/* ----------------------------------------------------------------------- * * Copyright 2011 Intel Corporation; author Matt Fleming * * This file is part of the Linux kernel, and is made available under * the terms of the GNU General Public License version 2. * * ----------------------------------------------------------------------- */ #include #include #include #include #include #include #include "../string.h" #include "eboot.h" static efi_system_table_t *sys_table; static struct efi_config *efi_early; __pure const struct efi_config *__efi_early(void) { return efi_early; } #define BOOT_SERVICES(bits) \ static void setup_boot_services##bits(struct efi_config *c) \ { \ efi_system_table_##bits##_t *table; \ \ table = (typeof(table))sys_table; \ \ c->runtime_services = table->runtime; \ c->boot_services = table->boottime; \ c->text_output = table->con_out; \ } BOOT_SERVICES(32); BOOT_SERVICES(64); static inline efi_status_t __open_volume32(void *__image, void **__fh) { efi_file_io_interface_t *io; efi_loaded_image_32_t *image = __image; efi_file_handle_32_t *fh; efi_guid_t fs_proto = EFI_FILE_SYSTEM_GUID; efi_status_t status; void *handle = (void *)(unsigned long)image->device_handle; unsigned long func; status = efi_call_early(handle_protocol, handle, &fs_proto, (void **)&io); if (status != EFI_SUCCESS) { efi_printk(sys_table, "Failed to handle fs_proto\n"); return status; } func = (unsigned long)io->open_volume; status = efi_early->call(func, io, &fh); if (status != EFI_SUCCESS) efi_printk(sys_table, "Failed to open volume\n"); *__fh = fh; return status; } static inline efi_status_t __open_volume64(void *__image, void **__fh) { efi_file_io_interface_t *io; efi_loaded_image_64_t *image = __image; efi_file_handle_64_t *fh; efi_guid_t fs_proto = EFI_FILE_SYSTEM_GUID; efi_status_t status; void *handle = (void *)(unsigned long)image->device_handle; unsigned long func; status = efi_call_early(handle_protocol, handle, &fs_proto, (void **)&io); if (status != EFI_SUCCESS) { efi_printk(sys_table, "Failed to handle fs_proto\n"); return status; } func = (unsigned long)io->open_volume; status = efi_early->call(func, io, &fh); if (status != EFI_SUCCESS) efi_printk(sys_table, "Failed to open volume\n"); *__fh = fh; return status; } efi_status_t efi_open_volume(efi_system_table_t *sys_table, void *__image, void **__fh) { if (efi_early->is64) return __open_volume64(__image, __fh); return __open_volume32(__image, __fh); } void efi_char16_printk(efi_system_table_t *table, efi_char16_t *str) { efi_call_proto(efi_simple_text_output_protocol, output_string, efi_early->text_output, str); } static efi_status_t __setup_efi_pci32(efi_pci_io_protocol_32 *pci, struct pci_setup_rom **__rom) { struct pci_setup_rom *rom = NULL; efi_status_t status; unsigned long size; uint64_t attributes; status = efi_early->call(pci->attributes, pci, EfiPciIoAttributeOperationGet, 0, 0, &attributes); if (status != EFI_SUCCESS) return status; if (!pci->romimage || !pci->romsize) return EFI_INVALID_PARAMETER; size = pci->romsize + sizeof(*rom); status = efi_call_early(allocate_pool, EFI_LOADER_DATA, size, &rom); if (status != EFI_SUCCESS) { efi_printk(sys_table, "Failed to alloc mem for rom\n"); return status; } memset(rom, 0, sizeof(*rom)); rom->data.type = SETUP_PCI; rom->data.len = size - sizeof(struct setup_data); rom->data.next = 0; rom->pcilen = pci->romsize; *__rom = rom; status = efi_early->call(pci->pci.read, pci, EfiPciIoWidthUint16, PCI_VENDOR_ID, 1, &(rom->vendor)); if (status != EFI_SUCCESS) { efi_printk(sys_table, "Failed to read rom->vendor\n"); goto free_struct; } status = efi_early->call(pci->pci.read, pci, EfiPciIoWidthUint16, PCI_DEVICE_ID, 1, &(rom->devid)); if (status != EFI_SUCCESS) { efi_printk(sys_table, "Failed to read rom->devid\n"); goto free_struct; } status = efi_early->call(pci->get_location, pci, &(rom->segment), &(rom->bus), &(rom->device), &(rom->function)); if (status != EFI_SUCCESS) goto free_struct; memcpy(rom->romdata, pci->romimage, pci->romsize); return status; free_struct: efi_call_early(free_pool, rom); return status; } static void setup_efi_pci32(struct boot_params *params, void **pci_handle, unsigned long size) { efi_pci_io_protocol_32 *pci = NULL; efi_guid_t pci_proto = EFI_PCI_IO_PROTOCOL_GUID; u32 *handles = (u32 *)(unsigned long)pci_handle; efi_status_t status; unsigned long nr_pci; struct setup_data *data; int i; data = (struct setup_data *)(unsigned long)params->hdr.setup_data; while (data && data->next) data = (struct setup_data *)(unsigned long)data->next; nr_pci = size / sizeof(u32); for (i = 0; i < nr_pci; i++) { struct pci_setup_rom *rom = NULL; u32 h = handles[i]; status = efi_call_early(handle_protocol, h, &pci_proto, (void **)&pci); if (status != EFI_SUCCESS) continue; if (!pci) continue; status = __setup_efi_pci32(pci, &rom); if (status != EFI_SUCCESS) continue; if (data) data->next = (unsigned long)rom; else params->hdr.setup_data = (unsigned long)rom; data = (struct setup_data *)rom; } } static efi_status_t __setup_efi_pci64(efi_pci_io_protocol_64 *pci, struct pci_setup_rom **__rom) { struct pci_setup_rom *rom; efi_status_t status; unsigned long size; uint64_t attributes; status = efi_early->call(pci->attributes, pci, EfiPciIoAttributeOperationGet, 0, &attributes); if (status != EFI_SUCCESS) return status; if (!pci->romimage || !pci->romsize) return EFI_INVALID_PARAMETER; size = pci->romsize + sizeof(*rom); status = efi_call_early(allocate_pool, EFI_LOADER_DATA, size, &rom); if (status != EFI_SUCCESS) { efi_printk(sys_table, "Failed to alloc mem for rom\n"); return status; } rom->data.type = SETUP_PCI; rom->data.len = size - sizeof(struct setup_data); rom->data.next = 0; rom->pcilen = pci->romsize; *__rom = rom; status = efi_early->call(pci->pci.read, pci, EfiPciIoWidthUint16, PCI_VENDOR_ID, 1, &(rom->vendor)); if (status != EFI_SUCCESS) { efi_printk(sys_table, "Failed to read rom->vendor\n"); goto free_struct; } status = efi_early->call(pci->pci.read, pci, EfiPciIoWidthUint16, PCI_DEVICE_ID, 1, &(rom->devid)); if (status != EFI_SUCCESS) { efi_printk(sys_table, "Failed to read rom->devid\n"); goto free_struct; } status = efi_early->call(pci->get_location, pci, &(rom->segment), &(rom->bus), &(rom->device), &(rom->function)); if (status != EFI_SUCCESS) goto free_struct; memcpy(rom->romdata, pci->romimage, pci->romsize); return status; free_struct: efi_call_early(free_pool, rom); return status; } static void setup_efi_pci64(struct boot_params *params, void **pci_handle, unsigned long size) { efi_pci_io_protocol_64 *pci = NULL; efi_guid_t pci_proto = EFI_PCI_IO_PROTOCOL_GUID; u64 *handles = (u64 *)(unsigned long)pci_handle; efi_status_t status; unsigned long nr_pci; struct setup_data *data; int i; data = (struct setup_data *)(unsigned long)params->hdr.setup_data; while (data && data->next) data = (struct setup_data *)(unsigned long)data->next; nr_pci = size / sizeof(u64); for (i = 0; i < nr_pci; i++) { struct pci_setup_rom *rom = NULL; u64 h = handles[i]; status = efi_call_early(handle_protocol, h, &pci_proto, (void **)&pci); if (status != EFI_SUCCESS) continue; if (!pci) continue; status = __setup_efi_pci64(pci, &rom); if (status != EFI_SUCCESS) continue; if (data) data->next = (unsigned long)rom; else params->hdr.setup_data = (unsigned long)rom; data = (struct setup_data *)rom; } } /* * There's no way to return an informative status from this function, * because any analysis (and printing of error messages) needs to be * done directly at the EFI function call-site. * * For example, EFI_INVALID_PARAMETER could indicate a bug or maybe we * just didn't find any PCI devices, but there's no way to tell outside * the context of the call. */ static void setup_efi_pci(struct boot_params *params) { efi_status_t status; void **pci_handle = NULL; efi_guid_t pci_proto = EFI_PCI_IO_PROTOCOL_GUID; unsigned long size = 0; status = efi_call_early(locate_handle, EFI_LOCATE_BY_PROTOCOL, &pci_proto, NULL, &size, pci_handle); if (status == EFI_BUFFER_TOO_SMALL) { status = efi_call_early(allocate_pool, EFI_LOADER_DATA, size, (void **)&pci_handle); if (status != EFI_SUCCESS) { efi_printk(sys_table, "Failed to alloc mem for pci_handle\n"); return; } status = efi_call_early(locate_handle, EFI_LOCATE_BY_PROTOCOL, &pci_proto, NULL, &size, pci_handle); } if (status != EFI_SUCCESS) goto free_handle; if (efi_early->is64) setup_efi_pci64(params, pci_handle, size); else setup_efi_pci32(params, pci_handle, size); free_handle: efi_call_early(free_pool, pci_handle); } static void retrieve_apple_device_properties(struct boot_params *boot_params) { efi_guid_t guid = APPLE_PROPERTIES_PROTOCOL_GUID; struct setup_data *data, *new; efi_status_t status; u32 size = 0; void *p; status = efi_call_early(locate_protocol, &guid, NULL, &p); if (status != EFI_SUCCESS) return; if (efi_table_attr(apple_properties_protocol, version, p) != 0x10000) { efi_printk(sys_table, "Unsupported properties proto version\n"); return; } efi_call_proto(apple_properties_protocol, get_all, p, NULL, &size); if (!size) return; do { status = efi_call_early(allocate_pool, EFI_LOADER_DATA, size + sizeof(struct setup_data), &new); if (status != EFI_SUCCESS) { efi_printk(sys_table, "Failed to alloc mem for properties\n"); return; } status = efi_call_proto(apple_properties_protocol, get_all, p, new->data, &size); if (status == EFI_BUFFER_TOO_SMALL) efi_call_early(free_pool, new); } while (status == EFI_BUFFER_TOO_SMALL); new->type = SETUP_APPLE_PROPERTIES; new->len = size; new->next = 0; data = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data; if (!data) boot_params->hdr.setup_data = (unsigned long)new; else { while (data->next) data = (struct setup_data *)(unsigned long)data->next; data->next = (unsigned long)new; } } static void setup_quirks(struct boot_params *boot_params) { efi_char16_t const apple[] = { 'A', 'p', 'p', 'l', 'e', 0 }; efi_char16_t *fw_vendor = (efi_char16_t *)(unsigned long) efi_table_attr(efi_system_table, fw_vendor, sys_table); if (!memcmp(fw_vendor, apple, sizeof(apple))) { if (IS_ENABLED(CONFIG_APPLE_PROPERTIES)) retrieve_apple_device_properties(boot_params); } } static efi_status_t setup_uga32(void **uga_handle, unsigned long size, u32 *width, u32 *height) { struct efi_uga_draw_protocol *uga = NULL, *first_uga; efi_guid_t uga_proto = EFI_UGA_PROTOCOL_GUID; unsigned long nr_ugas; u32 *handles = (u32 *)uga_handle;; efi_status_t status = EFI_INVALID_PARAMETER; int i; first_uga = NULL; nr_ugas = size / sizeof(u32); for (i = 0; i < nr_ugas; i++) { efi_guid_t pciio_proto = EFI_PCI_IO_PROTOCOL_GUID; u32 w, h, depth, refresh; void *pciio; u32 handle = handles[i]; status = efi_call_early(handle_protocol, handle, &uga_proto, (void **)&uga); if (status != EFI_SUCCESS) continue; efi_call_early(handle_protocol, handle, &pciio_proto, &pciio); status = efi_early->call((unsigned long)uga->get_mode, uga, &w, &h, &depth, &refresh); if (status == EFI_SUCCESS && (!first_uga || pciio)) { *width = w; *height = h; /* * Once we've found a UGA supporting PCIIO, * don't bother looking any further. */ if (pciio) break; first_uga = uga; } } return status; } static efi_status_t setup_uga64(void **uga_handle, unsigned long size, u32 *width, u32 *height) { struct efi_uga_draw_protocol *uga = NULL, *first_uga; efi_guid_t uga_proto = EFI_UGA_PROTOCOL_GUID; unsigned long nr_ugas; u64 *handles = (u64 *)uga_handle;; efi_status_t status = EFI_INVALID_PARAMETER; int i; first_uga = NULL; nr_ugas = size / sizeof(u64); for (i = 0; i < nr_ugas; i++) { efi_guid_t pciio_proto = EFI_PCI_IO_PROTOCOL_GUID; u32 w, h, depth, refresh; void *pciio; u64 handle = handles[i]; status = efi_call_early(handle_protocol, handle, &uga_proto, (void **)&uga); if (status != EFI_SUCCESS) continue; efi_call_early(handle_protocol, handle, &pciio_proto, &pciio); status = efi_early->call((unsigned long)uga->get_mode, uga, &w, &h, &depth, &refresh); if (status == EFI_SUCCESS && (!first_uga || pciio)) { *width = w; *height = h; /* * Once we've found a UGA supporting PCIIO, * don't bother looking any further. */ if (pciio) break; first_uga = uga; } } return status; } /* * See if we have Universal Graphics Adapter (UGA) protocol */ static efi_status_t setup_uga(struct screen_info *si, efi_guid_t *uga_proto, unsigned long size) { efi_status_t status; u32 width, height; void **uga_handle = NULL; status = efi_call_early(allocate_pool, EFI_LOADER_DATA, size, (void **)&uga_handle); if (status != EFI_SUCCESS) return status; status = efi_call_early(locate_handle, EFI_LOCATE_BY_PROTOCOL, uga_proto, NULL, &size, uga_handle); if (status != EFI_SUCCESS) goto free_handle; height = 0; width = 0; if (efi_early->is64) status = setup_uga64(uga_handle, size, &width, &height); else status = setup_uga32(uga_handle, size, &width, &height); if (!width && !height) goto free_handle; /* EFI framebuffer */ si->orig_video_isVGA = VIDEO_TYPE_EFI; si->lfb_depth = 32; si->lfb_width = width; si->lfb_height = height; si->red_size = 8; si->red_pos = 16; si->green_size = 8; si->green_pos = 8; si->blue_size = 8; si->blue_pos = 0; si->rsvd_size = 8; si->rsvd_pos = 24; free_handle: efi_call_early(free_pool, uga_handle); return status; } void setup_graphics(struct boot_params *boot_params) { efi_guid_t graphics_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID; struct screen_info *si; efi_guid_t uga_proto = EFI_UGA_PROTOCOL_GUID; efi_status_t status; unsigned long size; void **gop_handle = NULL; void **uga_handle = NULL; si = &boot_params->screen_info; memset(si, 0, sizeof(*si)); size = 0; status = efi_call_early(locate_handle, EFI_LOCATE_BY_PROTOCOL, &graphics_proto, NULL, &size, gop_handle); if (status == EFI_BUFFER_TOO_SMALL) status = efi_setup_gop(NULL, si, &graphics_proto, size); if (status != EFI_SUCCESS) { size = 0; status = efi_call_early(locate_handle, EFI_LOCATE_BY_PROTOCOL, &uga_proto, NULL, &size, uga_handle); if (status == EFI_BUFFER_TOO_SMALL) setup_uga(si, &uga_proto, size); } } /* * Because the x86 boot code expects to be passed a boot_params we * need to create one ourselves (usually the bootloader would create * one for us). * * The caller is responsible for filling out ->code32_start in the * returned boot_params. */ struct boot_params *make_boot_params(struct efi_config *c) { struct boot_params *boot_params; struct apm_bios_info *bi; struct setup_header *hdr; efi_loaded_image_t *image; void *options, *handle; efi_guid_t proto = LOADED_IMAGE_PROTOCOL_GUID; int options_size = 0; efi_status_t status; char *cmdline_ptr; u16 *s2; u8 *s1; int i; unsigned long ramdisk_addr; unsigned long ramdisk_size; efi_early = c; sys_table = (efi_system_table_t *)(unsigned long)efi_early->table; handle = (void *)(unsigned long)efi_early->image_handle; /* Check if we were booted by the EFI firmware */ if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) return NULL; if (efi_early->is64) setup_boot_services64(efi_early); else setup_boot_services32(efi_early); status = efi_call_early(handle_protocol, handle, &proto, (void *)&image); if (status != EFI_SUCCESS) { efi_printk(sys_table, "Failed to get handle for LOADED_IMAGE_PROTOCOL\n"); return NULL; } status = efi_low_alloc(sys_table, 0x4000, 1, (unsigned long *)&boot_params); if (status != EFI_SUCCESS) { efi_printk(sys_table, "Failed to alloc lowmem for boot params\n"); return NULL; } memset(boot_params, 0x0, 0x4000); hdr = &boot_params->hdr; bi = &boot_params->apm_bios_info; /* Copy the second sector to boot_params */ memcpy(&hdr->jump, image->image_base + 512, 512); /* * Fill out some of the header fields ourselves because the * EFI firmware loader doesn't load the first sector. */ hdr->root_flags = 1; hdr->vid_mode = 0xffff; hdr->boot_flag = 0xAA55; hdr->type_of_loader = 0x21; /* Convert unicode cmdline to ascii */ cmdline_ptr = efi_convert_cmdline(sys_table, image, &options_size); if (!cmdline_ptr) goto fail; hdr->cmd_line_ptr = (unsigned long)cmdline_ptr; /* Fill in upper bits of command line address, NOP on 32 bit */ boot_params->ext_cmd_line_ptr = (u64)(unsigned long)cmdline_ptr >> 32; hdr->ramdisk_image = 0; hdr->ramdisk_size = 0; /* Clear APM BIOS info */ memset(bi, 0, sizeof(*bi)); status = efi_parse_options(cmdline_ptr); if (status != EFI_SUCCESS) goto fail2; status = handle_cmdline_files(sys_table, image, (char *)(unsigned long)hdr->cmd_line_ptr, "initrd=", hdr->initrd_addr_max, &ramdisk_addr, &ramdisk_size); if (status != EFI_SUCCESS && hdr->xloadflags & XLF_CAN_BE_LOADED_ABOVE_4G) { efi_printk(sys_table, "Trying to load files to higher address\n"); status = handle_cmdline_files(sys_table, image, (char *)(unsigned long)hdr->cmd_line_ptr, "initrd=", -1UL, &ramdisk_addr, &ramdisk_size); } if (status != EFI_SUCCESS) goto fail2; hdr->ramdisk_image = ramdisk_addr & 0xffffffff; hdr->ramdisk_size = ramdisk_size & 0xffffffff; boot_params->ext_ramdisk_image = (u64)ramdisk_addr >> 32; boot_params->ext_ramdisk_size = (u64)ramdisk_size >> 32; return boot_params; fail2: efi_free(sys_table, options_size, hdr->cmd_line_ptr); fail: efi_free(sys_table, 0x4000, (unsigned long)boot_params); return NULL; } static void add_e820ext(struct boot_params *params, struct setup_data *e820ext, u32 nr_entries) { struct setup_data *data; efi_status_t status; unsigned long size; e820ext->type = SETUP_E820_EXT; e820ext->len = nr_entries * sizeof(struct boot_e820_entry); e820ext->next = 0; data = (struct setup_data *)(unsigned long)params->hdr.setup_data; while (data && data->next) data = (struct setup_data *)(unsigned long)data->next; if (data) data->next = (unsigned long)e820ext; else params->hdr.setup_data = (unsigned long)e820ext; } static efi_status_t setup_e820(struct boot_params *params, struct setup_data *e820ext, u32 e820ext_size) { struct boot_e820_entry *entry = params->e820_table; struct efi_info *efi = ¶ms->efi_info; struct boot_e820_entry *prev = NULL; u32 nr_entries; u32 nr_desc; int i; nr_entries = 0; nr_desc = efi->efi_memmap_size / efi->efi_memdesc_size; for (i = 0; i < nr_desc; i++) { efi_memory_desc_t *d; unsigned int e820_type = 0; unsigned long m = efi->efi_memmap; #ifdef CONFIG_X86_64 m |= (u64)efi->efi_memmap_hi << 32; #endif d = (efi_memory_desc_t *)(m + (i * efi->efi_memdesc_size)); switch (d->type) { case EFI_RESERVED_TYPE: case EFI_RUNTIME_SERVICES_CODE: case EFI_RUNTIME_SERVICES_DATA: case EFI_MEMORY_MAPPED_IO: case EFI_MEMORY_MAPPED_IO_PORT_SPACE: case EFI_PAL_CODE: e820_type = E820_TYPE_RESERVED; break; case EFI_UNUSABLE_MEMORY: e820_type = E820_TYPE_UNUSABLE; break; case EFI_ACPI_RECLAIM_MEMORY: e820_type = E820_TYPE_ACPI; break; case EFI_LOADER_CODE: case EFI_LOADER_DATA: case EFI_BOOT_SERVICES_CODE: case EFI_BOOT_SERVICES_DATA: case EFI_CONVENTIONAL_MEMORY: e820_type = E820_TYPE_RAM; break; case EFI_ACPI_MEMORY_NVS: e820_type = E820_TYPE_NVS; break; case EFI_PERSISTENT_MEMORY: e820_type = E820_TYPE_PMEM; break; default: continue; } /* Merge adjacent mappings */ if (prev && prev->type == e820_type && (prev->addr + prev->size) == d->phys_addr) { prev->size += d->num_pages << 12; continue; } if (nr_entries == ARRAY_SIZE(params->e820_table)) { u32 need = (nr_desc - i) * sizeof(struct e820_entry) + sizeof(struct setup_data); if (!e820ext || e820ext_size < need) return EFI_BUFFER_TOO_SMALL; /* boot_params map full, switch to e820 extended */ entry = (struct boot_e820_entry *)e820ext->data; } entry->addr = d->phys_addr; entry->size = d->num_pages << PAGE_SHIFT; entry->type = e820_type; prev = entry++; nr_entries++; } if (nr_entries > ARRAY_SIZE(params->e820_table)) { u32 nr_e820ext = nr_entries - ARRAY_SIZE(params->e820_table); add_e820ext(params, e820ext, nr_e820ext); nr_entries -= nr_e820ext; } params->e820_entries = (u8)nr_entries; return EFI_SUCCESS; } static efi_status_t alloc_e820ext(u32 nr_desc, struct setup_data **e820ext, u32 *e820ext_size) { efi_status_t status; unsigned long size; size = sizeof(struct setup_data) + sizeof(struct e820_entry) * nr_desc; if (*e820ext) { efi_call_early(free_pool, *e820ext); *e820ext = NULL; *e820ext_size = 0; } status = efi_call_early(allocate_pool, EFI_LOADER_DATA, size, (void **)e820ext); if (status == EFI_SUCCESS) *e820ext_size = size; return status; } struct exit_boot_struct { struct boot_params *boot_params; struct efi_info *efi; struct setup_data *e820ext; __u32 e820ext_size; bool is64; }; static efi_status_t exit_boot_func(efi_system_table_t *sys_table_arg, struct efi_boot_memmap *map, void *priv) { static bool first = true; const char *signature; __u32 nr_desc; efi_status_t status; struct exit_boot_struct *p = priv; if (first) { nr_desc = *map->buff_size / *map->desc_size; if (nr_desc > ARRAY_SIZE(p->boot_params->e820_table)) { u32 nr_e820ext = nr_desc - ARRAY_SIZE(p->boot_params->e820_table); status = alloc_e820ext(nr_e820ext, &p->e820ext, &p->e820ext_size); if (status != EFI_SUCCESS) return status; } first = false; } signature = p->is64 ? EFI64_LOADER_SIGNATURE : EFI32_LOADER_SIGNATURE; memcpy(&p->efi->efi_loader_signature, signature, sizeof(__u32)); p->efi->efi_systab = (unsigned long)sys_table_arg; p->efi->efi_memdesc_size = *map->desc_size; p->efi->efi_memdesc_version = *map->desc_ver; p->efi->efi_memmap = (unsigned long)*map->map; p->efi->efi_memmap_size = *map->map_size; #ifdef CONFIG_X86_64 p->efi->efi_systab_hi = (unsigned long)sys_table_arg >> 32; p->efi->efi_memmap_hi = (unsigned long)*map->map >> 32; #endif return EFI_SUCCESS; } static efi_status_t exit_boot(struct boot_params *boot_params, void *handle, bool is64) { unsigned long map_sz, key, desc_size, buff_size; efi_memory_desc_t *mem_map; struct setup_data *e820ext; __u32 e820ext_size; efi_status_t status; __u32 desc_version; struct efi_boot_memmap map; struct exit_boot_struct priv; map.map = &mem_map; map.map_size = &map_sz; map.desc_size = &desc_size; map.desc_ver = &desc_version; map.key_ptr = &key; map.buff_size = &buff_size; priv.boot_params = boot_params; priv.efi = &boot_params->efi_info; priv.e820ext = NULL; priv.e820ext_size = 0; priv.is64 = is64; /* Might as well exit boot services now */ status = efi_exit_boot_services(sys_table, handle, &map, &priv, exit_boot_func); if (status != EFI_SUCCESS) return status; e820ext = priv.e820ext; e820ext_size = priv.e820ext_size; /* Historic? */ boot_params->alt_mem_k = 32 * 1024; status = setup_e820(boot_params, e820ext, e820ext_size); if (status != EFI_SUCCESS) return status; return EFI_SUCCESS; } /* * On success we return a pointer to a boot_params structure, and NULL * on failure. */ struct boot_params *efi_main(struct efi_config *c, struct boot_params *boot_params) { struct desc_ptr *gdt = NULL; efi_loaded_image_t *image; struct setup_header *hdr = &boot_params->hdr; efi_status_t status; struct desc_struct *desc; void *handle; efi_system_table_t *_table; bool is64; efi_early = c; _table = (efi_system_table_t *)(unsigned long)efi_early->table; handle = (void *)(unsigned long)efi_early->image_handle; is64 = efi_early->is64; sys_table = _table; /* Check if we were booted by the EFI firmware */ if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) goto fail; if (is64) setup_boot_services64(efi_early); else setup_boot_services32(efi_early); /* * If the boot loader gave us a value for secure_boot then we use that, * otherwise we ask the BIOS. */ if (boot_params->secure_boot == efi_secureboot_mode_unset) boot_params->secure_boot = efi_get_secureboot(sys_table); setup_graphics(boot_params); setup_efi_pci(boot_params); setup_quirks(boot_params); status = efi_call_early(allocate_pool, EFI_LOADER_DATA, sizeof(*gdt), (void **)&gdt); if (status != EFI_SUCCESS) { efi_printk(sys_table, "Failed to alloc mem for gdt structure\n"); goto fail; } gdt->size = 0x800; status = efi_low_alloc(sys_table, gdt->size, 8, (unsigned long *)&gdt->address); if (status != EFI_SUCCESS) { efi_printk(sys_table, "Failed to alloc mem for gdt\n"); goto fail; } /* * If the kernel isn't already loaded at the preferred load * address, relocate it. */ if (hdr->pref_address != hdr->code32_start) { unsigned long bzimage_addr = hdr->code32_start; status = efi_relocate_kernel(sys_table, &bzimage_addr, hdr->init_size, hdr->init_size, hdr->pref_address, hdr->kernel_alignment); if (status != EFI_SUCCESS) { efi_printk(sys_table, "efi_relocate_kernel() failed!\n"); goto fail; } hdr->pref_address = hdr->code32_start; hdr->code32_start = bzimage_addr; } status = exit_boot(boot_params, handle, is64); if (status != EFI_SUCCESS) { efi_printk(sys_table, "exit_boot() failed!\n"); goto fail; } memset((char *)gdt->address, 0x0, gdt->size); desc = (struct desc_struct *)gdt->address; /* The first GDT is a dummy. */ desc++; if (IS_ENABLED(CONFIG_X86_64)) { /* __KERNEL32_CS */ desc->limit0 = 0xffff; desc->base0 = 0x0000; desc->base1 = 0x0000; desc->type = SEG_TYPE_CODE | SEG_TYPE_EXEC_READ; desc->s = DESC_TYPE_CODE_DATA; desc->dpl = 0; desc->p = 1; desc->limit1 = 0xf; desc->avl = 0; desc->l = 0; desc->d = SEG_OP_SIZE_32BIT; desc->g = SEG_GRANULARITY_4KB; desc->base2 = 0x00; desc++; } else { /* Second entry is unused on 32-bit */ desc++; } /* __KERNEL_CS */ desc->limit0 = 0xffff; desc->base0 = 0x0000; desc->base1 = 0x0000; desc->type = SEG_TYPE_CODE | SEG_TYPE_EXEC_READ; desc->s = DESC_TYPE_CODE_DATA; desc->dpl = 0; desc->p = 1; desc->limit1 = 0xf; desc->avl = 0; if (IS_ENABLED(CONFIG_X86_64)) { desc->l = 1; desc->d = 0; } else { desc->l = 0; desc->d = SEG_OP_SIZE_32BIT; } desc->g = SEG_GRANULARITY_4KB; desc->base2 = 0x00; desc++; /* __KERNEL_DS */ desc->limit0 = 0xffff; desc->base0 = 0x0000; desc->base1 = 0x0000; desc->type = SEG_TYPE_DATA | SEG_TYPE_READ_WRITE; desc->s = DESC_TYPE_CODE_DATA; desc->dpl = 0; desc->p = 1; desc->limit1 = 0xf; desc->avl = 0; desc->l = 0; desc->d = SEG_OP_SIZE_32BIT; desc->g = SEG_GRANULARITY_4KB; desc->base2 = 0x00; desc++; if (IS_ENABLED(CONFIG_X86_64)) { /* Task segment value */ desc->limit0 = 0x0000; desc->base0 = 0x0000; desc->base1 = 0x0000; desc->type = SEG_TYPE_TSS; desc->s = 0; desc->dpl = 0; desc->p = 1; desc->limit1 = 0x0; desc->avl = 0; desc->l = 0; desc->d = 0; desc->g = SEG_GRANULARITY_4KB; desc->base2 = 0x00; desc++; } asm volatile("cli"); asm volatile ("lgdt %0" : : "m" (*gdt)); return boot_params; fail: efi_printk(sys_table, "efi_main() failed!\n"); return NULL; }