocknr, blocksize); } else if (!uptodate) { btrfs_read_buffer(cur); } } if (search_start == 0) search_start = last_block; err = __btrfs_cow_block(trans, root, cur, parent, i, &tmp, search_start, min(16 * blocksize, (end_slot - i) * blocksize)); if (err) { free_extent_buffer(cur); break; } search_start = tmp->start; *last_ret = search_start; if (parent_level == 1) btrfs_clear_buffer_defrag(tmp); btrfs_set_buffer_defrag_done(tmp); free_extent_buffer(tmp); } return err; } /* * The leaf data grows from end-to-front in the node. * this returns the address of the start of the last item, * which is the stop of the leaf data stack */ static inline unsigned int leaf_data_end(struct btrfs_root *root, struct extent_buffer *leaf) { u32 nr = btrfs_header_nritems(leaf); if (nr == 0) return BTRFS_LEAF_DATA_SIZE(root); return btrfs_item_offset_nr(leaf, nr - 1); } /* * compare two keys in a memcmp fashion */ static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2) { struct btrfs_key k1; btrfs_disk_key_to_cpu(&k1, disk); if (k1.objectid > k2->objectid) return 1; if (k1.objectid < k2->objectid) return -1; if (k1.type > k2->type) return 1; if (k1.type < k2->type) return -1; if (k1.offset > k2->offset) return 1; if (k1.offset < k2->offset) return -1; return 0; } static int check_node(struct btrfs_root *root, struct btrfs_path *path, int level) { struct extent_buffer *parent = NULL; struct extent_buffer *node = path->nodes[level]; struct btrfs_disk_key parent_key; struct btrfs_disk_key node_key; int parent_slot; int slot; struct btrfs_key cpukey; u32 nritems = btrfs_header_nritems(node); if (path->nodes[level + 1]) parent = path->nodes[level + 1]; slot = path->slots[level]; BUG_ON(nritems == 0); if (parent) { parent_slot = path->slots[level + 1]; btrfs_node_key(parent, &parent_key, parent_slot); btrfs_node_key(node, &node_key, 0); BUG_ON(memcmp(&parent_key, &node_key, sizeof(struct btrfs_disk_key))); BUG_ON(btrfs_node_blockptr(parent, parent_slot) != btrfs_header_bytenr(node)); } BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root)); if (slot != 0) { btrfs_node_key_to_cpu(node, &cpukey, slot - 1); btrfs_node_key(node, &node_key, slot); BUG_ON(comp_keys(&node_key, &cpukey) <= 0); } if (slot < nritems - 1) { btrfs_node_key_to_cpu(node, &cpukey, slot + 1); btrfs_node_key(node, &node_key, slot); BUG_ON(comp_keys(&node_key, &cpukey) >= 0); } return 0; } static int check_leaf(struct btrfs_root *root, struct btrfs_path *path, int level) { struct extent_buffer *leaf = path->nodes[level]; struct extent_buffer *parent = NULL; int parent_slot; struct btrfs_key cpukey; struct btrfs_disk_key parent_key; struct btrfs_disk_key leaf_key; int slot = path->slots[0]; u32 nritems = btrfs_header_nritems(leaf); if (path->nodes[level + 1]) parent = path->nodes[level + 1]; if (nritems == 0) return 0; if (parent) { parent_slot = path->slots[level + 1]; btrfs_node_key(parent, &parent_key, parent_slot); btrfs_item_key(leaf, &leaf_key, 0); BUG_ON(memcmp(&parent_key, &leaf_key, sizeof(struct btrfs_disk_key))); BUG_ON(btrfs_node_blockptr(parent, parent_slot) != btrfs_header_bytenr(leaf)); } #if 0 for (i = 0; nritems > 1 && i < nritems - 2; i++) { btrfs_item_key_to_cpu(leaf, &cpukey, i + 1); btrfs_item_key(leaf, &leaf_key, i); if (comp_keys(&leaf_key, &cpukey) >= 0) { btrfs_print_leaf(root, leaf); printk("slot %d offset bad key\n", i); BUG_ON(1); } if (btrfs_item_offset_nr(leaf, i) != btrfs_item_end_nr(leaf, i + 1)) { btrfs_print_leaf(root, leaf); printk("slot %d offset bad\n", i); BUG_ON(1); } if (i == 0) { if (btrfs_item_offset_nr(leaf, i) + btrfs_item_size_nr(leaf, i) != BTRFS_LEAF_DATA_SIZE(root)) { btrfs_print_leaf(root, leaf); printk("slot %d first offset bad\n", i); BUG_ON(1); } } } if (nritems > 0) { if (btrfs_item_size_nr(leaf, nritems - 1) > 4096) { btrfs_print_leaf(root, leaf); printk("slot %d bad size \n", nritems - 1); BUG_ON(1); } } #endif if (slot != 0 && slot < nritems - 1) { btrfs_item_key(leaf, &leaf_key, slot); btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1); if (comp_keys(&leaf_key, &cpukey) <= 0) { btrfs_print_leaf(root, leaf); printk("slot %d offset bad key\n", slot); BUG_ON(1); } if (btrfs_item_offset_nr(leaf, slot - 1) != btrfs_item_end_nr(leaf, slot)) { btrfs_print_leaf(root, leaf); printk("slot %d offset bad\n", slot); BUG_ON(1); } } if (slot < nritems - 1) { btrfs_item_key(leaf, &leaf_key, slot); btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1); BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0); if (btrfs_item_offset_nr(leaf, slot) != btrfs_item_end_nr(leaf, slot + 1)) { btrfs_print_leaf(root, leaf); printk("slot %d offset bad\n", slot); BUG_ON(1); } } BUG_ON(btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root)); return 0; } static int check_block(struct btrfs_root *root, struct btrfs_path *path, int level) { #if 0 struct extent_buffer *buf = path->nodes[level]; if (memcmp_extent_buffer(buf, root->fs_info->fsid, (unsigned long)btrfs_header_fsid(buf), BTRFS_FSID_SIZE)) { printk("warning bad block %Lu\n", buf->start); return 1; } #endif if (level == 0) return check_leaf(root, path, level); return check_node(root, path, level); } /* * search for key in the extent_buffer. The items start at offset p, * and they are item_size apart. There are 'max' items in p. * * the slot in the array is returned via slot, and it points to * the place where you would insert key if it is not found in * the array. * * slot may point to max if the key is bigger than all of the keys */ static int generic_bin_search(struct extent_buffer *eb, unsigned long p, int item_size, struct btrfs_key *key, int max, int *slot) { int low = 0; int high = max; int mid; int ret; struct btrfs_disk_key *tmp = NULL; struct btrfs_disk_key unaligned; unsigned long offset; char *map_token = NULL; char *kaddr = NULL; unsigned long map_start = 0; unsigned long map_len = 0; int err; while(low < high) { mid = (low + high) / 2; offset = p + mid * item_size; if (!map_token || offset < map_start || (offset + sizeof(struct btrfs_disk_key)) > map_start + map_len) { if (map_token) { unmap_extent_buffer(eb, map_token, KM_USER0); map_token = NULL; } err = map_extent_buffer(eb, offset, sizeof(struct btrfs_disk_key), &map_token, &kaddr, &map_start, &map_len, KM_USER0); if (!err) { tmp = (struct btrfs_disk_key *)(kaddr + offset - map_start); } else { read_extent_buffer(eb, &unaligned, offset, sizeof(unaligned)); tmp = &unaligned; } } else { tmp = (struct btrfs_disk_key *)(kaddr + offset - map_start); } ret = comp_keys(tmp, key); if (ret < 0) low = mid + 1; else if (ret > 0) high = mid; else { *slot = mid; if (map_token) unmap_extent_buffer(eb, map_token, KM_USER0); return 0; } } *slot = low; if (map_token) unmap_extent_buffer(eb, map_token, KM_USER0); return 1; } /* * simple bin_search frontend that does the right thing for * leaves vs nodes */ static int bin_search(struct extent_buffer *eb, struct btrfs_key *key, int level, int *slot) { if (level == 0) { return generic_bin_search(eb, offsetof(struct btrfs_leaf, items), sizeof(struct btrfs_item), key, btrfs_header_nritems(eb), slot); } else { return generic_bin_search(eb, offsetof(struct btrfs_node, ptrs), sizeof(struct btrfs_key_ptr), key, btrfs_header_nritems(eb), slot); } return -1; } static struct extent_buffer *read_node_slot(struct btrfs_root *root, struct extent_buffer *parent, int slot) { if (slot < 0) return NULL; if (slot >= btrfs_header_nritems(parent)) return NULL; return read_tree_block(root, btrfs_node_blockptr(parent, slot), btrfs_level_size(root, btrfs_header_level(parent) - 1)); } static int balance_level(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, int level) { struct extent_buffer *right = NULL; struct extent_buffer *mid; struct extent_buffer *left = NULL; struct extent_buffer *parent = NULL; int ret = 0; int wret; int pslot; int orig_slot = path->slots[level]; int err_on_enospc = 0; u64 orig_ptr; if (level == 0) return 0; mid = path->nodes[level]; orig_ptr = btrfs_node_blockptr(mid, orig_slot); if (level < BTRFS_MAX_LEVEL - 1) parent = path->nodes[level + 1]; pslot = path->slots[level + 1]; /* * deal with the case where there is only one pointer in the root * by promoting the node below to a root */ if (!parent) { struct extent_buffer *child; if (btrfs_header_nritems(mid) != 1) return 0; /* promote the child to a root */ child = read_node_slot(root, mid, 0); BUG_ON(!child); root->node = child; path->nodes[level] = NULL; clean_tree_block(trans, root, mid); wait_on_tree_block_writeback(root, mid); /* once for the path */ free_extent_buffer(mid); ret = btrfs_free_extent(trans, root, mid->start, mid->len, 1); /* once for the root ptr */ free_extent_buffer(mid); return ret; } if (btrfs_header_nritems(mid) > BTRFS_NODEPTRS_PER_BLOCK(root) / 4) return 0; if (btrfs_header_nritems(mid) < 2) err_on_enospc = 1; left = read_node_slot(root, parent, pslot - 1); if (left) { wret = btrfs_cow_block(trans, root, left, parent, pslot - 1, &left); if (wret) { ret = wret; goto enospc; } } right = read_node_slot(root, parent, pslot + 1); if (right) { wret = btrfs_cow_block(trans, root, right, parent, pslot + 1, &right); if (wret) { ret = wret; goto enospc; } } /* first, try to make some room in the middle buffer */ if (left) { orig_slot += btrfs_header_nritems(left); wret = push_node_left(trans, root, left, mid); if (wret < 0) ret = wret; if (btrfs_header_nritems(mid) < 2) err_on_enospc = 1; } /* * then try to empty the right most buffer into the middle */ if (right) { wret = push_node_left(trans, root, mid, right); if (wret < 0 && wret != -ENOSPC) ret = wret; if (btrfs_header_nritems(right) == 0) { u64 bytenr = right->start; u32 blocksize = right->len; clean_tree_block(trans, root, right); wait_on_tree_block_writeback(root, right); free_extent_buffer(right); right = NULL; wret = del_ptr(trans, root, path, level + 1, pslot + 1); if (wret) ret = wret; wret = btrfs_free_extent(trans, root, bytenr, blocksize, 1); if (wret) ret = wret; } else { struct btrfs_disk_key right_key; btrfs_node_key(right, &right_key, 0); btrfs_set_node_key(parent, &right_key, pslot + 1); btrfs_mark_buffer_dirty(parent); } } if (btrfs_header_nritems(mid) == 1) { /* * we're not allowed to leave a node with one item in the * tree during a delete. A deletion from lower in the tree * could try to delete the only pointer in this node. * So, pull some keys from the left. * There has to be a left pointer at this point because * otherwise we would have pulled some pointers from the * right */ BUG_ON(!left); wret = balance_node_right(trans, root, mid, left); if (wret < 0) { ret = wret; goto enospc; } BUG_ON(wret == 1); } if (btrfs_header_nritems(mid) == 0) { /* we've managed to empty the middle node, drop it */ u64 bytenr = mid->start; u32 blocksize = mid->len; clean_tree_block(trans, root, mid); wait_on_tree_block_writeback(root, mid); free_extent_buffer(mid); mid = NULL; wret = del_ptr(trans, root, path, level + 1, pslot); if (wret) ret = wret; wret = btrfs_free_extent(trans, root, bytenr, blocksize, 1); if (wret) ret = wret; } else { /* update the parent key to reflect our changes */ struct btrfs_disk_key mid_key; btrfs_node_key(mid, &mid_key, 0); btrfs_set_node_key(parent, &mid_key, pslot); btrfs_mark_buffer_dirty(parent); } /* update the path */ if (left) { if (btrfs_header_nritems(left) > orig_slot) { extent_buffer_get(left); path->nodes[level] = left; path->slots[level + 1] -= 1; path->slots[level] = orig_slot; if (mid) free_extent_buffer(mid); } else { orig_slot -= btrfs_header_nritems(left); path->slots[level] = orig_slot; } } /* double check we haven't messed things up */ check_block(root, path, level); if (orig_ptr != btrfs_node_blockptr(path->nodes[level], path->slots[level])) BUG(); enospc: if (right) free_extent_buffer(right); if (left) free_extent_buffer(left); return ret; } /* returns zero if the push worked, non-zero otherwise */ static int push_nodes_for_insert(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, int level) { struct extent_buffer *right = NULL; struct extent_buffer *mid; struct extent_buffer *left = NULL; struct extent_buffer *parent = NULL; int ret = 0; int wret; int pslot; int orig_slot = path->slots[level]; u64 orig_ptr; if (level == 0) return 1; mid = path->nodes[level]; orig_ptr = btrfs_node_blockptr(mid, orig_slot); if (level < BTRFS_MAX_LEVEL - 1) parent = path->nodes[level + 1]; pslot = path->slots[level + 1]; if (!parent) return 1; left = read_node_slot(root, parent, pslot - 1); /* first, try to make some room in the middle buffer */ if (left) { u32 left_nr; left_nr = btrfs_header_nritems(left); if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { wret = 1; } else { ret = btrfs_cow_block(trans, root, left, parent, pslot - 1, &left); if (ret) wret = 1; else { wret = push_node_left(trans, root, left, mid); } } if (wret < 0) ret = wret; if (wret == 0) { struct btrfs_disk_key disk_key; orig_slot += left_nr; btrfs_node_key(mid, &disk_key, 0); btrfs_set_node_key(parent, &disk_key, pslot); btrfs_mark_buffer_dirty(parent); if (btrfs_header_nritems(left) > orig_slot) { path->nodes[level] = left; path->slots[level + 1] -= 1; path->slots[level] = orig_slot; free_extent_buffer(mid); } else { orig_slot -= btrfs_header_nritems(left); path->slots[level] = orig_slot; free_extent_buffer(left); } return 0; } free_extent_buffer(left); } right= read_node_slot(root, parent, pslot + 1); /* * then try to empty the right most buffer into the middle */ if (right) { u32 right_nr; right_nr = btrfs_header_nritems(right); if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { wret = 1; } else { ret = btrfs_cow_block(trans, root, right, parent, pslot + 1, &right); if (ret) wret = 1; else { wret = balance_node_right(trans, root, right, mid); } } if (wret < 0) ret = wret; if (wret == 0) { struct btrfs_disk_key disk_key; btrfs_node_key(right, &disk_key, 0); btrfs_set_node_key(parent, &disk_key, pslot + 1); btrfs_mark_buffer_dirty(parent); if (btrfs_header_nritems(mid) <= orig_slot) { path->nodes[level] = right; path->slots[level + 1] += 1; path->slots[level] = orig_slot - btrfs_header_nritems(mid); free_extent_buffer(mid); } else { free_extent_buffer(right); } return 0; } free_extent_buffer(right); } return 1; } /* * readahead one full node of leaves */ static void reada_for_search(struct btrfs_root *root, struct btrfs_path *path, int level, int slot) { struct extent_buffer *node; u32 nritems; u64 search; u64 lowest_read; u64 highest_read; u64 nread = 0; int direction = path->reada; struct extent_buffer *eb; u32 nr; u32 blocksize; u32 nscan = 0; if (level == 0) return; if (!path->nodes[level]) return; node = path->nodes[level]; search = btrfs_node_blockptr(node, slot); blocksize = btrfs_level_size(root, level - 1); eb = btrfs_find_tree_block(root, search, blocksize); if (eb) { free_extent_buffer(eb); return; } highest_read = search; lowest_read = search; nritems = btrfs_header_nritems(node); nr = slot; while(1) { if (direction < 0) { if (nr == 0) break; nr--; } else if (direction > 0) { nr++; if (nr >= nritems) break; } search = btrfs_node_blockptr(node, nr); if ((search >= lowest_read && search <= highest_read) || (search < lowest_read && lowest_read - search <= 32768) || (search > highest_read && search - highest_read <= 32768)) { readahead_tree_block(root, search, blocksize); nread += blocksize; } nscan++; if (path->reada < 2 && (nread > (256 * 1024) || nscan > 32)) break; if(nread > (1024 * 1024) || nscan > 128) break; if (search < lowest_read) lowest_read = search; if (search > highest_read) highest_read = search; } } /* * look for key in the tree. path is filled in with nodes along the way * if key is found, we return zero and you can find the item in the leaf * level of the path (level 0) * * If the key isn't found, the path points to the slot where it should * be inserted, and 1 is returned. If there are other errors during the * search a negative error number is returned. * * if ins_len > 0, nodes and leaves will be split as we walk down the * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if * possible) */ int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_key *key, struct btrfs_path *p, int ins_len, int cow) { struct extent_buffer *b; u64 bytenr; int slot; int ret; int level; int should_reada = p->reada; u8 lowest_level = 0; lowest_level = p->lowest_level; WARN_ON(lowest_level && ins_len); WARN_ON(p->nodes[0] != NULL); WARN_ON(!mutex_is_locked(&root->fs_info->fs_mutex)); again: b = root->node; extent_buffer_get(b); while (b) { level = btrfs_header_level(b); if (cow) { int wret; wret = btrfs_cow_block(trans, root, b, p->nodes[level + 1], p->slots[level + 1], &b); if (wret) { free_extent_buffer(b); return wret; } } BUG_ON(!cow && ins_len); if (level != btrfs_header_level(b)) WARN_ON(1); level = btrfs_header_level(b); p->nodes[level] = b; ret = check_block(root, p, level); if (ret) return -1; ret = bin_search(b, key, level, &slot); if (level != 0) { if (ret && slot > 0) slot -= 1; p->slots[level] = slot; if (ins_len > 0 && btrfs_header_nritems(b) >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { int sret = split_node(trans, root, p, level); BUG_ON(sret > 0); if (sret) return sret; b = p->nodes[level]; slot = p->slots[level]; } else if (ins_len < 0) { int sret = balance_level(trans, root, p, level); if (sret) return sret; b = p->nodes[level]; if (!b) { btrfs_release_path(NULL, p); goto again; } slot = p->slots[level]; BUG_ON(btrfs_header_nritems(b) == 1); } /* this is only true while dropping a snapshot */ if (level == lowest_level) break; bytenr = btrfs_node_blockptr(b, slot); if (should_reada) reada_for_search(root, p, level, slot); b = read_tree_block(root, bytenr, btrfs_level_size(root, level - 1)); } else { p->slots[level] = slot; if (ins_len > 0 && btrfs_leaf_free_space(root, b) < sizeof(struct btrfs_item) + ins_len) { int sret = split_leaf(trans, root, key, p, ins_len); BUG_ON(sret > 0); if (sret) return sret; } return ret; } } return 1; } /* * adjust the pointers going up the tree, starting at level * making sure the right key of each node is points to 'key'. * This is used after shifting pointers to the left, so it stops * fixing up pointers when a given leaf/node is not in slot 0 of the * higher levels * * If this fails to write a tree block, it returns -1, but continues * fixing up the blocks in ram so the tree is consistent. */ static int fixup_low_keys(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct btrfs_disk_key *key, int level) { int i; int ret = 0; struct extent_buffer *t; for (i = level; i < BTRFS_MAX_LEVEL; i++) { int tslot = path->slots[i]; if (!path->nodes[i]) break; t = path->nodes[i]; btrfs_set_node_key(t, key, tslot); btrfs_mark_buffer_dirty(path->nodes[i]); if (tslot != 0) break; } return ret; } /* * try to push data from one node into the next node left in the * tree. * * returns 0 if some ptrs were pushed left, < 0 if there was some horrible * error, and > 0 if there was no room in the left hand block. */ static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *dst, struct extent_buffer *src) { int push_items = 0; int src_nritems; int dst_nritems; int ret = 0; src_nritems = btrfs_header_nritems(src); dst_nritems = btrfs_header_nritems(dst); push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; if (push_items <= 0) { return 1; } if (src_nritems < push_items) push_items = src_nritems; copy_extent_buffer(dst, src, btrfs_node_key_ptr_offset(dst_nritems), btrfs_node_key_ptr_offset(0), push_items * sizeof(struct btrfs_key_ptr)); if (push_items < src_nritems) { memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), btrfs_node_key_ptr_offset(push_items), (src_nritems - push_items) * sizeof(struct btrfs_key_ptr)); } btrfs_set_header_nritems(src, src_nritems - push_items); btrfs_set_header_nritems(dst, dst_nritems + push_items); btrfs_mark_buffer_dirty(src); btrfs_mark_buffer_dirty(dst); return ret; } /* * try to push data from one node into the next node right in the * tree. * * returns 0 if some ptrs were pushed, < 0 if there was some horrible * error, and > 0 if there was no room in the right hand block. * * this will only push up to 1/2 the contents of the left node over */ static int balance_node_right(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *dst, struct extent_buffer *src) { int push_items = 0; int max_push; int src_nritems; int dst_nritems; int ret = 0; src_nritems = btrfs_header_nritems(src); dst_nritems = btrfs_header_nritems(dst); push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; if (push_items <= 0) return 1; max_push = src_nritems / 2 + 1; /* don't try to empty the node */ if (max_push >= src_nritems) return 1; if (max_push < push_items) push_items = max_push; memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), btrfs_node_key_ptr_offset(0), (dst_nritems) * sizeof(struct btrfs_key_ptr)); copy_extent_buffer(dst, src, btrfs_node_key_ptr_offset(0), btrfs_node_key_ptr_offset(src_nritems - push_items), push_items * sizeof(struct btrfs_key_ptr)); btrfs_set_header_nritems(src, src_nritems - push_items); btrfs_set_header_nritems(dst, dst_nritems + push_items); btrfs_mark_buffer_dirty(src); btrfs_mark_buffer_dirty(dst); return ret; } /* * helper function to insert a new root level in the tree. * A new node is allocated, and a single item is inserted to * point to the existing root * * returns zero on success or < 0 on failure. */ static int insert_new_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, int level) { struct extent_buffer *lower; struct extent_buffer *c; struct btrfs_disk_key lower_key; BUG_ON(path->nodes[level]); BUG_ON(path->nodes[level-1] != root->node); c = btrfs_alloc_free_block(trans, root, root->nodesize, root->node->start, 0); if (IS_ERR(c)) return PTR_ERR(c); memset_extent_buffer(c, 0, 0, root->nodesize); btrfs_set_header_nritems(c, 1); btrfs_set_header_level(c, level); btrfs_set_header_bytenr(c, c->start); btrfs_set_header_generation(c, trans->transid); btrfs_set_header_owner(c, root->root_key.objectid); lower = path->nodes[level-1]; write_extent_buffer(c, root->fs_info->fsid, (unsigned long)btrfs_header_fsid(c), BTRFS_FSID_SIZE); if (level == 1) btrfs_item_key(lower, &lower_key, 0); else btrfs_node_key(lower, &lower_key, 0); btrfs_set_node_key(c, &lower_key, 0); btrfs_set_node_blockptr(c, 0, lower->start); btrfs_mark_buffer_dirty(c); /* the super has an extra ref to root->node */ free_extent_buffer(root->node); root->node = c; extent_buffer_get(c); path->nodes[level] = c; path->slots[level] = 0; return 0; } /* * worker function to insert a single pointer in a node. * the node should have enough room for the pointer already * * slot and level indicate where you want the key to go, and * blocknr is the block the key points to. * * returns zero on success and < 0 on any error */ static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct btrfs_disk_key *key, u64 bytenr, int slot, int level) { struct extent_buffer *lower; int nritems; BUG_ON(!path->nodes[level]); lower = path->nodes[level]; nritems = btrfs_header_nritems(lower); if (slot > nritems) BUG(); if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root)) BUG(); if (slot != nritems) { memmove_extent_buffer(lower, btrfs_node_key_ptr_offset(slot + 1), btrfs_node_key_ptr_offset(slot), (nritems - slot) * sizeof(struct btrfs_key_ptr)); } btrfs_set_node_key(lower, key, slot); btrfs_set_node_blockptr(lower, slot, bytenr); btrfs_set_header_nritems(lower, nritems + 1); btrfs_mark_buffer_dirty(lower); return 0; } /* * split the node at the specified level in path in two. * The path is corrected to point to the appropriate node after the split * * Before splitting this tries to make some room in the node by pushing * left and right, if either one works, it returns right away. * * returns 0 on success and < 0 on failure */ static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, int level) { struct extent_buffer *c; struct extent_buffer *split; struct btrfs_disk_key disk_key; int mid; int ret; int wret; u32 c_nritems; c = path->nodes[level]; if (c == root->node) { /* trying to split the root, lets make a new one */ ret = insert_new_root(trans, root, path, level + 1); if (ret) return ret; } else { ret = push_nodes_for_insert(trans, root, path, level); c = path->nodes[level]; if (!ret && btrfs_header_nritems(c) < BTRFS_NODEPTRS_PER_BLOCK(root) - 1) return 0; if (ret < 0) return ret; } c_nritems = btrfs_header_nritems(c); split = btrfs_alloc_free_block(trans, root, root->nodesize, c->start, 0); if (IS_ERR(split)) return PTR_ERR(split); btrfs_set_header_flags(split, btrfs_header_flags(c)); btrfs_set_header_level(split, btrfs_header_level(c)); btrfs_set_header_bytenr(split, split->start); btrfs_set_header_generation(split, trans->transid); btrfs_set_header_owner(split, root->root_key.objectid); write_extent_buffer(split, root->fs_info->fsid, (unsigned long)btrfs_header_fsid(split), BTRFS_FSID_SIZE); mid = (c_nritems + 1) / 2; copy_extent_buffer(split, c, btrfs_node_key_ptr_offset(0), btrfs_node_key_ptr_offset(mid), (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); btrfs_set_header_nritems(split, c_nritems - mid); btrfs_set_header_nritems(c, mid); ret = 0; btrfs_mark_buffer_dirty(c); btrfs_mark_buffer_dirty(split); btrfs_node_key(split, &disk_key, 0); wret = insert_ptr(trans, root, path, &disk_key, split->start, path->slots[level + 1] + 1, level + 1); if (wret) ret = wret; if (path->slots[level] >= mid) { path->slots[level] -= mid; free_extent_buffer(c); path->nodes[level] = split; path->slots[level + 1] += 1; } else { free_extent_buffer(split); } return ret; } /* * how many bytes are required to store the items in a leaf. start * and nr indicate which items in the leaf to check. This totals up the * space used both by the item structs and the item data */ static int leaf_space_used(struct extent_buffer *l, int start, int nr) { int data_len; int nritems = btrfs_header_nritems(l); int end = min(nritems, start + nr) - 1; if (!nr) return 0; data_len = btrfs_item_end_nr(l, start); data_len = data_len - btrfs_item_offset_nr(l, end); data_len += sizeof(struct btrfs_item) * nr; WARN_ON(data_len < 0); return data_len; } /* * The space between the end of the leaf items and * the start of the leaf data. IOW, how much room * the leaf has left for both items and data */ int btrfs_leaf_free_space(struct btrfs_root *root, struct extent_buffer *leaf) { int nritems = btrfs_header_nritems(leaf); int ret; ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems); if (ret < 0) { printk("leaf free space ret %d, leaf data size %lu, used %d nritems %d\n", ret, BTRFS_LEAF_DATA_SIZE(root), leaf_space_used(leaf, 0, nritems), nritems); } return ret; } /* * push some data in the path leaf to the right, trying to free up at * least data_size bytes. returns zero if the push worked, nonzero otherwise * * returns 1 if the push failed because the other node didn't have enough * room, 0 if everything worked out and < 0 if there were major errors. */ static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, int data_size) { struct extent_buffer *left = path->nodes[0]; struct extent_buffer *right; struct extent_buffer *upper; struct btrfs_disk_key disk_key; int slot; int i; int free_space; int push_space = 0; int push_items = 0; struct btrfs_item *item; u32 left_nritems; u32 right_nritems; u32 data_end; u32 this_item_size; int ret; slot = path->slots[1]; if (!path->nodes[1]) { return 1; } upper = path->nodes[1]; if (slot >= btrfs_header_nritems(upper) - 1) return 1; right = read_tree_block(root, btrfs_node_blockptr(upper, slot + 1), root->leafsize); free_space = btrfs_leaf_free_space(root, right); if (free_space < data_size + sizeof(struct btrfs_item)) { free_extent_buffer(right); return 1; } /* cow and double check */ ret = btrfs_cow_block(trans, root, right, upper, slot + 1, &right); if (ret) { free_extent_buffer(right); return 1; } free_space = btrfs_leaf_free_space(root, right); if (free_space < data_size + sizeof(struct btrfs_item)) { free_extent_buffer(right); return 1; } left_nritems = btrfs_header_nritems(left); if (left_nritems == 0) { free_extent_buffer(right); return 1; } for (i = left_nritems - 1; i >= 1; i--) { item = btrfs_item_nr(left, i); if (path->slots[0] == i) push_space += data_size + sizeof(*item); if (!left->map_token) { map_extent_buffer(left, (unsigned long)item, sizeof(struct btrfs_item), &left->map_token, &left->kaddr, &left->map_start, &left->map_len, KM_USER1); } this_item_size = btrfs_item_size(left, item); if (this_item_size + sizeof(*item) + push_space > free_space) break; push_items++; push_space += this_item_size + sizeof(*item); } if (left->map_token) { unmap_extent_buffer(left, left->map_token, KM_USER1); left->map_token = NULL; } if (push_items == 0) { free_extent_buffer(right); return 1; } if (push_items == left_nritems) WARN_ON(1); /* push left to right */ right_nritems = btrfs_header_nritems(right); push_space = btrfs_item_end_nr(left, left_nritems - push_items); push_space -= leaf_data_end(root, left); /* make room in the right data area */ data_end = leaf_data_end(root, right); memmove_extent_buffer(right, btrfs_leaf_data(right) + data_end - push_space, btrfs_leaf_data(right) + data_end, BTRFS_LEAF_DATA_SIZE(root) - data_end); /* copy from the left data area */ copy_extent_buffer(right, left, btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - push_space, btrfs_leaf_data(left) + leaf_data_end(root, left), push_space); memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), btrfs_item_nr_offset(0), right_nritems * sizeof(struct btrfs_item)); /* copy the items from left to right */ copy_extent_buffer(right, left, btrfs_item_nr_offset(0), btrfs_item_nr_offset(left_nritems - push_items), push_items * sizeof(struct btrfs_item)); /* update the item pointers */ right_nritems += push_items; btrfs_set_header_nritems(right, right_nritems); push_space = BTRFS_LEAF_DATA_SIZE(root); for (i = 0; i < right_nritems; i++) { item = btrfs_item_nr(right, i); if (!right->map_token) { map_extent_buffer(right, (unsigned long)item, sizeof(struct btrfs_item), &right->map_token, &right->kaddr, &right->map_start, &right->map_len, KM_USER1); } push_space -= btrfs_item_size(right, item); btrfs_set_item_offset(right, item, push_space); } if (right->map_token) { unmap_extent_buffer(right, right->map_token, KM_USER1); right->map_token = NULL; } left_nritems -= push_items; btrfs_set_header_nritems(left, left_nritems); btrfs_mark_buffer_dirty(left); btrfs_mark_buffer_dirty(right); btrfs_item_key(right, &disk_key, 0); btrfs_set_node_key(upper, &disk_key, slot + 1); btrfs_mark_buffer_dirty(upper); /* then fixup the leaf pointer in the path */ if (path->slots[0] >= left_nritems) { path->slots[0] -= left_nritems; free_extent_buffer(path->nodes[0]); path->nodes[0] = right; path->slots[1] += 1; } else { free_extent_buffer(right); } return 0; } /* * push some data in the path leaf to the left, trying to free up at * least data_size bytes. returns zero if the push worked, nonzero otherwise */ static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, int data_size) { struct btrfs_disk_key disk_key; struct extent_buffer *right = path->nodes[0]; struct extent_buffer *left; int slot; int i; int free_space; int push_space = 0; int push_items = 0; struct btrfs_item *item; u32 old_left_nritems; u32 right_nritems; int ret = 0; int wret; u32 this_item_size; u32 old_left_item_size; slot = path->slots[1]; if (slot == 0) return 1; if (!path->nodes[1]) return 1; left = read_tree_block(root, btrfs_node_blockptr(path->nodes[1], slot - 1), root->leafsize); free_space = btrfs_leaf_free_space(root, left); if (free_space < data_size + sizeof(struct btrfs_item)) { free_extent_buffer(left); return 1; } /* cow and double check */ ret = btrfs_cow_block(trans, root, left, path->nodes[1], slot - 1, &left); if (ret) { /* we hit -ENOSPC, but it isn't fatal here */ free_extent_buffer(left); return 1; } free_space = btrfs_leaf_free_space(root, left); if (free_space < data_size + sizeof(struct btrfs_item)) { free_extent_buffer(left); return 1; } right_nritems = btrfs_header_nritems(right); if (right_nritems == 0) { free_extent_buffer(left); return 1; } for (i = 0; i < right_nritems - 1; i++) { item = btrfs_item_nr(right, i); if (!right->map_token) { map_extent_buffer(right, (unsigned long)item, sizeof(struct btrfs_item), &right->map_token, &right->kaddr, &right->map_start, &right->map_len, KM_USER1); } if (path->slots[0] == i) push_space += data_size + sizeof(*item); this_item_size = btrfs_item_size(right, item); if (this_item_size + sizeof(*item) + push_space > free_space) break; push_items++; push_space += this_item_size + sizeof(*item); } if (right->map_token) { unmap_extent_buffer(right, right->map_token, KM_USER1); right->map_token = NULL; } if (push_items == 0) { free_extent_buffer(left); return 1; } if (push_items == btrfs_header_nritems(right)) WARN_ON(1); /* push data from right to left */ copy_extent_buffer(left, right, btrfs_item_nr_offset(btrfs_header_nritems(left)), btrfs_item_nr_offset(0), push_items * sizeof(struct btrfs_item)); push_space = BTRFS_LEAF_DATA_SIZE(root) - btrfs_item_offset_nr(right, push_items -1); copy_extent_buffer(left, right, btrfs_leaf_data(left) + leaf_data_end(root, left) - push_space, btrfs_leaf_data(right) + btrfs_item_offset_nr(right, push_items - 1), push_space); old_left_nritems = btrfs_header_nritems(left); BUG_ON(old_left_nritems < 0); old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { u32 ioff; item = btrfs_item_nr(left, i); if (!left->map_token) { map_extent_buffer(left, (unsigned long)item, sizeof(struct btrfs_item), &left->map_token, &left->kaddr, &left->map_start, &left->map_len, KM_USER1); } ioff = btrfs_item_offset(left, item); btrfs_set_item_offset(left, item, ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size)); } btrfs_set_header_nritems(left, old_left_nritems + push_items); if (left->map_token) { unmap_extent_buffer(left, left->map_token, KM_USER1); left->map_token = NULL; } /* fixup right node */ push_space = btrfs_item_offset_nr(right, push_items - 1) - leaf_data_end(root, right); memmove_extent_buffer(right, btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - push_space, btrfs_leaf_data(right) + leaf_data_end(root, right), push_space); memmove_extent_buffer(right, btrfs_item_nr_offset(0), btrfs_item_nr_offset(push_items), (btrfs_header_nritems(right) - push_items) * sizeof(struct btrfs_item)); right_nritems = btrfs_header_nritems(right) - push_items; btrfs_set_header_nritems(right, right_nritems); push_space = BTRFS_LEAF_DATA_SIZE(root); for (i = 0; i < right_nritems; i++) { item = btrfs_item_nr(right, i); if (!right->map_token) { map_extent_buffer(right, (unsigned long)item, sizeof(struct btrfs_item), &right->map_token, &right->kaddr, &right->map_start, &right->map_len, KM_USER1); } push_space = push_space - btrfs_item_size(right, item); btrfs_set_item_offset(right, item, push_space); } if (right->map_token) { unmap_extent_buffer(right, right->map_token, KM_USER1); right->map_token = NULL; } btrfs_mark_buffer_dirty(left); btrfs_mark_buffer_dirty(right); btrfs_item_key(right, &disk_key, 0); wret = fixup_low_keys(trans, root, path, &disk_key, 1); if (wret) ret = wret; /* then fixup the leaf pointer in the path */ if (path->slots[0] < push_items) { path->slots[0] += old_left_nritems; free_extent_buffer(path->nodes[0]); path->nodes[0] = left; path->slots[1] -= 1; } else { free_extent_buffer(left); path->slots[0] -= push_items; } BUG_ON(path->slots[0] < 0); return ret; } /* * split the path's leaf in two, making sure there is at least data_size * available for the resulting leaf level of the path. * * returns 0 if all went well and < 0 on failure. */ static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_key *ins_key, struct btrfs_path *path, int data_size) { struct extent_buffer *l; u32 nritems; int mid; int slot; struct extent_buffer *right; int space_needed = data_size + sizeof(struct btrfs_item); int data_copy_size; int rt_data_off; int i; int ret = 0; int wret; int double_split = 0; struct btrfs_disk_key disk_key; /* first try to make some room by pushing left and right */ wret = push_leaf_left(trans, root, path, data_size); if (wret < 0) return wret; if (wret) { wret = push_leaf_right(trans, root, path, data_size); if (wret < 0) return wret; } l = path->nodes[0]; /* did the pushes work? */ if (btrfs_leaf_free_space(root, l) >= sizeof(struct btrfs_item) + data_size) return 0; if (!path->nodes[1]) { ret = insert_new_root(trans, root, path, 1); if (ret) return ret; } slot = path->slots[0]; nritems = btrfs_header_nritems(l); mid = (nritems + 1)/ 2; right = btrfs_alloc_free_block(trans, root, root->leafsize, l->start, 0); if (IS_ERR(right)) return PTR_ERR(right); memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header)); btrfs_set_header_bytenr(right, right->start); btrfs_set_header_generation(right, trans->transid); btrfs_set_header_owner(right, root->root_key.objectid); btrfs_set_header_level(right, 0); write_extent_buffer(right, root->fs_info->fsid, (unsigned long)btrfs_header_fsid(right), BTRFS_FSID_SIZE); if (mid <= slot) { if (nritems == 1 || leaf_space_used(l, mid, nritems - mid) + space_needed > BTRFS_LEAF_DATA_SIZE(root)) { if (slot >= nritems) { btrfs_cpu_key_to_disk(&disk_key, ins_key); btrfs_set_header_nritems(right, 0); wret = insert_ptr(trans, root, path, &disk_key, right->start, path->slots[1] + 1, 1); if (wret) ret = wret; free_extent_buffer(path->nodes[0]); path->nodes[0] = right; path->slots[0] = 0; path->slots[1] += 1; return ret; } mid = slot; double_split = 1; } } else { if (leaf_space_used(l, 0, mid + 1) + space_needed > BTRFS_LEAF_DATA_SIZE(root)) { if (slot == 0) { btrfs_cpu_key_to_disk(&disk_key, ins_key); btrfs_set_header_nritems(right, 0); wret = insert_ptr(trans, root, path, &disk_key, right->start, path->slots[1], 1); if (wret) ret = wret; free_extent_buffer(path->nodes[0]); path->nodes[0] = right; path->slots[0] = 0; if (path->slots[1] == 0) { wret = fixup_low_keys(trans, root, path, &disk_key, 1); if (wret) ret = wret; } return ret; } mid = slot; double_split = 1; } } nritems = nritems - mid; btrfs_set_header_nritems(right, nritems); data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l); copy_extent_buffer(right, l, btrfs_item_nr_offset(0), btrfs_item_nr_offset(mid), nritems * sizeof(struct btrfs_item)); copy_extent_buffer(right, l, btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - data_copy_size, btrfs_leaf_data(l) + leaf_data_end(root, l), data_copy_size); rt_data_off = BTRFS_LEAF_DATA_SIZE(root) - btrfs_item_end_nr(l, mid); for (i = 0; i < nritems; i++) { struct btrfs_item *item = btrfs_item_nr(right, i); u32 ioff; if (!right->map_token) { map_extent_buffer(right, (unsigned long)item, sizeof(struct btrfs_item), &right->map_token, &right->kaddr, &right->map_start, &right->map_len, KM_USER1); } ioff = btrfs_item_offset(right, item); btrfs_set_item_offset(right, item, ioff + rt_data_off); } if (right->map_token) { unmap_extent_buffer(right, right->map_token, KM_USER1); right->map_token = NULL; } btrfs_set_header_nritems(l, mid); ret = 0; btrfs_item_key(right, &disk_key, 0); wret = insert_ptr(trans, root, path, &disk_key, right->start, path->slots[1] + 1, 1); if (wret) ret = wret; btrfs_mark_buffer_dirty(right); btrfs_mark_buffer_dirty(l); BUG_ON(path->slots[0] != slot); if (mid <= slot) { free_extent_buffer(path->nodes[0]); path->nodes[0] = right; path->slots[0] -= mid; path->slots[1] += 1; } else free_extent_buffer(right); BUG_ON(path->slots[0] < 0); if (!double_split) return ret; right = btrfs_alloc_free_block(trans, root, root->leafsize, l->start, 0); if (IS_ERR(right)) return PTR_ERR(right); memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header)); btrfs_set_header_bytenr(right, right->start); btrfs_set_header_generation(right, trans->transid); btrfs_set_header_owner(right, root->root_key.objectid); btrfs_set_header_level(right, 0); write_extent_buffer(right, root->fs_info->fsid, (unsigned long)btrfs_header_fsid(right), BTRFS_FSID_SIZE); btrfs_cpu_key_to_disk(&disk_key, ins_key); btrfs_set_header_nritems(right, 0); wret = insert_ptr(trans, root, path, &disk_key, right->start, path->slots[1], 1); if (wret) ret = wret; if (path->slots[1] == 0) { wret = fixup_low_keys(trans, root, path, &disk_key, 1); if (wret) ret = wret; } free_extent_buffer(path->nodes[0]); path->nodes[0] = right; path->slots[0] = 0; return ret; } int btrfs_truncate_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, u32 new_size) { int ret = 0; int slot; int slot_orig; struct extent_buffer *leaf; struct btrfs_item *item; u32 nritems; unsigned int data_end; unsigned int old_data_start; unsigned int old_size; unsigned int size_diff; int i; slot_orig = path->slots[0]; leaf = path->nodes[0]; nritems = btrfs_header_nritems(leaf); data_end = leaf_data_end(root, leaf); slot = path->slots[0]; old_data_start = btrfs_item_offset_nr(leaf, slot); old_size = btrfs_item_size_nr(leaf, slot); BUG_ON(old_size <= new_size); size_diff = old_size - new_size; BUG_ON(slot < 0); BUG_ON(slot >= nritems); /* * item0..itemN ... dataN.offset..dataN.size .. data0.size */ /* first correct the data pointers */ for (i = slot; i < nritems; i++) { u32 ioff; item = btrfs_item_nr(leaf, i); if (!leaf->map_token) { map_extent_buffer(leaf, (unsigned long)item, sizeof(struct btrfs_item), &leaf->map_token, &leaf->kaddr, &leaf->map_start, &leaf->map_len, KM_USER1); } ioff = btrfs_item_offset(leaf, item); btrfs_set_item_offset(leaf, item, ioff + size_diff); } if (leaf->map_token) { unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); leaf->map_token = NULL; } /* shift the data */ memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + data_end + size_diff, btrfs_leaf_data(leaf) + data_end, old_data_start + new_size - data_end); item = btrfs_item_nr(leaf, slot); btrfs_set_item_size(leaf, item, new_size); btrfs_mark_buffer_dirty(leaf); ret = 0; if (btrfs_leaf_free_space(root, leaf) < 0) { btrfs_print_leaf(root, leaf); BUG(); } return ret; } int btrfs_extend_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, u32 data_size) { int ret = 0; int slot; int slot_orig; struct extent_buffer *leaf; struct btrfs_item *item; u32 nritems; unsigned int data_end; unsigned int old_data; unsigned int old_size; int i; slot_orig = path->slots[0]; leaf = path->nodes[0]; nritems = btrfs_header_nritems(leaf); data_end = leaf_data_end(root, leaf); if (btrfs_leaf_free_space(root, leaf) < data_size) { btrfs_print_leaf(root, leaf); BUG(); } slot = path->slots[0]; old_data = btrfs_item_end_nr(leaf, slot); BUG_ON(slot < 0); BUG_ON(slot >= nritems); /* * item0..itemN ... dataN.offset..dataN.size .. data0.size */ /* first correct the data pointers */ for (i = slot; i < nritems; i++) { u32 ioff; item = btrfs_item_nr(leaf, i); if (!leaf->map_token) { map_extent_buffer(leaf, (unsigned long)item, sizeof(struct btrfs_item), &leaf->map_token, &leaf->kaddr, &leaf->map_start, &leaf->map_len, KM_USER1); } ioff = btrfs_item_offset(leaf, item); btrfs_set_item_offset(leaf, item, ioff - data_size); } if (leaf->map_token) { unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); leaf->map_token = NULL; } /* shift the data */ memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + data_end - data_size, btrfs_leaf_data(leaf) + data_end, old_data - data_end); data_end = old_data; old_size = btrfs_item_size_nr(leaf, slot); item = btrfs_item_nr(leaf, slot); btrfs_set_item_size(leaf, item, old_size + data_size); btrfs_mark_buffer_dirty(leaf); ret = 0; if (btrfs_leaf_free_space(root, leaf) < 0) { btrfs_print_leaf(root, leaf); BUG(); } return ret; } /* * Given a key and some data, insert an item into the tree. * This does all the path init required, making room in the tree if needed. */ int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct btrfs_key *cpu_key, u32 data_size) { struct extent_buffer *leaf; struct btrfs_item *item; int ret = 0; int slot; int slot_orig; u32 nritems; unsigned int data_end; struct btrfs_disk_key disk_key; btrfs_cpu_key_to_disk(&disk_key, cpu_key); /* create a root if there isn't one */ if (!root->node) BUG(); ret = btrfs_search_slot(trans, root, cpu_key, path, data_size, 1); if (ret == 0) { return -EEXIST; } if (ret < 0) goto out; slot_orig = path->slots[0]; leaf = path->nodes[0]; nritems = btrfs_header_nritems(leaf); data_end = leaf_data_end(root, leaf); if (btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item) + data_size) { BUG(); } slot = path->slots[0]; BUG_ON(slot < 0); if (slot != nritems) { int i; unsigned int old_data = btrfs_item_end_nr(leaf, slot); if (old_data < data_end) { btrfs_print_leaf(root, leaf); printk("slot %d old_data %d data_end %d\n", slot, old_data, data_end); BUG_ON(1); } /* * item0..itemN ... dataN.offset..dataN.size .. data0.size */ /* first correct the data pointers */ WARN_ON(leaf->map_token); for (i = slot; i < nritems; i++) { u32 ioff; item = btrfs_item_nr(leaf, i); if (!leaf->map_token) { map_extent_buffer(leaf, (unsigned long)item, sizeof(struct btrfs_item), &leaf->map_token, &leaf->kaddr, &leaf->map_start, &leaf->map_len, KM_USER1); } ioff = btrfs_item_offset(leaf, item); btrfs_set_item_offset(leaf, item, ioff - data_size); } if (leaf->map_token) { unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); leaf->map_token = NULL; } /* shift the items */ memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), btrfs_item_nr_offset(slot), (nritems - slot) * sizeof(struct btrfs_item)); /* shift the data */ memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + data_end - data_size, btrfs_leaf_data(leaf) + data_end, old_data - data_end); data_end = old_data; } /* setup the item for the new data */ btrfs_set_item_key(leaf, &disk_key, slot); item = btrfs_item_nr(leaf, slot); btrfs_set_item_offset(leaf, item, data_end - data_size); btrfs_set_item_size(leaf, item, data_size); btrfs_set_header_nritems(leaf, nritems + 1); btrfs_mark_buffer_dirty(leaf); ret = 0; if (slot == 0) ret = fixup_low_keys(trans, root, path, &disk_key, 1); if (btrfs_leaf_free_space(root, leaf) < 0) { btrfs_print_leaf(root, leaf); BUG(); } out: return ret; } /* * Given a key and some data, insert an item into the tree. * This does all the path init required, making room in the tree if needed. */ int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_key *cpu_key, void *data, u32 data_size) { int ret = 0; struct btrfs_path *path; struct extent_buffer *leaf; unsigned long ptr; path = btrfs_alloc_path(); BUG_ON(!path); ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); if (!ret) { leaf = path->nodes[0]; ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); write_extent_buffer(leaf, data, ptr, data_size); btrfs_mark_buffer_dirty(leaf); } btrfs_free_path(path); return ret; } /* * delete the pointer from a given node. * * If the delete empties a node, the node is removed from the tree, * continuing all the way the root if required. The root is converted into * a leaf if all the nodes are emptied. */ static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, int level, int slot) { struct extent_buffer *parent = path->nodes[level]; u32 nritems; int ret = 0; int wret; nritems = btrfs_header_nritems(parent); if (slot != nritems -1) { memmove_extent_buffer(parent, btrfs_node_key_ptr_offset(slot), btrfs_node_key_ptr_offset(slot + 1), sizeof(struct btrfs_key_ptr) * (nritems - slot - 1)); } nritems--; btrfs_set_header_nritems(parent, nritems); if (nritems == 0 && parent == root->node) { BUG_ON(btrfs_header_level(root->node) != 1); /* just turn the root into a leaf and break */ btrfs_set_header_level(root->node, 0); } else if (slot == 0) { struct btrfs_disk_key disk_key; btrfs_node_key(parent, &disk_key, 0); wret = fixup_low_keys(trans, root, path, &disk_key, level + 1); if (wret) ret = wret; } btrfs_mark_buffer_dirty(parent); return ret; } /* * delete the item at the leaf level in path. If that empties * the leaf, remove it from the tree */ int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path) { int slot; struct extent_buffer *leaf; struct btrfs_item *item; int doff; int dsize; int ret = 0; int wret; u32 nritems; leaf = path->nodes[0]; slot = path->slots[0]; doff = btrfs_item_offset_nr(leaf, slot); dsize = btrfs_item_size_nr(leaf, slot); nritems = btrfs_header_nritems(leaf); if (slot != nritems - 1) { int i; int data_end = leaf_data_end(root, leaf); memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + data_end + dsize, btrfs_leaf_data(leaf) + data_end, doff - data_end); for (i = slot + 1; i < nritems; i++) { u32 ioff; item = btrfs_item_nr(leaf, i); if (!leaf->map_token) { map_extent_buffer(leaf, (unsigned long)item, sizeof(struct btrfs_item), &leaf->map_token, &leaf->kaddr, &leaf->map_start, &leaf->map_len, KM_USER1); } ioff = btrfs_item_offset(leaf, item); btrfs_set_item_offset(leaf, item, ioff + dsize); } if (leaf->map_token) { unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); leaf->map_token = NULL; } memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), btrfs_item_nr_offset(slot + 1), sizeof(struct btrfs_item) * (nritems - slot - 1)); } btrfs_set_header_nritems(leaf, nritems - 1); nritems--; /* delete the leaf if we've emptied it */ if (nritems == 0) { if (leaf == root->node) { btrfs_set_header_level(leaf, 0); } else { clean_tree_block(trans, root, leaf); wait_on_tree_block_writeback(root, leaf); wret = del_ptr(trans, root, path, 1, path->slots[1]); if (wret) ret = wret; wret = btrfs_free_extent(trans, root, leaf->start, leaf->len, 1); if (wret) ret = wret; } } else { int used = leaf_space_used(leaf, 0, nritems); if (slot == 0) { struct btrfs_disk_key disk_key; btrfs_item_key(leaf, &disk_key, 0); wret = fixup_low_keys(trans, root, path, &disk_key, 1); if (wret) ret = wret; } /* delete the leaf if it is mostly empty */ if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) { /* push_leaf_left fixes the path. * make sure the path still points to our leaf * for possible call to del_ptr below */ slot = path->slots[1]; extent_buffer_get(leaf); wret = push_leaf_left(trans, root, path, 1); if (wret < 0 && wret != -ENOSPC) ret = wret; if (path->nodes[0] == leaf && btrfs_header_nritems(leaf)) { wret = push_leaf_right(trans, root, path, 1); if (wret < 0 && wret != -ENOSPC) ret = wret; } if (btrfs_header_nritems(leaf) == 0) { u64 bytenr = leaf->start; u32 blocksize = leaf->len; clean_tree_block(trans, root, leaf); wait_on_tree_block_writeback(root, leaf); wret = del_ptr(trans, root, path, 1, slot); if (wret) ret = wret; free_extent_buffer(leaf); wret = btrfs_free_extent(trans, root, bytenr, blocksize, 1); if (wret) ret = wret; } else { btrfs_mark_buffer_dirty(leaf); free_extent_buffer(leaf); } } else { btrfs_mark_buffer_dirty(leaf); } } return ret; } /* * walk up the tree as far as required to find the next leaf. * returns 0 if it found something or 1 if there are no greater leaves. * returns < 0 on io errors. */ int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) { int slot; int level = 1; u64 bytenr; struct extent_buffer *c; struct extent_buffer *next = NULL; while(level < BTRFS_MAX_LEVEL) { if (!path->nodes[level]) return 1; slot = path->slots[level] + 1; c = path->nodes[level]; if (slot >= btrfs_header_nritems(c)) { level++; continue; } bytenr = btrfs_node_blockptr(c, slot); if (next) free_extent_buffer(next); if (path->reada) reada_for_search(root, path, level, slot); next = read_tree_block(root, bytenr, btrfs_level_size(root, level -1)); break; } path->slots[level] = slot; while(1) { level--; c = path->nodes[level]; free_extent_buffer(c); path->nodes[level] = next; path->slots[level] = 0; if (!level) break; if (path->reada) reada_for_search(root, path, level, 0); next = read_tree_block(root, btrfs_node_blockptr(next, 0), btrfs_level_size(root, level - 1)); } return 0; }