#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "irq_remapping.h" struct ioapic_scope { struct intel_iommu *iommu; unsigned int id; unsigned int bus; /* PCI bus number */ unsigned int devfn; /* PCI devfn number */ }; struct hpet_scope { struct intel_iommu *iommu; u8 id; unsigned int bus; unsigned int devfn; }; #define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0) #define IRTE_DEST(dest) ((x2apic_mode) ? dest : dest << 8) static struct ioapic_scope ir_ioapic[MAX_IO_APICS]; static struct hpet_scope ir_hpet[MAX_HPET_TBS]; static int ir_ioapic_num, ir_hpet_num; /* * Lock ordering: * ->dmar_global_lock * ->irq_2_ir_lock * ->qi->q_lock * ->iommu->register_lock * Note: * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called * in single-threaded environment with interrupt disabled, so no need to tabke * the dmar_global_lock. */ static DEFINE_RAW_SPINLOCK(irq_2_ir_lock); static int __init parse_ioapics_under_ir(void); static struct irq_2_iommu *irq_2_iommu(unsigned int irq) { struct irq_cfg *cfg = irq_get_chip_data(irq); return cfg ? &cfg->irq_2_iommu : NULL; } static int get_irte(int irq, struct irte *entry) { struct irq_2_iommu *irq_iommu = irq_2_iommu(irq); unsigned long flags; int index; if (!entry || !irq_iommu) return -1; raw_spin_lock_irqsave(&irq_2_ir_lock, flags); if (unlikely(!irq_iommu->iommu)) { raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags); return -1; } index = irq_iommu->irte_index + irq_iommu->sub_handle; *entry = *(irq_iommu->iommu->ir_table->base + index); raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags); return 0; } static int alloc_irte(struct intel_iommu *iommu, int irq, u16 count) { struct ir_table *table = iommu->ir_table; struct irq_2_iommu *irq_iommu = irq_2_iommu(irq); struct irq_cfg *cfg = irq_get_chip_data(irq); unsigned int mask = 0; unsigned long flags; int index; if (!count || !irq_iommu) return -1; if (count > 1) { count = __roundup_pow_of_two(count); mask = ilog2(count); } if (mask > ecap_max_handle_mask(iommu->ecap)) { printk(KERN_ERR "Requested mask %x exceeds the max invalidation handle" " mask value %Lx\n", mask, ecap_max_handle_mask(iommu->ecap)); return -1; } raw_spin_lock_irqsave(&irq_2_ir_lock, flags); index = bitmap_find_free_region(table->bitmap, INTR_REMAP_TABLE_ENTRIES, mask); if (index < 0) { pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id); } else { cfg->remapped = 1; irq_iommu->iommu = iommu; irq_iommu->irte_index = index; irq_iommu->sub_handle = 0; irq_iommu->irte_mask = mask; } raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags); return index; } static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask) { struct qi_desc desc; desc.low = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask) | QI_IEC_SELECTIVE; desc.high = 0; return qi_submit_sync(&desc, iommu); } static int map_irq_to_irte_handle(int irq, u16 *sub_handle) { struct irq_2_iommu *irq_iommu = irq_2_iommu(irq); unsigned long flags; int index; if (!irq_iommu) return -1; raw_spin_lock_irqsave(&irq_2_ir_lock, flags); *sub_handle = irq_iommu->sub_handle; index = irq_iommu->irte_index; raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags); return index; } static int set_irte_irq(int irq, struct intel_iommu *iommu, u16 index, u16 subhandle) { struct irq_2_iommu *irq_iommu = irq_2_iommu(irq); struct irq_cfg *cfg = irq_get_chip_data(irq); unsigned long flags; if (!irq_iommu) return -1; raw_spin_lock_irqsave(&irq_2_ir_lock, flags); cfg->remapped = 1; irq_iommu->iommu = iommu; irq_iommu->irte_index = index; irq_iommu->sub_handle = subhandle; irq_iommu->irte_mask = 0; raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags); return 0; } static int modify_irte(int irq, struct irte *irte_modified) { struct irq_2_iommu *irq_iommu = irq_2_iommu(irq); struct intel_iommu *iommu; unsigned long flags; struct irte *irte; int rc, index; if (!irq_iommu) return -1; raw_spin_lock_irqsave(&irq_2_ir_lock, flags); iommu = irq_iommu->iommu; index = irq_iommu->irte_index + irq_iommu->sub_handle; irte = &iommu->ir_table->base[index]; set_64bit(&irte->low, irte_modified->low); set_64bit(&irte->high, irte_modified->high); __iommu_flush_cache(iommu, irte, sizeof(*irte)); rc = qi_flush_iec(iommu, index, 0); raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags); return rc; } static struct intel_iommu *map_hpet_to_ir(u8 hpet_id) { int i; for (i = 0; i < MAX_HPET_TBS; i++) if (ir_hpet[i].id == hpet_id) return ir_hpet[i].iommu; return NULL; } static struct intel_iommu *map_ioapic_to_ir(int apic) { int i; for (i = 0; i < MAX_IO_APICS; i++) if (ir_ioapic[i].id == apic) return ir_ioapic[i].iommu; return NULL; } static struct intel_iommu *map_dev_to_ir(struct pci_dev *dev) { struct dmar_drhd_unit *drhd; drhd = dmar_find_matched_drhd_unit(dev); if (!drhd) return NULL; return drhd->iommu; } static int clear_entries(struct irq_2_iommu *irq_iommu) { struct irte *start, *entry, *end; struct intel_iommu *iommu; int index; if (irq_iommu->sub_handle) return 0; iommu = irq_iommu->iommu; index = irq_iommu->irte_index + irq_iommu->sub_handle; start = iommu->ir_table->base + index; end = start + (1 << irq_iommu->irte_mask); for (entry = start; entry < end; entry++) { set_64bit(&entry->low, 0); set_64bit(&entry->high, 0); } bitmap_release_region(iommu->ir_table->bitmap, index, irq_iommu->irte_mask); return qi_flush_iec(iommu, index, irq_iommu->irte_mask); } static int free_irte(int irq) { struct irq_2_iommu *irq_iommu = irq_2_iommu(irq); unsigned long flags; int rc; if (!irq_iommu) return -1; raw_spin_lock_irqsave(&irq_2_ir_lock, flags); rc = clear_entries(irq_iommu); irq_iommu->iommu = NULL; irq_iommu->irte_index = 0; irq_iommu->sub_handle = 0; irq_iommu->irte_mask = 0; raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags); return rc; } /* * source validation type */ #define SVT_NO_VERIFY 0x0 /* no verification is required */ #define SVT_VERIFY_SID_SQ 0x1 /* verify using SID and SQ fields */ #define SVT_VERIFY_BUS 0x2 /* verify bus of request-id */ /* * source-id qualifier */ #define SQ_ALL_16 0x0 /* verify all 16 bits of request-id */ #define SQ_13_IGNORE_1 0x1 /* verify most significant 13 bits, ignore * the third least significant bit */ #define SQ_13_IGNORE_2 0x2 /* verify most significant 13 bits, ignore * the second and third least significant bits */ #define SQ_13_IGNORE_3 0x3 /* verify most significant 13 bits, ignore * the least three significant bits */ /* * set SVT, SQ and SID fields of irte to verify * source ids of interrupt requests */ static void set_irte_sid(struct irte *irte, unsigned int svt, unsigned int sq, unsigned int sid) { if (disable_sourceid_checking) svt = SVT_NO_VERIFY; irte->svt = svt; irte->sq = sq; irte->sid = sid; } static int set_ioapic_sid(struct irte *irte, int apic) { int i; u16 sid = 0; if (!irte) return -1; down_read(&dmar_global_lock); for (i = 0; i < MAX_IO_APICS; i++) { if (ir_ioapic[i].id == apic) { sid = (ir_ioapic[i].bus << 8) | ir_ioapic[i].devfn; break; } } up_read(&dmar_global_lock); if (sid == 0) { pr_warning("Failed to set source-id of IOAPIC (%d)\n", apic); return -1; } set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid); return 0; } static int set_hpet_sid(struct irte *irte, u8 id) { int i; u16 sid = 0; if (!irte) return -1; down_read(&dmar_global_lock); for (i = 0; i < MAX_HPET_TBS; i++) { if (ir_hpet[i].id == id) { sid = (ir_hpet[i].bus << 8) | ir_hpet[i].devfn; break; } } up_read(&dmar_global_lock); if (sid == 0) { pr_warning("Failed to set source-id of HPET block (%d)\n", id); return -1; } /* * Should really use SQ_ALL_16. Some platforms are broken. * While we figure out the right quirks for these broken platforms, use * SQ_13_IGNORE_3 for now. */ set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid); return 0; } struct set_msi_sid_data { struct pci_dev *pdev; u16 alias; }; static int set_msi_sid_cb(struct pci_dev *pdev, u16 alias, void *opaque) { struct set_msi_sid_data *data = opaque; data->pdev = pdev; data->alias = alias; return 0; } static int set_msi_sid(struct irte *irte, struct pci_dev *dev) { struct set_msi_sid_data data; if (!irte || !dev) return -1; pci_for_each_dma_alias(dev, set_msi_sid_cb, &data); /* * DMA alias provides us with a PCI device and alias. The only case * where the it will return an alias on a different bus than the * device is the case of a PCIe-to-PCI bridge, where the alias is for * the subordinate bus. In this case we can only verify the bus. * * If the alias device is on a different bus than our source device * then we have a topology based alias, use it. * * Otherwise, the alias is for a device DMA quirk and we cannot * assume that MSI uses the same requester ID. Therefore use the * original device. */ if (PCI_BUS_NUM(data.alias) != data.pdev->bus->number) set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16, PCI_DEVID(PCI_BUS_NUM(data.alias), dev->bus->number)); else if (data.pdev->bus->number != dev->bus->number) set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, data.alias); else set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, PCI_DEVID(dev->bus->number, dev->devfn)); return 0; } static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode) { u64 addr; u32 sts; unsigned long flags; addr = virt_to_phys((void *)iommu->ir_table->base); raw_spin_lock_irqsave(&iommu->register_lock, flags); dmar_writeq(iommu->reg + DMAR_IRTA_REG, (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE); /* Set interrupt-remapping table pointer */ writel(iommu->gcmd | DMA_GCMD_SIRTP, iommu->reg + DMAR_GCMD_REG); IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_IRTPS), sts); raw_spin_unlock_irqrestore(&iommu->register_lock, flags); /* * global invalidation of interrupt entry cache before enabling * interrupt-remapping. */ qi_global_iec(iommu); raw_spin_lock_irqsave(&iommu->register_lock, flags); /* Enable interrupt-remapping */ iommu->gcmd |= DMA_GCMD_IRE; iommu->gcmd &= ~DMA_GCMD_CFI; /* Block compatibility-format MSIs */ writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_IRES), sts); /* * With CFI clear in the Global Command register, we should be * protected from dangerous (i.e. compatibility) interrupts * regardless of x2apic status. Check just to be sure. */ if (sts & DMA_GSTS_CFIS) WARN(1, KERN_WARNING "Compatibility-format IRQs enabled despite intr remapping;\n" "you are vulnerable to IRQ injection.\n"); raw_spin_unlock_irqrestore(&iommu->register_lock, flags); } static int intel_setup_irq_remapping(struct intel_iommu *iommu, int mode) { struct ir_table *ir_table; struct page *pages; unsigned long *bitmap; ir_table = iommu->ir_table = kzalloc(sizeof(struct ir_table), GFP_ATOMIC); if (!iommu->ir_table) return -ENOMEM; pages = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, INTR_REMAP_PAGE_ORDER); if (!pages) { pr_err("IR%d: failed to allocate pages of order %d\n", iommu->seq_id, INTR_REMAP_PAGE_ORDER); kfree(iommu->ir_table); return -ENOMEM; } bitmap = kcalloc(BITS_TO_LONGS(INTR_REMAP_TABLE_ENTRIES), sizeof(long), GFP_ATOMIC); if (bitmap == NULL) { pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id); __free_pages(pages, INTR_REMAP_PAGE_ORDER); kfree(ir_table); return -ENOMEM; } ir_table->base = page_address(pages); ir_table->bitmap = bitmap; iommu_set_irq_remapping(iommu, mode); return 0; } /* * Disable Interrupt Remapping. */ static void iommu_disable_irq_remapping(struct intel_iommu *iommu) { unsigned long flags; u32 sts; if (!ecap_ir_support(iommu->ecap)) return; /* * global invalidation of interrupt entry cache before disabling * interrupt-remapping. */ qi_global_iec(iommu); raw_spin_lock_irqsave(&iommu->register_lock, flags); sts = dmar_readq(iommu->reg + DMAR_GSTS_REG); if (!(sts & DMA_GSTS_IRES)) goto end; iommu->gcmd &= ~DMA_GCMD_IRE; writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, !(sts & DMA_GSTS_IRES), sts); end: raw_spin_unlock_irqrestore(&iommu->register_lock, flags); } static int __init dmar_x2apic_optout(void) { struct acpi_table_dmar *dmar; dmar = (struct acpi_table_dmar *)dmar_tbl; if (!dmar || no_x2apic_optout) return 0; return dmar->flags & DMAR_X2APIC_OPT_OUT; } static int __init intel_irq_remapping_supported(void) { struct dmar_drhd_unit *drhd; struct intel_iommu *iommu; if (disable_irq_remap) return 0; if (irq_remap_broken) { printk(KERN_WARNING "This system BIOS has enabled interrupt remapping\n" "on a chipset that contains an erratum making that\n" "feature unstable. To maintain system stability\n" "interrupt remapping is being disabled. Please\n" "contact your BIOS vendor for an update\n"); add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); disable_irq_remap = 1; return 0; } if (!dmar_ir_support()) return 0; for_each_iommu(iommu, drhd) if (!ecap_ir_support(iommu->ecap)) return 0; return 1; } static int __init intel_enable_irq_remapping(void) { struct dmar_drhd_unit *drhd; struct intel_iommu *iommu; bool x2apic_present; int setup = 0; int eim = 0; x2apic_present = x2apic_supported(); if (parse_ioapics_under_ir() != 1) { printk(KERN_INFO "Not enable interrupt remapping\n"); goto error; } if (x2apic_present) { pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n"); eim = !dmar_x2apic_optout(); if (!eim) printk(KERN_WARNING "Your BIOS is broken and requested that x2apic be disabled.\n" "This will slightly decrease performance.\n" "Use 'intremap=no_x2apic_optout' to override BIOS request.\n"); } for_each_iommu(iommu, drhd) { /* * If the queued invalidation is already initialized, * shouldn't disable it. */ if (iommu->qi) continue; /* * Clear previous faults. */ dmar_fault(-1, iommu); /* * Disable intr remapping and queued invalidation, if already * enabled prior to OS handover. */ iommu_disable_irq_remapping(iommu); dmar_disable_qi(iommu); } /* * check for the Interrupt-remapping support */ for_each_iommu(iommu, drhd) { if (!ecap_ir_support(iommu->ecap)) continue; if (eim && !ecap_eim_support(iommu->ecap)) { printk(KERN_INFO "DRHD %Lx: EIM not supported by DRHD, " " ecap %Lx\n", drhd->reg_base_addr, iommu->ecap); goto error; } } /* * Enable queued invalidation for all the DRHD's. */ for_each_iommu(iommu, drhd) { int ret = dmar_enable_qi(iommu); if (ret) { printk(KERN_ERR "DRHD %Lx: failed to enable queued, " " invalidation, ecap %Lx, ret %d\n", drhd->reg_base_addr, iommu->ecap, ret); goto error; } } /* * Setup Interrupt-remapping for all the DRHD's now. */ for_each_iommu(iommu, drhd) { if (!ecap_ir_support(iommu->ecap)) continue; if (intel_setup_irq_remapping(iommu, eim)) goto error; setup = 1; } if (!setup) goto error; irq_remapping_enabled = 1; /* * VT-d has a different layout for IO-APIC entries when * interrupt remapping is enabled. So it needs a special routine * to print IO-APIC entries for debugging purposes too. */ x86_io_apic_ops.print_entries = intel_ir_io_apic_print_entries; pr_info("Enabled IRQ remapping in %s mode\n", eim ? "x2apic" : "xapic"); return eim ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE; error: /* * handle error condition gracefully here! */ if (x2apic_present) pr_warn("Failed to enable irq remapping. You are vulnerable to irq-injection attacks.\n"); return -1; } static void ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope, struct intel_iommu *iommu) { struct acpi_dmar_pci_path *path; u8 bus; int count; bus = scope->bus; path = (struct acpi_dmar_pci_path *)(scope + 1); count = (scope->length - sizeof(struct acpi_dmar_device_scope)) / sizeof(struct acpi_dmar_pci_path); while (--count > 0) { /* * Access PCI directly due to the PCI * subsystem isn't initialized yet. */ bus = read_pci_config_byte(bus, path->device, path->function, PCI_SECONDARY_BUS); path++; } ir_hpet[ir_hpet_num].bus = bus; ir_hpet[ir_hpet_num].devfn = PCI_DEVFN(path->device, path->function); ir_hpet[ir_hpet_num].iommu = iommu; ir_hpet[ir_hpet_num].id = scope->enumeration_id; ir_hpet_num++; } static void ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope, struct intel_iommu *iommu) { struct acpi_dmar_pci_path *path; u8 bus; int count; bus = scope->bus; path = (struct acpi_dmar_pci_path *)(scope + 1); count = (scope->length - sizeof(struct acpi_dmar_device_scope)) / sizeof(struct acpi_dmar_pci_path); while (--count > 0) { /* * Access PCI directly due to the PCI * subsystem isn't initialized yet. */ bus = read_pci_config_byte(bus, path->device, path->function, PCI_SECONDARY_BUS); path++; } ir_ioapic[ir_ioapic_num].bus = bus; ir_ioapic[ir_ioapic_num].devfn = PCI_DEVFN(path->device, path->function); ir_ioapic[ir_ioapic_num].iommu = iommu; ir_ioapic[ir_ioapic_num].id = scope->enumeration_id; ir_ioapic_num++; } static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header, struct intel_iommu *iommu) { struct acpi_dmar_hardware_unit *drhd; struct acpi_dmar_device_scope *scope; void *start, *end; drhd = (struct acpi_dmar_hardware_unit *)header; start = (void *)(drhd + 1); end = ((void *)drhd) + header->length; while (start < end) { scope = start; if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC) { if (ir_ioapic_num == MAX_IO_APICS) { printk(KERN_WARNING "Exceeded Max IO APICS\n"); return -1; } printk(KERN_INFO "IOAPIC id %d under DRHD base " " 0x%Lx IOMMU %d\n", scope->enumeration_id, drhd->address, iommu->seq_id); ir_parse_one_ioapic_scope(scope, iommu); } else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET) { if (ir_hpet_num == MAX_HPET_TBS) { printk(KERN_WARNING "Exceeded Max HPET blocks\n"); return -1; } printk(KERN_INFO "HPET id %d under DRHD base" " 0x%Lx\n", scope->enumeration_id, drhd->address); ir_parse_one_hpet_scope(scope, iommu); } start += scope->length; } return 0; } /* * Finds the assocaition between IOAPIC's and its Interrupt-remapping * hardware unit. */ static int __init parse_ioapics_under_ir(void) { struct dmar_drhd_unit *drhd; struct intel_iommu *iommu; int ir_supported = 0; int ioapic_idx; for_each_iommu(iommu, drhd) if (ecap_ir_support(iommu->ecap)) { if (ir_parse_ioapic_hpet_scope(drhd->hdr, iommu)) return -1; ir_supported = 1; } if (!ir_supported) return 0; for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) { int ioapic_id = mpc_ioapic_id(ioapic_idx); if (!map_ioapic_to_ir(ioapic_id)) { pr_err(FW_BUG "ioapic %d has no mapping iommu, " "interrupt remapping will be disabled\n", ioapic_id); return -1; } } return 1; } static int __init ir_dev_scope_init(void) { int ret; if (!irq_remapping_enabled) return 0; down_write(&dmar_global_lock); ret = dmar_dev_scope_init(); up_write(&dmar_global_lock); return ret; } rootfs_initcall(ir_dev_scope_init); static void disable_irq_remapping(void) { struct dmar_drhd_unit *drhd; struct intel_iommu *iommu = NULL; /* * Disable Interrupt-remapping for all the DRHD's now. */ for_each_iommu(iommu, drhd) { if (!ecap_ir_support(iommu->ecap)) continue; iommu_disable_irq_remapping(iommu); } } static int reenable_irq_remapping(int eim) { struct dmar_drhd_unit *drhd; int setup = 0; struct intel_iommu *iommu = NULL; for_each_iommu(iommu, drhd) if (iommu->qi) dmar_reenable_qi(iommu); /* * Setup Interrupt-remapping for all the DRHD's now. */ for_each_iommu(iommu, drhd) { if (!ecap_ir_support(iommu->ecap)) continue; /* Set up interrupt remapping for iommu.*/ iommu_set_irq_remapping(iommu, eim); setup = 1; } if (!setup) goto error; return 0; error: /* * handle error condition gracefully here! */ return -1; } static void prepare_irte(struct irte *irte, int vector, unsigned int dest) { memset(irte, 0, sizeof(*irte)); irte->present = 1; irte->dst_mode = apic->irq_dest_mode; /* * Trigger mode in the IRTE will always be edge, and for IO-APIC, the * actual level or edge trigger will be setup in the IO-APIC * RTE. This will help simplify level triggered irq migration. * For more details, see the comments (in io_apic.c) explainig IO-APIC * irq migration in the presence of interrupt-remapping. */ irte->trigger_mode = 0; irte->dlvry_mode = apic->irq_delivery_mode; irte->vector = vector; irte->dest_id = IRTE_DEST(dest); irte->redir_hint = 1; } static int intel_setup_ioapic_entry(int irq, struct IO_APIC_route_entry *route_entry, unsigned int destination, int vector, struct io_apic_irq_attr *attr) { int ioapic_id = mpc_ioapic_id(attr->ioapic); struct intel_iommu *iommu; struct IR_IO_APIC_route_entry *entry; struct irte irte; int index; down_read(&dmar_global_lock); iommu = map_ioapic_to_ir(ioapic_id); if (!iommu) { pr_warn("No mapping iommu for ioapic %d\n", ioapic_id); index = -ENODEV; } else { index = alloc_irte(iommu, irq, 1); if (index < 0) { pr_warn("Failed to allocate IRTE for ioapic %d\n", ioapic_id); index = -ENOMEM; } } up_read(&dmar_global_lock); if (index < 0) return index; prepare_irte(&irte, vector, destination); /* Set source-id of interrupt request */ set_ioapic_sid(&irte, ioapic_id); modify_irte(irq, &irte); apic_printk(APIC_VERBOSE, KERN_DEBUG "IOAPIC[%d]: " "Set IRTE entry (P:%d FPD:%d Dst_Mode:%d " "Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X " "Avail:%X Vector:%02X Dest:%08X " "SID:%04X SQ:%X SVT:%X)\n", attr->ioapic, irte.present, irte.fpd, irte.dst_mode, irte.redir_hint, irte.trigger_mode, irte.dlvry_mode, irte.avail, irte.vector, irte.dest_id, irte.sid, irte.sq, irte.svt); entry = (struct IR_IO_APIC_route_entry *)route_entry; memset(entry, 0, sizeof(*entry)); entry->index2 = (index >> 15) & 0x1; entry->zero = 0; entry->format = 1; entry->index = (index & 0x7fff); /* * IO-APIC RTE will be configured with virtual vector. * irq handler will do the explicit EOI to the io-apic. */ entry->vector = attr->ioapic_pin; entry->mask = 0; /* enable IRQ */ entry->trigger = attr->trigger; entry->polarity = attr->polarity; /* Mask level triggered irqs. * Use IRQ_DELAYED_DISABLE for edge triggered irqs. */ if (attr->trigger) entry->mask = 1; return 0; } /* * Migrate the IO-APIC irq in the presence of intr-remapping. * * For both level and edge triggered, irq migration is a simple atomic * update(of vector and cpu destination) of IRTE and flush the hardware cache. * * For level triggered, we eliminate the io-apic RTE modification (with the * updated vector information), by using a virtual vector (io-apic pin number). * Real vector that is used for interrupting cpu will be coming from * the interrupt-remapping table entry. * * As the migration is a simple atomic update of IRTE, the same mechanism * is used to migrate MSI irq's in the presence of interrupt-remapping. */ static int intel_ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask, bool force) { struct irq_cfg *cfg = data->chip_data; unsigned int dest, irq = data->irq; struct irte irte; int err; if (!config_enabled(CONFIG_SMP)) return -EINVAL; if (!cpumask_intersects(mask, cpu_online_mask)) return -EINVAL; if (get_irte(irq, &irte)) return -EBUSY; err = assign_irq_vector(irq, cfg, mask); if (err) return err; err = apic->cpu_mask_to_apicid_and(cfg->domain, mask, &dest); if (err) { if (assign_irq_vector(irq, cfg, data->affinity)) pr_err("Failed to recover vector for irq %d\n", irq); return err; } irte.vector = cfg->vector; irte.dest_id = IRTE_DEST(dest); /* * Atomically updates the IRTE with the new destination, vector * and flushes the interrupt entry cache. */ modify_irte(irq, &irte); /* * After this point, all the interrupts will start arriving * at the new destination. So, time to cleanup the previous * vector allocation. */ if (cfg->move_in_progress) send_cleanup_vector(cfg); cpumask_copy(data->affinity, mask); return 0; } static void intel_compose_msi_msg(struct pci_dev *pdev, unsigned int irq, unsigned int dest, struct msi_msg *msg, u8 hpet_id) { struct irq_cfg *cfg; struct irte irte; u16 sub_handle = 0; int ir_index; cfg = irq_get_chip_data(irq); ir_index = map_irq_to_irte_handle(irq, &sub_handle); BUG_ON(ir_index == -1); prepare_irte(&irte, cfg->vector, dest); /* Set source-id of interrupt request */ if (pdev) set_msi_sid(&irte, pdev); else set_hpet_sid(&irte, hpet_id); modify_irte(irq, &irte); msg->address_hi = MSI_ADDR_BASE_HI; msg->data = sub_handle; msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT | MSI_ADDR_IR_SHV | MSI_ADDR_IR_INDEX1(ir_index) | MSI_ADDR_IR_INDEX2(ir_index); } /* * Map the PCI dev to the corresponding remapping hardware unit * and allocate 'nvec' consecutive interrupt-remapping table entries * in it. */ static int intel_msi_alloc_irq(struct pci_dev *dev, int irq, int nvec) { struct intel_iommu *iommu; int index; down_read(&dmar_global_lock); iommu = map_dev_to_ir(dev); if (!iommu) { printk(KERN_ERR "Unable to map PCI %s to iommu\n", pci_name(dev)); index = -ENOENT; } else { index = alloc_irte(iommu, irq, nvec); if (index < 0) { printk(KERN_ERR "Unable to allocate %d IRTE for PCI %s\n", nvec, pci_name(dev)); index = -ENOSPC; } } up_read(&dmar_global_lock); return index; } static int intel_msi_setup_irq(struct pci_dev *pdev, unsigned int irq, int index, int sub_handle) { struct intel_iommu *iommu; int ret = -ENOENT; down_read(&dmar_global_lock); iommu = map_dev_to_ir(pdev); if (iommu) { /* * setup the mapping between the irq and the IRTE * base index, the sub_handle pointing to the * appropriate interrupt remap table entry. */ set_irte_irq(irq, iommu, index, sub_handle); ret = 0; } up_read(&dmar_global_lock); return ret; } static int intel_alloc_hpet_msi(unsigned int irq, unsigned int id) { int ret = -1; struct intel_iommu *iommu; int index; down_read(&dmar_global_lock); iommu = map_hpet_to_ir(id); if (iommu) { index = alloc_irte(iommu, irq, 1); if (index >= 0) ret = 0; } up_read(&dmar_global_lock); return ret; } struct irq_remap_ops intel_irq_remap_ops = { .supported = intel_irq_remapping_supported, .prepare = dmar_table_init, .enable = intel_enable_irq_remapping, .disable = disable_irq_remapping, .reenable = reenable_irq_remapping, .enable_faulting = enable_drhd_fault_handling, .setup_ioapic_entry = intel_setup_ioapic_entry, .set_affinity = intel_ioapic_set_affinity, .free_irq = free_irte, .compose_msi_msg = intel_compose_msi_msg, .msi_alloc_irq = intel_msi_alloc_irq, .msi_setup_irq = intel_msi_setup_irq, .alloc_hpet_msi = intel_alloc_hpet_msi, }; int dmar_ir_hotplug(struct dmar_drhd_unit *dmaru, bool insert) { return irq_remapping_enabled ? -ENOSYS : 0; }