/****************************************************************************** * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * Copyright(c) 2017 Intel Deutschland GmbH * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * BSD LICENSE * * Copyright(c) 2017 Intel Deutschland GmbH * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * *****************************************************************************/ #include #include "iwl-debug.h" #include "iwl-csr.h" #include "iwl-io.h" #include "internal.h" #include "mvm/fw-api.h" /* * iwl_pcie_gen2_tx_stop - Stop all Tx DMA channels */ void iwl_pcie_gen2_tx_stop(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); int txq_id; /* * This function can be called before the op_mode disabled the * queues. This happens when we have an rfkill interrupt. * Since we stop Tx altogether - mark the queues as stopped. */ memset(trans_pcie->queue_stopped, 0, sizeof(trans_pcie->queue_stopped)); memset(trans_pcie->queue_used, 0, sizeof(trans_pcie->queue_used)); /* Unmap DMA from host system and free skb's */ for (txq_id = 0; txq_id < ARRAY_SIZE(trans_pcie->txq); txq_id++) { if (!trans_pcie->txq[txq_id]) continue; iwl_pcie_gen2_txq_unmap(trans, txq_id); } } /* * iwl_pcie_txq_update_byte_tbl - Set up entry in Tx byte-count array */ static void iwl_pcie_gen2_update_byte_tbl(struct iwl_txq *txq, u16 byte_cnt, int num_tbs) { struct iwlagn_scd_bc_tbl *scd_bc_tbl = txq->bc_tbl.addr; int write_ptr = txq->write_ptr; u8 filled_tfd_size, num_fetch_chunks; u16 len = byte_cnt; __le16 bc_ent; len = DIV_ROUND_UP(len, 4); if (WARN_ON(len > 0xFFF || write_ptr >= TFD_QUEUE_SIZE_MAX)) return; filled_tfd_size = offsetof(struct iwl_tfh_tfd, tbs) + num_tbs * sizeof(struct iwl_tfh_tb); /* * filled_tfd_size contains the number of filled bytes in the TFD. * Dividing it by 64 will give the number of chunks to fetch * to SRAM- 0 for one chunk, 1 for 2 and so on. * If, for example, TFD contains only 3 TBs then 32 bytes * of the TFD are used, and only one chunk of 64 bytes should * be fetched */ num_fetch_chunks = DIV_ROUND_UP(filled_tfd_size, 64) - 1; bc_ent = cpu_to_le16(len | (num_fetch_chunks << 12)); scd_bc_tbl->tfd_offset[write_ptr] = bc_ent; } /* * iwl_pcie_gen2_txq_inc_wr_ptr - Send new write index to hardware */ static void iwl_pcie_gen2_txq_inc_wr_ptr(struct iwl_trans *trans, struct iwl_txq *txq) { lockdep_assert_held(&txq->lock); IWL_DEBUG_TX(trans, "Q:%d WR: 0x%x\n", txq->id, txq->write_ptr); /* * if not in power-save mode, uCode will never sleep when we're * trying to tx (during RFKILL, we're not trying to tx). */ iwl_write32(trans, HBUS_TARG_WRPTR, txq->write_ptr | (txq->id << 16)); } static u8 iwl_pcie_gen2_get_num_tbs(struct iwl_trans *trans, struct iwl_tfh_tfd *tfd) { return le16_to_cpu(tfd->num_tbs) & 0x1f; } static void iwl_pcie_gen2_tfd_unmap(struct iwl_trans *trans, struct iwl_cmd_meta *meta, struct iwl_tfh_tfd *tfd) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); int i, num_tbs; /* Sanity check on number of chunks */ num_tbs = iwl_pcie_gen2_get_num_tbs(trans, tfd); if (num_tbs >= trans_pcie->max_tbs) { IWL_ERR(trans, "Too many chunks: %i\n", num_tbs); return; } /* first TB is never freed - it's the bidirectional DMA data */ for (i = 1; i < num_tbs; i++) { if (meta->tbs & BIT(i)) dma_unmap_page(trans->dev, le64_to_cpu(tfd->tbs[i].addr), le16_to_cpu(tfd->tbs[i].tb_len), DMA_TO_DEVICE); else dma_unmap_single(trans->dev, le64_to_cpu(tfd->tbs[i].addr), le16_to_cpu(tfd->tbs[i].tb_len), DMA_TO_DEVICE); } tfd->num_tbs = 0; } static void iwl_pcie_gen2_free_tfd(struct iwl_trans *trans, struct iwl_txq *txq) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); /* rd_ptr is bounded by TFD_QUEUE_SIZE_MAX and * idx is bounded by n_window */ int rd_ptr = txq->read_ptr; int idx = get_cmd_index(txq, rd_ptr); lockdep_assert_held(&txq->lock); /* We have only q->n_window txq->entries, but we use * TFD_QUEUE_SIZE_MAX tfds */ iwl_pcie_gen2_tfd_unmap(trans, &txq->entries[idx].meta, iwl_pcie_get_tfd(trans_pcie, txq, rd_ptr)); /* free SKB */ if (txq->entries) { struct sk_buff *skb; skb = txq->entries[idx].skb; /* Can be called from irqs-disabled context * If skb is not NULL, it means that the whole queue is being * freed and that the queue is not empty - free the skb */ if (skb) { iwl_op_mode_free_skb(trans->op_mode, skb); txq->entries[idx].skb = NULL; } } } static int iwl_pcie_gen2_set_tb(struct iwl_trans *trans, struct iwl_tfh_tfd *tfd, dma_addr_t addr, u16 len) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); int idx = iwl_pcie_gen2_get_num_tbs(trans, tfd); struct iwl_tfh_tb *tb = &tfd->tbs[idx]; /* Each TFD can point to a maximum max_tbs Tx buffers */ if (le16_to_cpu(tfd->num_tbs) >= trans_pcie->max_tbs) { IWL_ERR(trans, "Error can not send more than %d chunks\n", trans_pcie->max_tbs); return -EINVAL; } put_unaligned_le64(addr, &tb->addr); tb->tb_len = cpu_to_le16(len); tfd->num_tbs = cpu_to_le16(idx + 1); return idx; } static struct iwl_tfh_tfd *iwl_pcie_gen2_build_tfd(struct iwl_trans *trans, struct iwl_txq *txq, struct iwl_device_cmd *dev_cmd, struct sk_buff *skb, struct iwl_cmd_meta *out_meta) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; struct iwl_tfh_tfd *tfd = iwl_pcie_get_tfd(trans_pcie, txq, txq->write_ptr); dma_addr_t tb_phys; int i, len, tb1_len, tb2_len, hdr_len; void *tb1_addr; memset(tfd, 0, sizeof(*tfd)); tb_phys = iwl_pcie_get_first_tb_dma(txq, txq->write_ptr); /* The first TB points to bi-directional DMA data */ memcpy(&txq->first_tb_bufs[txq->write_ptr], &dev_cmd->hdr, IWL_FIRST_TB_SIZE); iwl_pcie_gen2_set_tb(trans, tfd, tb_phys, IWL_FIRST_TB_SIZE); /* there must be data left over for TB1 or this code must be changed */ BUILD_BUG_ON(sizeof(struct iwl_tx_cmd_gen2) < IWL_FIRST_TB_SIZE); /* * The second TB (tb1) points to the remainder of the TX command * and the 802.11 header - dword aligned size * (This calculation modifies the TX command, so do it before the * setup of the first TB) */ len = sizeof(struct iwl_tx_cmd_gen2) + sizeof(struct iwl_cmd_header) + ieee80211_hdrlen(hdr->frame_control) - IWL_FIRST_TB_SIZE; tb1_len = ALIGN(len, 4); /* map the data for TB1 */ tb1_addr = ((u8 *)&dev_cmd->hdr) + IWL_FIRST_TB_SIZE; tb_phys = dma_map_single(trans->dev, tb1_addr, tb1_len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(trans->dev, tb_phys))) goto out_err; iwl_pcie_gen2_set_tb(trans, tfd, tb_phys, tb1_len); /* set up TFD's third entry to point to remainder of skb's head */ hdr_len = ieee80211_hdrlen(hdr->frame_control); tb2_len = skb_headlen(skb) - hdr_len; if (tb2_len > 0) { tb_phys = dma_map_single(trans->dev, skb->data + hdr_len, tb2_len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(trans->dev, tb_phys))) goto out_err; iwl_pcie_gen2_set_tb(trans, tfd, tb_phys, tb2_len); } /* set up the remaining entries to point to the data */ for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; int tb_idx; if (!skb_frag_size(frag)) continue; tb_phys = skb_frag_dma_map(trans->dev, frag, 0, skb_frag_size(frag), DMA_TO_DEVICE); if (unlikely(dma_mapping_error(trans->dev, tb_phys))) goto out_err; tb_idx = iwl_pcie_gen2_set_tb(trans, tfd, tb_phys, skb_frag_size(frag)); out_meta->tbs |= BIT(tb_idx); } trace_iwlwifi_dev_tx(trans->dev, skb, tfd, sizeof(*tfd), &dev_cmd->hdr, IWL_FIRST_TB_SIZE + tb1_len, skb->data + hdr_len, tb2_len); trace_iwlwifi_dev_tx_data(trans->dev, skb, hdr_len, skb->len - hdr_len); return tfd; out_err: iwl_pcie_gen2_tfd_unmap(trans, out_meta, tfd); return NULL; } int iwl_trans_pcie_gen2_tx(struct iwl_trans *trans, struct sk_buff *skb, struct iwl_device_cmd *dev_cmd, int txq_id) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct iwl_tx_cmd_gen2 *tx_cmd = (void *)dev_cmd->payload; struct iwl_cmd_meta *out_meta; struct iwl_txq *txq = trans_pcie->txq[txq_id]; void *tfd; if (WARN_ONCE(!test_bit(txq_id, trans_pcie->queue_used), "TX on unused queue %d\n", txq_id)) return -EINVAL; if (skb_is_nonlinear(skb) && skb_shinfo(skb)->nr_frags > IWL_PCIE_MAX_FRAGS(trans_pcie) && __skb_linearize(skb)) return -ENOMEM; spin_lock(&txq->lock); /* Set up driver data for this TFD */ txq->entries[txq->write_ptr].skb = skb; txq->entries[txq->write_ptr].cmd = dev_cmd; dev_cmd->hdr.sequence = cpu_to_le16((u16)(QUEUE_TO_SEQ(txq_id) | INDEX_TO_SEQ(txq->write_ptr))); /* Set up first empty entry in queue's array of Tx/cmd buffers */ out_meta = &txq->entries[txq->write_ptr].meta; out_meta->flags = 0; tfd = iwl_pcie_gen2_build_tfd(trans, txq, dev_cmd, skb, out_meta); if (!tfd) { spin_unlock(&txq->lock); return -1; } /* Set up entry for this TFD in Tx byte-count array */ iwl_pcie_gen2_update_byte_tbl(txq, le16_to_cpu(tx_cmd->len), iwl_pcie_gen2_get_num_tbs(trans, tfd)); /* start timer if queue currently empty */ if (txq->read_ptr == txq->write_ptr) { if (txq->wd_timeout) mod_timer(&txq->stuck_timer, jiffies + txq->wd_timeout); IWL_DEBUG_RPM(trans, "Q: %d first tx - take ref\n", txq->id); iwl_trans_ref(trans); } /* Tell device the write index *just past* this latest filled TFD */ txq->write_ptr = iwl_queue_inc_wrap(txq->write_ptr); iwl_pcie_gen2_txq_inc_wr_ptr(trans, txq); if (iwl_queue_space(txq) < txq->high_mark) iwl_stop_queue(trans, txq); /* * At this point the frame is "transmitted" successfully * and we will get a TX status notification eventually. */ spin_unlock(&txq->lock); return 0; } /*************** HOST COMMAND QUEUE FUNCTIONS *****/ /* * iwl_pcie_gen2_enqueue_hcmd - enqueue a uCode command * @priv: device private data point * @cmd: a pointer to the ucode command structure * * The function returns < 0 values to indicate the operation * failed. On success, it returns the index (>= 0) of command in the * command queue. */ static int iwl_pcie_gen2_enqueue_hcmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct iwl_txq *txq = trans_pcie->txq[trans_pcie->cmd_queue]; struct iwl_device_cmd *out_cmd; struct iwl_cmd_meta *out_meta; unsigned long flags; void *dup_buf = NULL; dma_addr_t phys_addr; int idx, i, cmd_pos; u16 copy_size, cmd_size, tb0_size; bool had_nocopy = false; u8 group_id = iwl_cmd_groupid(cmd->id); const u8 *cmddata[IWL_MAX_CMD_TBS_PER_TFD]; u16 cmdlen[IWL_MAX_CMD_TBS_PER_TFD]; struct iwl_tfh_tfd *tfd = iwl_pcie_get_tfd(trans_pcie, txq, txq->write_ptr); memset(tfd, 0, sizeof(*tfd)); copy_size = sizeof(struct iwl_cmd_header_wide); cmd_size = sizeof(struct iwl_cmd_header_wide); for (i = 0; i < IWL_MAX_CMD_TBS_PER_TFD; i++) { cmddata[i] = cmd->data[i]; cmdlen[i] = cmd->len[i]; if (!cmd->len[i]) continue; /* need at least IWL_FIRST_TB_SIZE copied */ if (copy_size < IWL_FIRST_TB_SIZE) { int copy = IWL_FIRST_TB_SIZE - copy_size; if (copy > cmdlen[i]) copy = cmdlen[i]; cmdlen[i] -= copy; cmddata[i] += copy; copy_size += copy; } if (cmd->dataflags[i] & IWL_HCMD_DFL_NOCOPY) { had_nocopy = true; if (WARN_ON(cmd->dataflags[i] & IWL_HCMD_DFL_DUP)) { idx = -EINVAL; goto free_dup_buf; } } else if (cmd->dataflags[i] & IWL_HCMD_DFL_DUP) { /* * This is also a chunk that isn't copied * to the static buffer so set had_nocopy. */ had_nocopy = true; /* only allowed once */ if (WARN_ON(dup_buf)) { idx = -EINVAL; goto free_dup_buf; } dup_buf = kmemdup(cmddata[i], cmdlen[i], GFP_ATOMIC); if (!dup_buf) return -ENOMEM; } else { /* NOCOPY must not be followed by normal! */ if (WARN_ON(had_nocopy)) { idx = -EINVAL; goto free_dup_buf; } copy_size += cmdlen[i]; } cmd_size += cmd->len[i]; } /* * If any of the command structures end up being larger than the * TFD_MAX_PAYLOAD_SIZE and they aren't dynamically allocated into * separate TFDs, then we will need to increase the size of the buffers */ if (WARN(copy_size > TFD_MAX_PAYLOAD_SIZE, "Command %s (%#x) is too large (%d bytes)\n", iwl_get_cmd_string(trans, cmd->id), cmd->id, copy_size)) { idx = -EINVAL; goto free_dup_buf; } spin_lock_bh(&txq->lock); if (iwl_queue_space(txq) < ((cmd->flags & CMD_ASYNC) ? 2 : 1)) { spin_unlock_bh(&txq->lock); IWL_ERR(trans, "No space in command queue\n"); iwl_op_mode_cmd_queue_full(trans->op_mode); idx = -ENOSPC; goto free_dup_buf; } idx = get_cmd_index(txq, txq->write_ptr); out_cmd = txq->entries[idx].cmd; out_meta = &txq->entries[idx].meta; /* re-initialize to NULL */ memset(out_meta, 0, sizeof(*out_meta)); if (cmd->flags & CMD_WANT_SKB) out_meta->source = cmd; /* set up the header */ out_cmd->hdr_wide.cmd = iwl_cmd_opcode(cmd->id); out_cmd->hdr_wide.group_id = group_id; out_cmd->hdr_wide.version = iwl_cmd_version(cmd->id); out_cmd->hdr_wide.length = cpu_to_le16(cmd_size - sizeof(struct iwl_cmd_header_wide)); out_cmd->hdr_wide.reserved = 0; out_cmd->hdr_wide.sequence = cpu_to_le16(QUEUE_TO_SEQ(trans_pcie->cmd_queue) | INDEX_TO_SEQ(txq->write_ptr)); cmd_pos = sizeof(struct iwl_cmd_header_wide); copy_size = sizeof(struct iwl_cmd_header_wide); /* and copy the data that needs to be copied */ for (i = 0; i < IWL_MAX_CMD_TBS_PER_TFD; i++) { int copy; if (!cmd->len[i]) continue; /* copy everything if not nocopy/dup */ if (!(cmd->dataflags[i] & (IWL_HCMD_DFL_NOCOPY | IWL_HCMD_DFL_DUP))) { copy = cmd->len[i]; memcpy((u8 *)out_cmd + cmd_pos, cmd->data[i], copy); cmd_pos += copy; copy_size += copy; continue; } /* * Otherwise we need at least IWL_FIRST_TB_SIZE copied * in total (for bi-directional DMA), but copy up to what * we can fit into the payload for debug dump purposes. */ copy = min_t(int, TFD_MAX_PAYLOAD_SIZE - cmd_pos, cmd->len[i]); memcpy((u8 *)out_cmd + cmd_pos, cmd->data[i], copy); cmd_pos += copy; /* However, treat copy_size the proper way, we need it below */ if (copy_size < IWL_FIRST_TB_SIZE) { copy = IWL_FIRST_TB_SIZE - copy_size; if (copy > cmd->len[i]) copy = cmd->len[i]; copy_size += copy; } } IWL_DEBUG_HC(trans, "Sending command %s (%.2x.%.2x), seq: 0x%04X, %d bytes at %d[%d]:%d\n", iwl_get_cmd_string(trans, cmd->id), group_id, out_cmd->hdr.cmd, le16_to_cpu(out_cmd->hdr.sequence), cmd_size, txq->write_ptr, idx, trans_pcie->cmd_queue); /* start the TFD with the minimum copy bytes */ tb0_size = min_t(int, copy_size, IWL_FIRST_TB_SIZE); memcpy(&txq->first_tb_bufs[idx], &out_cmd->hdr, tb0_size); iwl_pcie_gen2_set_tb(trans, tfd, iwl_pcie_get_first_tb_dma(txq, idx), tb0_size); /* map first command fragment, if any remains */ if (copy_size > tb0_size) { phys_addr = dma_map_single(trans->dev, ((u8 *)&out_cmd->hdr) + tb0_size, copy_size - tb0_size, DMA_TO_DEVICE); if (dma_mapping_error(trans->dev, phys_addr)) { idx = -ENOMEM; iwl_pcie_gen2_tfd_unmap(trans, out_meta, tfd); goto out; } iwl_pcie_gen2_set_tb(trans, tfd, phys_addr, copy_size - tb0_size); } /* map the remaining (adjusted) nocopy/dup fragments */ for (i = 0; i < IWL_MAX_CMD_TBS_PER_TFD; i++) { const void *data = cmddata[i]; if (!cmdlen[i]) continue; if (!(cmd->dataflags[i] & (IWL_HCMD_DFL_NOCOPY | IWL_HCMD_DFL_DUP))) continue; if (cmd->dataflags[i] & IWL_HCMD_DFL_DUP) data = dup_buf; phys_addr = dma_map_single(trans->dev, (void *)data, cmdlen[i], DMA_TO_DEVICE); if (dma_mapping_error(trans->dev, phys_addr)) { idx = -ENOMEM; iwl_pcie_gen2_tfd_unmap(trans, out_meta, tfd); goto out; } iwl_pcie_gen2_set_tb(trans, tfd, phys_addr, cmdlen[i]); } BUILD_BUG_ON(IWL_TFH_NUM_TBS > sizeof(out_meta->tbs) * BITS_PER_BYTE); out_meta->flags = cmd->flags; if (WARN_ON_ONCE(txq->entries[idx].free_buf)) kzfree(txq->entries[idx].free_buf); txq->entries[idx].free_buf = dup_buf; trace_iwlwifi_dev_hcmd(trans->dev, cmd, cmd_size, &out_cmd->hdr_wide); /* start timer if queue currently empty */ if (txq->read_ptr == txq->write_ptr && txq->wd_timeout) mod_timer(&txq->stuck_timer, jiffies + txq->wd_timeout); spin_lock_irqsave(&trans_pcie->reg_lock, flags); if (!(cmd->flags & CMD_SEND_IN_IDLE) && !trans_pcie->ref_cmd_in_flight) { trans_pcie->ref_cmd_in_flight = true; IWL_DEBUG_RPM(trans, "set ref_cmd_in_flight - ref\n"); iwl_trans_ref(trans); } /* Increment and update queue's write index */ txq->write_ptr = iwl_queue_inc_wrap(txq->write_ptr); iwl_pcie_gen2_txq_inc_wr_ptr(trans, txq); spin_unlock_irqrestore(&trans_pcie->reg_lock, flags); out: spin_unlock_bh(&txq->lock); free_dup_buf: if (idx < 0) kfree(dup_buf); return idx; } #define HOST_COMPLETE_TIMEOUT (2 * HZ) static int iwl_pcie_gen2_send_hcmd_sync(struct iwl_trans *trans, struct iwl_host_cmd *cmd) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); const char *cmd_str = iwl_get_cmd_string(trans, cmd->id); struct iwl_txq *txq = trans_pcie->txq[trans_pcie->cmd_queue]; int cmd_idx; int ret; IWL_DEBUG_INFO(trans, "Attempting to send sync command %s\n", cmd_str); if (WARN(test_and_set_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status), "Command %s: a command is already active!\n", cmd_str)) return -EIO; IWL_DEBUG_INFO(trans, "Setting HCMD_ACTIVE for command %s\n", cmd_str); if (pm_runtime_suspended(&trans_pcie->pci_dev->dev)) { ret = wait_event_timeout(trans_pcie->d0i3_waitq, pm_runtime_active(&trans_pcie->pci_dev->dev), msecs_to_jiffies(IWL_TRANS_IDLE_TIMEOUT)); if (!ret) { IWL_ERR(trans, "Timeout exiting D0i3 before hcmd\n"); return -ETIMEDOUT; } } cmd_idx = iwl_pcie_gen2_enqueue_hcmd(trans, cmd); if (cmd_idx < 0) { ret = cmd_idx; clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); IWL_ERR(trans, "Error sending %s: enqueue_hcmd failed: %d\n", cmd_str, ret); return ret; } ret = wait_event_timeout(trans_pcie->wait_command_queue, !test_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status), HOST_COMPLETE_TIMEOUT); if (!ret) { IWL_ERR(trans, "Error sending %s: time out after %dms.\n", cmd_str, jiffies_to_msecs(HOST_COMPLETE_TIMEOUT)); IWL_ERR(trans, "Current CMD queue read_ptr %d write_ptr %d\n", txq->read_ptr, txq->write_ptr); clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); IWL_DEBUG_INFO(trans, "Clearing HCMD_ACTIVE for command %s\n", cmd_str); ret = -ETIMEDOUT; iwl_force_nmi(trans); iwl_trans_fw_error(trans); goto cancel; } if (test_bit(STATUS_FW_ERROR, &trans->status)) { IWL_ERR(trans, "FW error in SYNC CMD %s\n", cmd_str); dump_stack(); ret = -EIO; goto cancel; } if (!(cmd->flags & CMD_SEND_IN_RFKILL) && test_bit(STATUS_RFKILL, &trans->status)) { IWL_DEBUG_RF_KILL(trans, "RFKILL in SYNC CMD... no rsp\n"); ret = -ERFKILL; goto cancel; } if ((cmd->flags & CMD_WANT_SKB) && !cmd->resp_pkt) { IWL_ERR(trans, "Error: Response NULL in '%s'\n", cmd_str); ret = -EIO; goto cancel; } return 0; cancel: if (cmd->flags & CMD_WANT_SKB) { /* * Cancel the CMD_WANT_SKB flag for the cmd in the * TX cmd queue. Otherwise in case the cmd comes * in later, it will possibly set an invalid * address (cmd->meta.source). */ txq->entries[cmd_idx].meta.flags &= ~CMD_WANT_SKB; } if (cmd->resp_pkt) { iwl_free_resp(cmd); cmd->resp_pkt = NULL; } return ret; } int iwl_trans_pcie_gen2_send_hcmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd) { if (!(cmd->flags & CMD_SEND_IN_RFKILL) && test_bit(STATUS_RFKILL, &trans->status)) { IWL_DEBUG_RF_KILL(trans, "Dropping CMD 0x%x: RF KILL\n", cmd->id); return -ERFKILL; } if (cmd->flags & CMD_ASYNC) { int ret; /* An asynchronous command can not expect an SKB to be set. */ if (WARN_ON(cmd->flags & CMD_WANT_SKB)) return -EINVAL; ret = iwl_pcie_gen2_enqueue_hcmd(trans, cmd); if (ret < 0) { IWL_ERR(trans, "Error sending %s: enqueue_hcmd failed: %d\n", iwl_get_cmd_string(trans, cmd->id), ret); return ret; } return 0; } return iwl_pcie_gen2_send_hcmd_sync(trans, cmd); } /* * iwl_pcie_gen2_txq_unmap - Unmap any remaining DMA mappings and free skb's */ void iwl_pcie_gen2_txq_unmap(struct iwl_trans *trans, int txq_id) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct iwl_txq *txq = trans_pcie->txq[txq_id]; spin_lock_bh(&txq->lock); while (txq->write_ptr != txq->read_ptr) { IWL_DEBUG_TX_REPLY(trans, "Q %d Free %d\n", txq_id, txq->read_ptr); iwl_pcie_gen2_free_tfd(trans, txq); txq->read_ptr = iwl_queue_inc_wrap(txq->read_ptr); if (txq->read_ptr == txq->write_ptr) { unsigned long flags; spin_lock_irqsave(&trans_pcie->reg_lock, flags); if (txq_id != trans_pcie->cmd_queue) { IWL_DEBUG_RPM(trans, "Q %d - last tx freed\n", txq->id); iwl_trans_unref(trans); } else if (trans_pcie->ref_cmd_in_flight) { trans_pcie->ref_cmd_in_flight = false; IWL_DEBUG_RPM(trans, "clear ref_cmd_in_flight\n"); iwl_trans_unref(trans); } spin_unlock_irqrestore(&trans_pcie->reg_lock, flags); } } spin_unlock_bh(&txq->lock); /* just in case - this queue may have been stopped */ iwl_wake_queue(trans, txq); } /* * iwl_pcie_txq_free - Deallocate DMA queue. * @txq: Transmit queue to deallocate. * * Empty queue by removing and destroying all BD's. * Free all buffers. * 0-fill, but do not free "txq" descriptor structure. */ static void iwl_pcie_gen2_txq_free(struct iwl_trans *trans, int txq_id) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct iwl_txq *txq = trans_pcie->txq[txq_id]; struct device *dev = trans->dev; int i; if (WARN_ON(!txq)) return; iwl_pcie_gen2_txq_unmap(trans, txq_id); /* De-alloc array of command/tx buffers */ if (txq_id == trans_pcie->cmd_queue) for (i = 0; i < txq->n_window; i++) { kzfree(txq->entries[i].cmd); kzfree(txq->entries[i].free_buf); } /* De-alloc circular buffer of TFDs */ if (txq->tfds) { dma_free_coherent(dev, trans_pcie->tfd_size * TFD_QUEUE_SIZE_MAX, txq->tfds, txq->dma_addr); dma_free_coherent(dev, sizeof(*txq->first_tb_bufs) * txq->n_window, txq->first_tb_bufs, txq->first_tb_dma); } kfree(txq->entries); del_timer_sync(&txq->stuck_timer); iwl_pcie_free_dma_ptr(trans, &txq->bc_tbl); kfree(txq); trans_pcie->txq[txq_id] = NULL; clear_bit(txq_id, trans_pcie->queue_used); } int iwl_trans_pcie_dyn_txq_alloc(struct iwl_trans *trans, struct iwl_tx_queue_cfg_cmd *cmd, int cmd_id, unsigned int timeout) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct iwl_txq *txq; struct iwl_host_cmd hcmd = { .id = cmd_id, .len = { sizeof(*cmd) }, .data = { cmd, }, .flags = 0, }; int ret, qid = cmd->scd_queue; u16 ssn = le16_to_cpu(cmd->ssn); txq = kzalloc(sizeof(*txq), GFP_KERNEL); if (!txq) return -ENOMEM; ret = iwl_pcie_alloc_dma_ptr(trans, &txq->bc_tbl, sizeof(struct iwlagn_scd_bc_tbl)); if (ret) { IWL_ERR(trans, "Scheduler BC Table allocation failed\n"); kfree(txq); return -ENOMEM; } if (test_and_set_bit(cmd->scd_queue, trans_pcie->queue_used)) { WARN_ONCE(1, "queue %d already used", cmd->scd_queue); return -EINVAL; } trans_pcie->txq[qid] = txq; ret = iwl_pcie_txq_alloc(trans, txq, TFD_TX_CMD_SLOTS, qid); if (ret) { IWL_ERR(trans, "Tx %d queue init failed\n", qid); goto error; } ret = iwl_pcie_txq_init(trans, txq, TFD_TX_CMD_SLOTS, qid); if (ret) { IWL_ERR(trans, "Tx %d queue alloc failed\n", qid); goto error; } txq->wd_timeout = msecs_to_jiffies(timeout); /* * Place first TFD at index corresponding to start sequence number. * Assumes that ssn_idx is valid (!= 0xFFF) */ txq->read_ptr = (ssn & 0xff); txq->write_ptr = (ssn & 0xff); iwl_write_direct32(trans, HBUS_TARG_WRPTR, (ssn & 0xff) | (cmd->scd_queue << 16)); IWL_DEBUG_TX_QUEUES(trans, "Activate queue %d WrPtr: %d\n", cmd->scd_queue, ssn & 0xff); cmd->tfdq_addr = cpu_to_le64(txq->dma_addr); cmd->byte_cnt_addr = cpu_to_le64(txq->bc_tbl.dma); cmd->cb_size = cpu_to_le32(TFD_QUEUE_CB_SIZE(TFD_QUEUE_SIZE_MAX)); return iwl_trans_send_cmd(trans, &hcmd); error: iwl_pcie_gen2_txq_free(trans, cmd->scd_queue); return -ENOMEM; } void iwl_trans_pcie_dyn_txq_free(struct iwl_trans *trans, int queue) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); /* * Upon HW Rfkill - we stop the device, and then stop the queues * in the op_mode. Just for the sake of the simplicity of the op_mode, * allow the op_mode to call txq_disable after it already called * stop_device. */ if (!test_and_clear_bit(queue, trans_pcie->queue_used)) { WARN_ONCE(test_bit(STATUS_DEVICE_ENABLED, &trans->status), "queue %d not used", queue); return; } iwl_pcie_gen2_txq_unmap(trans, queue); IWL_DEBUG_TX_QUEUES(trans, "Deactivate queue %d\n", queue); } void iwl_pcie_gen2_tx_free(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); int i; memset(trans_pcie->queue_used, 0, sizeof(trans_pcie->queue_used)); /* Free all TX queues */ for (i = 0; i < ARRAY_SIZE(trans_pcie->txq); i++) { if (!trans_pcie->txq[i]) continue; iwl_pcie_gen2_txq_free(trans, i); } } int iwl_pcie_gen2_tx_init(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct iwl_txq *cmd_queue; int txq_id = trans_pcie->cmd_queue, ret; /* alloc and init the command queue */ if (!trans_pcie->txq[txq_id]) { cmd_queue = kzalloc(sizeof(*cmd_queue), GFP_KERNEL); if (!cmd_queue) { IWL_ERR(trans, "Not enough memory for command queue\n"); return -ENOMEM; } trans_pcie->txq[txq_id] = cmd_queue; ret = iwl_pcie_txq_alloc(trans, cmd_queue, TFD_CMD_SLOTS, txq_id); if (ret) { IWL_ERR(trans, "Tx %d queue init failed\n", txq_id); goto error; } } else { cmd_queue = trans_pcie->txq[txq_id]; } ret = iwl_pcie_txq_init(trans, cmd_queue, TFD_CMD_SLOTS, txq_id); if (ret) { IWL_ERR(trans, "Tx %d queue alloc failed\n", txq_id); goto error; } set_bit(txq_id, trans_pcie->queue_used); return 0; error: iwl_pcie_gen2_tx_free(trans); return ret; }