/* * Copyright(c) 2015-2017 Intel Corporation. * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * BSD LICENSE * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include #include #include #include #include #include #include #include #include #include #include "hfi.h" #include "device.h" #include "common.h" #include "trace.h" #include "mad.h" #include "sdma.h" #include "debugfs.h" #include "verbs.h" #include "aspm.h" #include "affinity.h" #include "vnic.h" #include "exp_rcv.h" #undef pr_fmt #define pr_fmt(fmt) DRIVER_NAME ": " fmt #define HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES 5 /* * min buffers we want to have per context, after driver */ #define HFI1_MIN_USER_CTXT_BUFCNT 7 #define HFI1_MIN_HDRQ_EGRBUF_CNT 2 #define HFI1_MAX_HDRQ_EGRBUF_CNT 16352 #define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */ #define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */ /* * Number of user receive contexts we are configured to use (to allow for more * pio buffers per ctxt, etc.) Zero means use one user context per CPU. */ int num_user_contexts = -1; module_param_named(num_user_contexts, num_user_contexts, uint, S_IRUGO); MODULE_PARM_DESC( num_user_contexts, "Set max number of user contexts to use"); uint krcvqs[RXE_NUM_DATA_VL]; int krcvqsset; module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO); MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL"); /* computed based on above array */ unsigned long n_krcvqs; static unsigned hfi1_rcvarr_split = 25; module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO); MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers"); static uint eager_buffer_size = (8 << 20); /* 8MB */ module_param(eager_buffer_size, uint, S_IRUGO); MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 8MB"); static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */ module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO); MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)"); static uint hfi1_hdrq_entsize = 32; module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, S_IRUGO); MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B (default), 32 - 128B"); unsigned int user_credit_return_threshold = 33; /* default is 33% */ module_param(user_credit_return_threshold, uint, S_IRUGO); MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)"); static inline u64 encode_rcv_header_entry_size(u16 size); static struct idr hfi1_unit_table; static int hfi1_create_kctxt(struct hfi1_devdata *dd, struct hfi1_pportdata *ppd) { struct hfi1_ctxtdata *rcd; int ret; /* Control context has to be always 0 */ BUILD_BUG_ON(HFI1_CTRL_CTXT != 0); ret = hfi1_create_ctxtdata(ppd, dd->node, &rcd); if (ret < 0) { dd_dev_err(dd, "Kernel receive context allocation failed\n"); return ret; } /* * Set up the kernel context flags here and now because they use * default values for all receive side memories. User contexts will * be handled as they are created. */ rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) | HFI1_CAP_KGET(NODROP_RHQ_FULL) | HFI1_CAP_KGET(NODROP_EGR_FULL) | HFI1_CAP_KGET(DMA_RTAIL); /* Control context must use DMA_RTAIL */ if (rcd->ctxt == HFI1_CTRL_CTXT) rcd->flags |= HFI1_CAP_DMA_RTAIL; rcd->seq_cnt = 1; rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node); if (!rcd->sc) { dd_dev_err(dd, "Kernel send context allocation failed\n"); return -ENOMEM; } hfi1_init_ctxt(rcd->sc); return 0; } /* * Create the receive context array and one or more kernel contexts */ int hfi1_create_kctxts(struct hfi1_devdata *dd) { u16 i; int ret; dd->rcd = kzalloc_node(dd->num_rcv_contexts * sizeof(*dd->rcd), GFP_KERNEL, dd->node); if (!dd->rcd) return -ENOMEM; for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) { ret = hfi1_create_kctxt(dd, dd->pport); if (ret) goto bail; } return 0; bail: for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) hfi1_free_ctxt(dd->rcd[i]); /* All the contexts should be freed, free the array */ kfree(dd->rcd); dd->rcd = NULL; return ret; } /* * Helper routines for the receive context reference count (rcd and uctxt). */ static void hfi1_rcd_init(struct hfi1_ctxtdata *rcd) { kref_init(&rcd->kref); } /** * hfi1_rcd_free - When reference is zero clean up. * @kref: pointer to an initialized rcd data structure * */ static void hfi1_rcd_free(struct kref *kref) { unsigned long flags; struct hfi1_ctxtdata *rcd = container_of(kref, struct hfi1_ctxtdata, kref); hfi1_free_ctxtdata(rcd->dd, rcd); spin_lock_irqsave(&rcd->dd->uctxt_lock, flags); rcd->dd->rcd[rcd->ctxt] = NULL; spin_unlock_irqrestore(&rcd->dd->uctxt_lock, flags); kfree(rcd); } /** * hfi1_rcd_put - decrement reference for rcd * @rcd: pointer to an initialized rcd data structure * * Use this to put a reference after the init. */ int hfi1_rcd_put(struct hfi1_ctxtdata *rcd) { if (rcd) return kref_put(&rcd->kref, hfi1_rcd_free); return 0; } /** * hfi1_rcd_get - increment reference for rcd * @rcd: pointer to an initialized rcd data structure * * Use this to get a reference after the init. */ void hfi1_rcd_get(struct hfi1_ctxtdata *rcd) { kref_get(&rcd->kref); } /** * allocate_rcd_index - allocate an rcd index from the rcd array * @dd: pointer to a valid devdata structure * @rcd: rcd data structure to assign * @index: pointer to index that is allocated * * Find an empty index in the rcd array, and assign the given rcd to it. * If the array is full, we are EBUSY. * */ static int allocate_rcd_index(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd, u16 *index) { unsigned long flags; u16 ctxt; spin_lock_irqsave(&dd->uctxt_lock, flags); for (ctxt = 0; ctxt < dd->num_rcv_contexts; ctxt++) if (!dd->rcd[ctxt]) break; if (ctxt < dd->num_rcv_contexts) { rcd->ctxt = ctxt; dd->rcd[ctxt] = rcd; hfi1_rcd_init(rcd); } spin_unlock_irqrestore(&dd->uctxt_lock, flags); if (ctxt >= dd->num_rcv_contexts) return -EBUSY; *index = ctxt; return 0; } /** * hfi1_rcd_get_by_index_safe - validate the ctxt index before accessing the * array * @dd: pointer to a valid devdata structure * @ctxt: the index of an possilbe rcd * * This is a wrapper for hfi1_rcd_get_by_index() to validate that the given * ctxt index is valid. * * The caller is responsible for making the _put(). * */ struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd, u16 ctxt) { if (ctxt < dd->num_rcv_contexts) return hfi1_rcd_get_by_index(dd, ctxt); return NULL; } /** * hfi1_rcd_get_by_index * @dd: pointer to a valid devdata structure * @ctxt: the index of an possilbe rcd * * We need to protect access to the rcd array. If access is needed to * one or more index, get the protecting spinlock and then increment the * kref. * * The caller is responsible for making the _put(). * */ struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt) { unsigned long flags; struct hfi1_ctxtdata *rcd = NULL; spin_lock_irqsave(&dd->uctxt_lock, flags); if (dd->rcd[ctxt]) { rcd = dd->rcd[ctxt]; hfi1_rcd_get(rcd); } spin_unlock_irqrestore(&dd->uctxt_lock, flags); return rcd; } /* * Common code for user and kernel context create and setup. * NOTE: the initial kref is done here (hf1_rcd_init()). */ int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa, struct hfi1_ctxtdata **context) { struct hfi1_devdata *dd = ppd->dd; struct hfi1_ctxtdata *rcd; unsigned kctxt_ngroups = 0; u32 base; if (dd->rcv_entries.nctxt_extra > dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt) kctxt_ngroups = (dd->rcv_entries.nctxt_extra - (dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt)); rcd = kzalloc_node(sizeof(*rcd), GFP_KERNEL, numa); if (rcd) { u32 rcvtids, max_entries; u16 ctxt; int ret; ret = allocate_rcd_index(dd, rcd, &ctxt); if (ret) { *context = NULL; kfree(rcd); return ret; } INIT_LIST_HEAD(&rcd->qp_wait_list); hfi1_exp_tid_group_init(&rcd->tid_group_list); hfi1_exp_tid_group_init(&rcd->tid_used_list); hfi1_exp_tid_group_init(&rcd->tid_full_list); rcd->ppd = ppd; rcd->dd = dd; __set_bit(0, rcd->in_use_ctxts); rcd->numa_id = numa; rcd->rcv_array_groups = dd->rcv_entries.ngroups; mutex_init(&rcd->exp_lock); hfi1_cdbg(PROC, "setting up context %u\n", rcd->ctxt); /* * Calculate the context's RcvArray entry starting point. * We do this here because we have to take into account all * the RcvArray entries that previous context would have * taken and we have to account for any extra groups assigned * to the static (kernel) or dynamic (vnic/user) contexts. */ if (ctxt < dd->first_dyn_alloc_ctxt) { if (ctxt < kctxt_ngroups) { base = ctxt * (dd->rcv_entries.ngroups + 1); rcd->rcv_array_groups++; } else { base = kctxt_ngroups + (ctxt * dd->rcv_entries.ngroups); } } else { u16 ct = ctxt - dd->first_dyn_alloc_ctxt; base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) + kctxt_ngroups); if (ct < dd->rcv_entries.nctxt_extra) { base += ct * (dd->rcv_entries.ngroups + 1); rcd->rcv_array_groups++; } else { base += dd->rcv_entries.nctxt_extra + (ct * dd->rcv_entries.ngroups); } } rcd->eager_base = base * dd->rcv_entries.group_size; rcd->rcvhdrq_cnt = rcvhdrcnt; rcd->rcvhdrqentsize = hfi1_hdrq_entsize; /* * Simple Eager buffer allocation: we have already pre-allocated * the number of RcvArray entry groups. Each ctxtdata structure * holds the number of groups for that context. * * To follow CSR requirements and maintain cacheline alignment, * make sure all sizes and bases are multiples of group_size. * * The expected entry count is what is left after assigning * eager. */ max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size; rcvtids = ((max_entries * hfi1_rcvarr_split) / 100); rcd->egrbufs.count = round_down(rcvtids, dd->rcv_entries.group_size); if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) { dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n", rcd->ctxt); rcd->egrbufs.count = MAX_EAGER_ENTRIES; } hfi1_cdbg(PROC, "ctxt%u: max Eager buffer RcvArray entries: %u\n", rcd->ctxt, rcd->egrbufs.count); /* * Allocate array that will hold the eager buffer accounting * data. * This will allocate the maximum possible buffer count based * on the value of the RcvArray split parameter. * The resulting value will be rounded down to the closest * multiple of dd->rcv_entries.group_size. */ rcd->egrbufs.buffers = kzalloc_node( rcd->egrbufs.count * sizeof(*rcd->egrbufs.buffers), GFP_KERNEL, numa); if (!rcd->egrbufs.buffers) goto bail; rcd->egrbufs.rcvtids = kzalloc_node( rcd->egrbufs.count * sizeof(*rcd->egrbufs.rcvtids), GFP_KERNEL, numa); if (!rcd->egrbufs.rcvtids) goto bail; rcd->egrbufs.size = eager_buffer_size; /* * The size of the buffers programmed into the RcvArray * entries needs to be big enough to handle the highest * MTU supported. */ if (rcd->egrbufs.size < hfi1_max_mtu) { rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu); hfi1_cdbg(PROC, "ctxt%u: eager bufs size too small. Adjusting to %zu\n", rcd->ctxt, rcd->egrbufs.size); } rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE; /* Applicable only for statically created kernel contexts */ if (ctxt < dd->first_dyn_alloc_ctxt) { rcd->opstats = kzalloc_node(sizeof(*rcd->opstats), GFP_KERNEL, numa); if (!rcd->opstats) goto bail; } *context = rcd; return 0; } bail: *context = NULL; hfi1_free_ctxt(rcd); return -ENOMEM; } /** * hfi1_free_ctxt * @rcd: pointer to an initialized rcd data structure * * This wrapper is the free function that matches hfi1_create_ctxtdata(). * When a context is done being used (kernel or user), this function is called * for the "final" put to match the kref init from hf1i_create_ctxtdata(). * Other users of the context do a get/put sequence to make sure that the * structure isn't removed while in use. */ void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd) { hfi1_rcd_put(rcd); } /* * Convert a receive header entry size that to the encoding used in the CSR. * * Return a zero if the given size is invalid. */ static inline u64 encode_rcv_header_entry_size(u16 size) { /* there are only 3 valid receive header entry sizes */ if (size == 2) return 1; if (size == 16) return 2; else if (size == 32) return 4; return 0; /* invalid */ } /* * Select the largest ccti value over all SLs to determine the intra- * packet gap for the link. * * called with cca_timer_lock held (to protect access to cca_timer * array), and rcu_read_lock() (to protect access to cc_state). */ void set_link_ipg(struct hfi1_pportdata *ppd) { struct hfi1_devdata *dd = ppd->dd; struct cc_state *cc_state; int i; u16 cce, ccti_limit, max_ccti = 0; u16 shift, mult; u64 src; u32 current_egress_rate; /* Mbits /sec */ u32 max_pkt_time; /* * max_pkt_time is the maximum packet egress time in units * of the fabric clock period 1/(805 MHz). */ cc_state = get_cc_state(ppd); if (!cc_state) /* * This should _never_ happen - rcu_read_lock() is held, * and set_link_ipg() should not be called if cc_state * is NULL. */ return; for (i = 0; i < OPA_MAX_SLS; i++) { u16 ccti = ppd->cca_timer[i].ccti; if (ccti > max_ccti) max_ccti = ccti; } ccti_limit = cc_state->cct.ccti_limit; if (max_ccti > ccti_limit) max_ccti = ccti_limit; cce = cc_state->cct.entries[max_ccti].entry; shift = (cce & 0xc000) >> 14; mult = (cce & 0x3fff); current_egress_rate = active_egress_rate(ppd); max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate); src = (max_pkt_time >> shift) * mult; src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK; src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT; write_csr(dd, SEND_STATIC_RATE_CONTROL, src); } static enum hrtimer_restart cca_timer_fn(struct hrtimer *t) { struct cca_timer *cca_timer; struct hfi1_pportdata *ppd; int sl; u16 ccti_timer, ccti_min; struct cc_state *cc_state; unsigned long flags; enum hrtimer_restart ret = HRTIMER_NORESTART; cca_timer = container_of(t, struct cca_timer, hrtimer); ppd = cca_timer->ppd; sl = cca_timer->sl; rcu_read_lock(); cc_state = get_cc_state(ppd); if (!cc_state) { rcu_read_unlock(); return HRTIMER_NORESTART; } /* * 1) decrement ccti for SL * 2) calculate IPG for link (set_link_ipg()) * 3) restart timer, unless ccti is at min value */ ccti_min = cc_state->cong_setting.entries[sl].ccti_min; ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer; spin_lock_irqsave(&ppd->cca_timer_lock, flags); if (cca_timer->ccti > ccti_min) { cca_timer->ccti--; set_link_ipg(ppd); } if (cca_timer->ccti > ccti_min) { unsigned long nsec = 1024 * ccti_timer; /* ccti_timer is in units of 1.024 usec */ hrtimer_forward_now(t, ns_to_ktime(nsec)); ret = HRTIMER_RESTART; } spin_unlock_irqrestore(&ppd->cca_timer_lock, flags); rcu_read_unlock(); return ret; } /* * Common code for initializing the physical port structure. */ void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd, struct hfi1_devdata *dd, u8 hw_pidx, u8 port) { int i; uint default_pkey_idx; struct cc_state *cc_state; ppd->dd = dd; ppd->hw_pidx = hw_pidx; ppd->port = port; /* IB port number, not index */ default_pkey_idx = 1; ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY; ppd->part_enforce |= HFI1_PART_ENFORCE_IN; if (loopback) { hfi1_early_err(&pdev->dev, "Faking data partition 0x8001 in idx %u\n", !default_pkey_idx); ppd->pkeys[!default_pkey_idx] = 0x8001; } INIT_WORK(&ppd->link_vc_work, handle_verify_cap); INIT_WORK(&ppd->link_up_work, handle_link_up); INIT_WORK(&ppd->link_down_work, handle_link_down); INIT_WORK(&ppd->freeze_work, handle_freeze); INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade); INIT_WORK(&ppd->sma_message_work, handle_sma_message); INIT_WORK(&ppd->link_bounce_work, handle_link_bounce); INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link); INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work); INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event); mutex_init(&ppd->hls_lock); spin_lock_init(&ppd->qsfp_info.qsfp_lock); ppd->qsfp_info.ppd = ppd; ppd->sm_trap_qp = 0x0; ppd->sa_qp = 0x1; ppd->hfi1_wq = NULL; spin_lock_init(&ppd->cca_timer_lock); for (i = 0; i < OPA_MAX_SLS; i++) { hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); ppd->cca_timer[i].ppd = ppd; ppd->cca_timer[i].sl = i; ppd->cca_timer[i].ccti = 0; ppd->cca_timer[i].hrtimer.function = cca_timer_fn; } ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT; spin_lock_init(&ppd->cc_state_lock); spin_lock_init(&ppd->cc_log_lock); cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL); RCU_INIT_POINTER(ppd->cc_state, cc_state); if (!cc_state) goto bail; return; bail: hfi1_early_err(&pdev->dev, "Congestion Control Agent disabled for port %d\n", port); } /* * Do initialization for device that is only needed on * first detect, not on resets. */ static int loadtime_init(struct hfi1_devdata *dd) { return 0; } /** * init_after_reset - re-initialize after a reset * @dd: the hfi1_ib device * * sanity check at least some of the values after reset, and * ensure no receive or transmit (explicitly, in case reset * failed */ static int init_after_reset(struct hfi1_devdata *dd) { int i; struct hfi1_ctxtdata *rcd; /* * Ensure chip does no sends or receives, tail updates, or * pioavail updates while we re-initialize. This is mostly * for the driver data structures, not chip registers. */ for (i = 0; i < dd->num_rcv_contexts; i++) { rcd = hfi1_rcd_get_by_index(dd, i); hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS | HFI1_RCVCTRL_INTRAVAIL_DIS | HFI1_RCVCTRL_TAILUPD_DIS, rcd); hfi1_rcd_put(rcd); } pio_send_control(dd, PSC_GLOBAL_DISABLE); for (i = 0; i < dd->num_send_contexts; i++) sc_disable(dd->send_contexts[i].sc); return 0; } static void enable_chip(struct hfi1_devdata *dd) { struct hfi1_ctxtdata *rcd; u32 rcvmask; u16 i; /* enable PIO send */ pio_send_control(dd, PSC_GLOBAL_ENABLE); /* * Enable kernel ctxts' receive and receive interrupt. * Other ctxts done as user opens and initializes them. */ for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) { rcd = hfi1_rcd_get_by_index(dd, i); if (!rcd) continue; rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB; rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ? HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS; if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB; if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_RHQ_FULL)) rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB; if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_EGR_FULL)) rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB; hfi1_rcvctrl(dd, rcvmask, rcd); sc_enable(rcd->sc); hfi1_rcd_put(rcd); } } /** * create_workqueues - create per port workqueues * @dd: the hfi1_ib device */ static int create_workqueues(struct hfi1_devdata *dd) { int pidx; struct hfi1_pportdata *ppd; for (pidx = 0; pidx < dd->num_pports; ++pidx) { ppd = dd->pport + pidx; if (!ppd->hfi1_wq) { ppd->hfi1_wq = alloc_workqueue( "hfi%d_%d", WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE, HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES, dd->unit, pidx); if (!ppd->hfi1_wq) goto wq_error; } if (!ppd->link_wq) { /* * Make the link workqueue single-threaded to enforce * serialization. */ ppd->link_wq = alloc_workqueue( "hfi_link_%d_%d", WQ_SYSFS | WQ_MEM_RECLAIM | WQ_UNBOUND, 1, /* max_active */ dd->unit, pidx); if (!ppd->link_wq) goto wq_error; } } return 0; wq_error: pr_err("alloc_workqueue failed for port %d\n", pidx + 1); for (pidx = 0; pidx < dd->num_pports; ++pidx) { ppd = dd->pport + pidx; if (ppd->hfi1_wq) { destroy_workqueue(ppd->hfi1_wq); ppd->hfi1_wq = NULL; } if (ppd->link_wq) { destroy_workqueue(ppd->link_wq); ppd->link_wq = NULL; } } return -ENOMEM; } /** * hfi1_init - do the actual initialization sequence on the chip * @dd: the hfi1_ib device * @reinit: re-initializing, so don't allocate new memory * * Do the actual initialization sequence on the chip. This is done * both from the init routine called from the PCI infrastructure, and * when we reset the chip, or detect that it was reset internally, * or it's administratively re-enabled. * * Memory allocation here and in called routines is only done in * the first case (reinit == 0). We have to be careful, because even * without memory allocation, we need to re-write all the chip registers * TIDs, etc. after the reset or enable has completed. */ int hfi1_init(struct hfi1_devdata *dd, int reinit) { int ret = 0, pidx, lastfail = 0; unsigned long len; u16 i; struct hfi1_ctxtdata *rcd; struct hfi1_pportdata *ppd; /* Set up recv low level handlers */ dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EXPECTED] = kdeth_process_expected; dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_EAGER] = kdeth_process_eager; dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_IB] = process_receive_ib; dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_ERROR] = process_receive_error; dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_BYPASS] = process_receive_bypass; dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID5] = process_receive_invalid; dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID6] = process_receive_invalid; dd->normal_rhf_rcv_functions[RHF_RCV_TYPE_INVALID7] = process_receive_invalid; dd->rhf_rcv_function_map = dd->normal_rhf_rcv_functions; /* Set up send low level handlers */ dd->process_pio_send = hfi1_verbs_send_pio; dd->process_dma_send = hfi1_verbs_send_dma; dd->pio_inline_send = pio_copy; dd->process_vnic_dma_send = hfi1_vnic_send_dma; if (is_ax(dd)) { atomic_set(&dd->drop_packet, DROP_PACKET_ON); dd->do_drop = 1; } else { atomic_set(&dd->drop_packet, DROP_PACKET_OFF); dd->do_drop = 0; } /* make sure the link is not "up" */ for (pidx = 0; pidx < dd->num_pports; ++pidx) { ppd = dd->pport + pidx; ppd->linkup = 0; } if (reinit) ret = init_after_reset(dd); else ret = loadtime_init(dd); if (ret) goto done; /* allocate dummy tail memory for all receive contexts */ dd->rcvhdrtail_dummy_kvaddr = dma_zalloc_coherent( &dd->pcidev->dev, sizeof(u64), &dd->rcvhdrtail_dummy_dma, GFP_KERNEL); if (!dd->rcvhdrtail_dummy_kvaddr) { dd_dev_err(dd, "cannot allocate dummy tail memory\n"); ret = -ENOMEM; goto done; } /* dd->rcd can be NULL if early initialization failed */ for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) { /* * Set up the (kernel) rcvhdr queue and egr TIDs. If doing * re-init, the simplest way to handle this is to free * existing, and re-allocate. * Need to re-create rest of ctxt 0 ctxtdata as well. */ rcd = hfi1_rcd_get_by_index(dd, i); if (!rcd) continue; rcd->do_interrupt = &handle_receive_interrupt; lastfail = hfi1_create_rcvhdrq(dd, rcd); if (!lastfail) lastfail = hfi1_setup_eagerbufs(rcd); if (lastfail) { dd_dev_err(dd, "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n"); ret = lastfail; } hfi1_rcd_put(rcd); } /* Allocate enough memory for user event notification. */ len = PAGE_ALIGN(dd->chip_rcv_contexts * HFI1_MAX_SHARED_CTXTS * sizeof(*dd->events)); dd->events = vmalloc_user(len); if (!dd->events) dd_dev_err(dd, "Failed to allocate user events page\n"); /* * Allocate a page for device and port status. * Page will be shared amongst all user processes. */ dd->status = vmalloc_user(PAGE_SIZE); if (!dd->status) dd_dev_err(dd, "Failed to allocate dev status page\n"); else dd->freezelen = PAGE_SIZE - (sizeof(*dd->status) - sizeof(dd->status->freezemsg)); for (pidx = 0; pidx < dd->num_pports; ++pidx) { ppd = dd->pport + pidx; if (dd->status) /* Currently, we only have one port */ ppd->statusp = &dd->status->port; set_mtu(ppd); } /* enable chip even if we have an error, so we can debug cause */ enable_chip(dd); done: /* * Set status even if port serdes is not initialized * so that diags will work. */ if (dd->status) dd->status->dev |= HFI1_STATUS_CHIP_PRESENT | HFI1_STATUS_INITTED; if (!ret) { /* enable all interrupts from the chip */ set_intr_state(dd, 1); /* chip is OK for user apps; mark it as initialized */ for (pidx = 0; pidx < dd->num_pports; ++pidx) { ppd = dd->pport + pidx; /* * start the serdes - must be after interrupts are * enabled so we are notified when the link goes up */ lastfail = bringup_serdes(ppd); if (lastfail) dd_dev_info(dd, "Failed to bring up port %u\n", ppd->port); /* * Set status even if port serdes is not initialized * so that diags will work. */ if (ppd->statusp) *ppd->statusp |= HFI1_STATUS_CHIP_PRESENT | HFI1_STATUS_INITTED; if (!ppd->link_speed_enabled) continue; } } /* if ret is non-zero, we probably should do some cleanup here... */ return ret; } static inline struct hfi1_devdata *__hfi1_lookup(int unit) { return idr_find(&hfi1_unit_table, unit); } struct hfi1_devdata *hfi1_lookup(int unit) { struct hfi1_devdata *dd; unsigned long flags; spin_lock_irqsave(&hfi1_devs_lock, flags); dd = __hfi1_lookup(unit); spin_unlock_irqrestore(&hfi1_devs_lock, flags); return dd; } /* * Stop the timers during unit shutdown, or after an error late * in initialization. */ static void stop_timers(struct hfi1_devdata *dd) { struct hfi1_pportdata *ppd; int pidx; for (pidx = 0; pidx < dd->num_pports; ++pidx) { ppd = dd->pport + pidx; if (ppd->led_override_timer.function) { del_timer_sync(&ppd->led_override_timer); atomic_set(&ppd->led_override_timer_active, 0); } } } /** * shutdown_device - shut down a device * @dd: the hfi1_ib device * * This is called to make the device quiet when we are about to * unload the driver, and also when the device is administratively * disabled. It does not free any data structures. * Everything it does has to be setup again by hfi1_init(dd, 1) */ static void shutdown_device(struct hfi1_devdata *dd) { struct hfi1_pportdata *ppd; struct hfi1_ctxtdata *rcd; unsigned pidx; int i; for (pidx = 0; pidx < dd->num_pports; ++pidx) { ppd = dd->pport + pidx; ppd->linkup = 0; if (ppd->statusp) *ppd->statusp &= ~(HFI1_STATUS_IB_CONF | HFI1_STATUS_IB_READY); } dd->flags &= ~HFI1_INITTED; /* mask and clean up interrupts, but not errors */ set_intr_state(dd, 0); hfi1_clean_up_interrupts(dd); for (pidx = 0; pidx < dd->num_pports; ++pidx) { ppd = dd->pport + pidx; for (i = 0; i < dd->num_rcv_contexts; i++) { rcd = hfi1_rcd_get_by_index(dd, i); hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS | HFI1_RCVCTRL_INTRAVAIL_DIS | HFI1_RCVCTRL_PKEY_DIS | HFI1_RCVCTRL_ONE_PKT_EGR_DIS, rcd); hfi1_rcd_put(rcd); } /* * Gracefully stop all sends allowing any in progress to * trickle out first. */ for (i = 0; i < dd->num_send_contexts; i++) sc_flush(dd->send_contexts[i].sc); } /* * Enough for anything that's going to trickle out to have actually * done so. */ udelay(20); for (pidx = 0; pidx < dd->num_pports; ++pidx) { ppd = dd->pport + pidx; /* disable all contexts */ for (i = 0; i < dd->num_send_contexts; i++) sc_disable(dd->send_contexts[i].sc); /* disable the send device */ pio_send_control(dd, PSC_GLOBAL_DISABLE); shutdown_led_override(ppd); /* * Clear SerdesEnable. * We can't count on interrupts since we are stopping. */ hfi1_quiet_serdes(ppd); if (ppd->hfi1_wq) { destroy_workqueue(ppd->hfi1_wq); ppd->hfi1_wq = NULL; } if (ppd->link_wq) { destroy_workqueue(ppd->link_wq); ppd->link_wq = NULL; } } sdma_exit(dd); } /** * hfi1_free_ctxtdata - free a context's allocated data * @dd: the hfi1_ib device * @rcd: the ctxtdata structure * * free up any allocated data for a context * It should never change any chip state, or global driver state. */ void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd) { u32 e; if (!rcd) return; if (rcd->rcvhdrq) { dma_free_coherent(&dd->pcidev->dev, rcd->rcvhdrq_size, rcd->rcvhdrq, rcd->rcvhdrq_dma); rcd->rcvhdrq = NULL; if (rcd->rcvhdrtail_kvaddr) { dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE, (void *)rcd->rcvhdrtail_kvaddr, rcd->rcvhdrqtailaddr_dma); rcd->rcvhdrtail_kvaddr = NULL; } } /* all the RcvArray entries should have been cleared by now */ kfree(rcd->egrbufs.rcvtids); rcd->egrbufs.rcvtids = NULL; for (e = 0; e < rcd->egrbufs.alloced; e++) { if (rcd->egrbufs.buffers[e].dma) dma_free_coherent(&dd->pcidev->dev, rcd->egrbufs.buffers[e].len, rcd->egrbufs.buffers[e].addr, rcd->egrbufs.buffers[e].dma); } kfree(rcd->egrbufs.buffers); rcd->egrbufs.alloced = 0; rcd->egrbufs.buffers = NULL; sc_free(rcd->sc); rcd->sc = NULL; vfree(rcd->subctxt_uregbase); vfree(rcd->subctxt_rcvegrbuf); vfree(rcd->subctxt_rcvhdr_base); kfree(rcd->opstats); rcd->subctxt_uregbase = NULL; rcd->subctxt_rcvegrbuf = NULL; rcd->subctxt_rcvhdr_base = NULL; rcd->opstats = NULL; } /* * Release our hold on the shared asic data. If we are the last one, * return the structure to be finalized outside the lock. Must be * holding hfi1_devs_lock. */ static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd) { struct hfi1_asic_data *ad; int other; if (!dd->asic_data) return NULL; dd->asic_data->dds[dd->hfi1_id] = NULL; other = dd->hfi1_id ? 0 : 1; ad = dd->asic_data; dd->asic_data = NULL; /* return NULL if the other dd still has a link */ return ad->dds[other] ? NULL : ad; } static void finalize_asic_data(struct hfi1_devdata *dd, struct hfi1_asic_data *ad) { clean_up_i2c(dd, ad); kfree(ad); } static void __hfi1_free_devdata(struct kobject *kobj) { struct hfi1_devdata *dd = container_of(kobj, struct hfi1_devdata, kobj); struct hfi1_asic_data *ad; unsigned long flags; spin_lock_irqsave(&hfi1_devs_lock, flags); idr_remove(&hfi1_unit_table, dd->unit); list_del(&dd->list); ad = release_asic_data(dd); spin_unlock_irqrestore(&hfi1_devs_lock, flags); if (ad) finalize_asic_data(dd, ad); free_platform_config(dd); rcu_barrier(); /* wait for rcu callbacks to complete */ free_percpu(dd->int_counter); free_percpu(dd->rcv_limit); free_percpu(dd->send_schedule); free_percpu(dd->tx_opstats); sdma_clean(dd, dd->num_sdma); rvt_dealloc_device(&dd->verbs_dev.rdi); } static struct kobj_type hfi1_devdata_type = { .release = __hfi1_free_devdata, }; void hfi1_free_devdata(struct hfi1_devdata *dd) { kobject_put(&dd->kobj); } /* * Allocate our primary per-unit data structure. Must be done via verbs * allocator, because the verbs cleanup process both does cleanup and * free of the data structure. * "extra" is for chip-specific data. * * Use the idr mechanism to get a unit number for this unit. */ struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev, size_t extra) { unsigned long flags; struct hfi1_devdata *dd; int ret, nports; /* extra is * number of ports */ nports = extra / sizeof(struct hfi1_pportdata); dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra, nports); if (!dd) return ERR_PTR(-ENOMEM); dd->num_pports = nports; dd->pport = (struct hfi1_pportdata *)(dd + 1); INIT_LIST_HEAD(&dd->list); idr_preload(GFP_KERNEL); spin_lock_irqsave(&hfi1_devs_lock, flags); ret = idr_alloc(&hfi1_unit_table, dd, 0, 0, GFP_NOWAIT); if (ret >= 0) { dd->unit = ret; list_add(&dd->list, &hfi1_dev_list); } spin_unlock_irqrestore(&hfi1_devs_lock, flags); idr_preload_end(); if (ret < 0) { hfi1_early_err(&pdev->dev, "Could not allocate unit ID: error %d\n", -ret); goto bail; } rvt_set_ibdev_name(&dd->verbs_dev.rdi, "%s_%d", class_name(), dd->unit); /* * Initialize all locks for the device. This needs to be as early as * possible so locks are usable. */ spin_lock_init(&dd->sc_lock); spin_lock_init(&dd->sendctrl_lock); spin_lock_init(&dd->rcvctrl_lock); spin_lock_init(&dd->uctxt_lock); spin_lock_init(&dd->hfi1_diag_trans_lock); spin_lock_init(&dd->sc_init_lock); spin_lock_init(&dd->dc8051_memlock); seqlock_init(&dd->sc2vl_lock); spin_lock_init(&dd->sde_map_lock); spin_lock_init(&dd->pio_map_lock); mutex_init(&dd->dc8051_lock); init_waitqueue_head(&dd->event_queue); dd->int_counter = alloc_percpu(u64); if (!dd->int_counter) { ret = -ENOMEM; goto bail; } dd->rcv_limit = alloc_percpu(u64); if (!dd->rcv_limit) { ret = -ENOMEM; goto bail; } dd->send_schedule = alloc_percpu(u64); if (!dd->send_schedule) { ret = -ENOMEM; goto bail; } dd->tx_opstats = alloc_percpu(struct hfi1_opcode_stats_perctx); if (!dd->tx_opstats) { ret = -ENOMEM; goto bail; } kobject_init(&dd->kobj, &hfi1_devdata_type); return dd; bail: if (!list_empty(&dd->list)) list_del_init(&dd->list); rvt_dealloc_device(&dd->verbs_dev.rdi); return ERR_PTR(ret); } /* * Called from freeze mode handlers, and from PCI error * reporting code. Should be paranoid about state of * system and data structures. */ void hfi1_disable_after_error(struct hfi1_devdata *dd) { if (dd->flags & HFI1_INITTED) { u32 pidx; dd->flags &= ~HFI1_INITTED; if (dd->pport) for (pidx = 0; pidx < dd->num_pports; ++pidx) { struct hfi1_pportdata *ppd; ppd = dd->pport + pidx; if (dd->flags & HFI1_PRESENT) set_link_state(ppd, HLS_DN_DISABLE); if (ppd->statusp) *ppd->statusp &= ~HFI1_STATUS_IB_READY; } } /* * Mark as having had an error for driver, and also * for /sys and status word mapped to user programs. * This marks unit as not usable, until reset. */ if (dd->status) dd->status->dev |= HFI1_STATUS_HWERROR; } static void remove_one(struct pci_dev *); static int init_one(struct pci_dev *, const struct pci_device_id *); #define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: " #define PFX DRIVER_NAME ": " const struct pci_device_id hfi1_pci_tbl[] = { { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) }, { 0, } }; MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl); static struct pci_driver hfi1_pci_driver = { .name = DRIVER_NAME, .probe = init_one, .remove = remove_one, .id_table = hfi1_pci_tbl, .err_handler = &hfi1_pci_err_handler, }; static void __init compute_krcvqs(void) { int i; for (i = 0; i < krcvqsset; i++) n_krcvqs += krcvqs[i]; } /* * Do all the generic driver unit- and chip-independent memory * allocation and initialization. */ static int __init hfi1_mod_init(void) { int ret; ret = dev_init(); if (ret) goto bail; ret = node_affinity_init(); if (ret) goto bail; /* validate max MTU before any devices start */ if (!valid_opa_max_mtu(hfi1_max_mtu)) { pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n", hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU); hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU; } /* valid CUs run from 1-128 in powers of 2 */ if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu)) hfi1_cu = 1; /* valid credit return threshold is 0-100, variable is unsigned */ if (user_credit_return_threshold > 100) user_credit_return_threshold = 100; compute_krcvqs(); /* * sanitize receive interrupt count, time must wait until after * the hardware type is known */ if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK) rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK; /* reject invalid combinations */ if (rcv_intr_count == 0 && rcv_intr_timeout == 0) { pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n"); rcv_intr_count = 1; } if (rcv_intr_count > 1 && rcv_intr_timeout == 0) { /* * Avoid indefinite packet delivery by requiring a timeout * if count is > 1. */ pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n"); rcv_intr_timeout = 1; } if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) { /* * The dynamic algorithm expects a non-zero timeout * and a count > 1. */ pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n"); rcv_intr_dynamic = 0; } /* sanitize link CRC options */ link_crc_mask &= SUPPORTED_CRCS; /* * These must be called before the driver is registered with * the PCI subsystem. */ idr_init(&hfi1_unit_table); hfi1_dbg_init(); ret = hfi1_wss_init(); if (ret < 0) goto bail_wss; ret = pci_register_driver(&hfi1_pci_driver); if (ret < 0) { pr_err("Unable to register driver: error %d\n", -ret); goto bail_dev; } goto bail; /* all OK */ bail_dev: hfi1_wss_exit(); bail_wss: hfi1_dbg_exit(); idr_destroy(&hfi1_unit_table); dev_cleanup(); bail: return ret; } module_init(hfi1_mod_init); /* * Do the non-unit driver cleanup, memory free, etc. at unload. */ static void __exit hfi1_mod_cleanup(void) { pci_unregister_driver(&hfi1_pci_driver); node_affinity_destroy(); hfi1_wss_exit(); hfi1_dbg_exit(); idr_destroy(&hfi1_unit_table); dispose_firmware(); /* asymmetric with obtain_firmware() */ dev_cleanup(); } module_exit(hfi1_mod_cleanup); /* this can only be called after a successful initialization */ static void cleanup_device_data(struct hfi1_devdata *dd) { int ctxt; int pidx; /* users can't do anything more with chip */ for (pidx = 0; pidx < dd->num_pports; ++pidx) { struct hfi1_pportdata *ppd = &dd->pport[pidx]; struct cc_state *cc_state; int i; if (ppd->statusp) *ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT; for (i = 0; i < OPA_MAX_SLS; i++) hrtimer_cancel(&ppd->cca_timer[i].hrtimer); spin_lock(&ppd->cc_state_lock); cc_state = get_cc_state_protected(ppd); RCU_INIT_POINTER(ppd->cc_state, NULL); spin_unlock(&ppd->cc_state_lock); if (cc_state) kfree_rcu(cc_state, rcu); } free_credit_return(dd); if (dd->rcvhdrtail_dummy_kvaddr) { dma_free_coherent(&dd->pcidev->dev, sizeof(u64), (void *)dd->rcvhdrtail_dummy_kvaddr, dd->rcvhdrtail_dummy_dma); dd->rcvhdrtail_dummy_kvaddr = NULL; } /* * Free any resources still in use (usually just kernel contexts) * at unload; we do for ctxtcnt, because that's what we allocate. */ for (ctxt = 0; dd->rcd && ctxt < dd->num_rcv_contexts; ctxt++) { struct hfi1_ctxtdata *rcd = dd->rcd[ctxt]; if (rcd) { hfi1_clear_tids(rcd); hfi1_free_ctxt(rcd); } } kfree(dd->rcd); dd->rcd = NULL; free_pio_map(dd); /* must follow rcv context free - need to remove rcv's hooks */ for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++) sc_free(dd->send_contexts[ctxt].sc); dd->num_send_contexts = 0; kfree(dd->send_contexts); dd->send_contexts = NULL; kfree(dd->hw_to_sw); dd->hw_to_sw = NULL; kfree(dd->boardname); vfree(dd->events); vfree(dd->status); } /* * Clean up on unit shutdown, or error during unit load after * successful initialization. */ static void postinit_cleanup(struct hfi1_devdata *dd) { hfi1_start_cleanup(dd); hfi1_pcie_ddcleanup(dd); hfi1_pcie_cleanup(dd->pcidev); cleanup_device_data(dd); hfi1_free_devdata(dd); } static int init_validate_rcvhdrcnt(struct device *dev, uint thecnt) { if (thecnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) { hfi1_early_err(dev, "Receive header queue count too small\n"); return -EINVAL; } if (thecnt > HFI1_MAX_HDRQ_EGRBUF_CNT) { hfi1_early_err(dev, "Receive header queue count cannot be greater than %u\n", HFI1_MAX_HDRQ_EGRBUF_CNT); return -EINVAL; } if (thecnt % HDRQ_INCREMENT) { hfi1_early_err(dev, "Receive header queue count %d must be divisible by %lu\n", thecnt, HDRQ_INCREMENT); return -EINVAL; } return 0; } static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { int ret = 0, j, pidx, initfail; struct hfi1_devdata *dd; struct hfi1_pportdata *ppd; /* First, lock the non-writable module parameters */ HFI1_CAP_LOCK(); /* Validate dev ids */ if (!(ent->device == PCI_DEVICE_ID_INTEL0 || ent->device == PCI_DEVICE_ID_INTEL1)) { hfi1_early_err(&pdev->dev, "Failing on unknown Intel deviceid 0x%x\n", ent->device); ret = -ENODEV; goto bail; } /* Validate some global module parameters */ ret = init_validate_rcvhdrcnt(&pdev->dev, rcvhdrcnt); if (ret) goto bail; /* use the encoding function as a sanitization check */ if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) { hfi1_early_err(&pdev->dev, "Invalid HdrQ Entry size %u\n", hfi1_hdrq_entsize); ret = -EINVAL; goto bail; } /* The receive eager buffer size must be set before the receive * contexts are created. * * Set the eager buffer size. Validate that it falls in a range * allowed by the hardware - all powers of 2 between the min and * max. The maximum valid MTU is within the eager buffer range * so we do not need to cap the max_mtu by an eager buffer size * setting. */ if (eager_buffer_size) { if (!is_power_of_2(eager_buffer_size)) eager_buffer_size = roundup_pow_of_two(eager_buffer_size); eager_buffer_size = clamp_val(eager_buffer_size, MIN_EAGER_BUFFER * 8, MAX_EAGER_BUFFER_TOTAL); hfi1_early_info(&pdev->dev, "Eager buffer size %u\n", eager_buffer_size); } else { hfi1_early_err(&pdev->dev, "Invalid Eager buffer size of 0\n"); ret = -EINVAL; goto bail; } /* restrict value of hfi1_rcvarr_split */ hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100); ret = hfi1_pcie_init(pdev, ent); if (ret) goto bail; /* * Do device-specific initialization, function table setup, dd * allocation, etc. */ dd = hfi1_init_dd(pdev, ent); if (IS_ERR(dd)) { ret = PTR_ERR(dd); goto clean_bail; /* error already printed */ } ret = create_workqueues(dd); if (ret) goto clean_bail; /* do the generic initialization */ initfail = hfi1_init(dd, 0); /* setup vnic */ hfi1_vnic_setup(dd); ret = hfi1_register_ib_device(dd); /* * Now ready for use. this should be cleared whenever we * detect a reset, or initiate one. If earlier failure, * we still create devices, so diags, etc. can be used * to determine cause of problem. */ if (!initfail && !ret) { dd->flags |= HFI1_INITTED; /* create debufs files after init and ib register */ hfi1_dbg_ibdev_init(&dd->verbs_dev); } j = hfi1_device_create(dd); if (j) dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j); if (initfail || ret) { hfi1_clean_up_interrupts(dd); stop_timers(dd); flush_workqueue(ib_wq); for (pidx = 0; pidx < dd->num_pports; ++pidx) { hfi1_quiet_serdes(dd->pport + pidx); ppd = dd->pport + pidx; if (ppd->hfi1_wq) { destroy_workqueue(ppd->hfi1_wq); ppd->hfi1_wq = NULL; } if (ppd->link_wq) { destroy_workqueue(ppd->link_wq); ppd->link_wq = NULL; } } if (!j) hfi1_device_remove(dd); if (!ret) hfi1_unregister_ib_device(dd); hfi1_vnic_cleanup(dd); postinit_cleanup(dd); if (initfail) ret = initfail; goto bail; /* everything already cleaned */ } sdma_start(dd); return 0; clean_bail: hfi1_pcie_cleanup(pdev); bail: return ret; } static void wait_for_clients(struct hfi1_devdata *dd) { /* * Remove the device init value and complete the device if there is * no clients or wait for active clients to finish. */ if (atomic_dec_and_test(&dd->user_refcount)) complete(&dd->user_comp); wait_for_completion(&dd->user_comp); } static void remove_one(struct pci_dev *pdev) { struct hfi1_devdata *dd = pci_get_drvdata(pdev); /* close debugfs files before ib unregister */ hfi1_dbg_ibdev_exit(&dd->verbs_dev); /* remove the /dev hfi1 interface */ hfi1_device_remove(dd); /* wait for existing user space clients to finish */ wait_for_clients(dd); /* unregister from IB core */ hfi1_unregister_ib_device(dd); /* cleanup vnic */ hfi1_vnic_cleanup(dd); /* * Disable the IB link, disable interrupts on the device, * clear dma engines, etc. */ shutdown_device(dd); stop_timers(dd); /* wait until all of our (qsfp) queue_work() calls complete */ flush_workqueue(ib_wq); postinit_cleanup(dd); } /** * hfi1_create_rcvhdrq - create a receive header queue * @dd: the hfi1_ib device * @rcd: the context data * * This must be contiguous memory (from an i/o perspective), and must be * DMA'able (which means for some systems, it will go through an IOMMU, * or be forced into a low address range). */ int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd) { unsigned amt; u64 reg; if (!rcd->rcvhdrq) { dma_addr_t dma_hdrqtail; gfp_t gfp_flags; /* * rcvhdrqentsize is in DWs, so we have to convert to bytes * (* sizeof(u32)). */ amt = PAGE_ALIGN(rcd->rcvhdrq_cnt * rcd->rcvhdrqentsize * sizeof(u32)); if (rcd->ctxt < dd->first_dyn_alloc_ctxt || rcd->is_vnic) gfp_flags = GFP_KERNEL; else gfp_flags = GFP_USER; rcd->rcvhdrq = dma_zalloc_coherent( &dd->pcidev->dev, amt, &rcd->rcvhdrq_dma, gfp_flags | __GFP_COMP); if (!rcd->rcvhdrq) { dd_dev_err(dd, "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n", amt, rcd->ctxt); goto bail; } if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) { rcd->rcvhdrtail_kvaddr = dma_zalloc_coherent( &dd->pcidev->dev, PAGE_SIZE, &dma_hdrqtail, gfp_flags); if (!rcd->rcvhdrtail_kvaddr) goto bail_free; rcd->rcvhdrqtailaddr_dma = dma_hdrqtail; } rcd->rcvhdrq_size = amt; } /* * These values are per-context: * RcvHdrCnt * RcvHdrEntSize * RcvHdrSize */ reg = ((u64)(rcd->rcvhdrq_cnt >> HDRQ_SIZE_SHIFT) & RCV_HDR_CNT_CNT_MASK) << RCV_HDR_CNT_CNT_SHIFT; write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_CNT, reg); reg = (encode_rcv_header_entry_size(rcd->rcvhdrqentsize) & RCV_HDR_ENT_SIZE_ENT_SIZE_MASK) << RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT; write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_ENT_SIZE, reg); reg = (dd->rcvhdrsize & RCV_HDR_SIZE_HDR_SIZE_MASK) << RCV_HDR_SIZE_HDR_SIZE_SHIFT; write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_SIZE, reg); /* * Program dummy tail address for every receive context * before enabling any receive context */ write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_TAIL_ADDR, dd->rcvhdrtail_dummy_dma); return 0; bail_free: dd_dev_err(dd, "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n", rcd->ctxt); dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq, rcd->rcvhdrq_dma); rcd->rcvhdrq = NULL; bail: return -ENOMEM; } /** * allocate eager buffers, both kernel and user contexts. * @rcd: the context we are setting up. * * Allocate the eager TID buffers and program them into hip. * They are no longer completely contiguous, we do multiple allocation * calls. Otherwise we get the OOM code involved, by asking for too * much per call, with disastrous results on some kernels. */ int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd) { struct hfi1_devdata *dd = rcd->dd; u32 max_entries, egrtop, alloced_bytes = 0, idx = 0; gfp_t gfp_flags; u16 order; int ret = 0; u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu); /* * GFP_USER, but without GFP_FS, so buffer cache can be * coalesced (we hope); otherwise, even at order 4, * heavy filesystem activity makes these fail, and we can * use compound pages. */ gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP; /* * The minimum size of the eager buffers is a groups of MTU-sized * buffers. * The global eager_buffer_size parameter is checked against the * theoretical lower limit of the value. Here, we check against the * MTU. */ if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size)) rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size; /* * If using one-pkt-per-egr-buffer, lower the eager buffer * size to the max MTU (page-aligned). */ if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) rcd->egrbufs.rcvtid_size = round_mtu; /* * Eager buffers sizes of 1MB or less require smaller TID sizes * to satisfy the "multiple of 8 RcvArray entries" requirement. */ if (rcd->egrbufs.size <= (1 << 20)) rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu, rounddown_pow_of_two(rcd->egrbufs.size / 8)); while (alloced_bytes < rcd->egrbufs.size && rcd->egrbufs.alloced < rcd->egrbufs.count) { rcd->egrbufs.buffers[idx].addr = dma_zalloc_coherent(&dd->pcidev->dev, rcd->egrbufs.rcvtid_size, &rcd->egrbufs.buffers[idx].dma, gfp_flags); if (rcd->egrbufs.buffers[idx].addr) { rcd->egrbufs.buffers[idx].len = rcd->egrbufs.rcvtid_size; rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr = rcd->egrbufs.buffers[idx].addr; rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].dma = rcd->egrbufs.buffers[idx].dma; rcd->egrbufs.alloced++; alloced_bytes += rcd->egrbufs.rcvtid_size; idx++; } else { u32 new_size, i, j; u64 offset = 0; /* * Fail the eager buffer allocation if: * - we are already using the lowest acceptable size * - we are using one-pkt-per-egr-buffer (this implies * that we are accepting only one size) */ if (rcd->egrbufs.rcvtid_size == round_mtu || !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) { dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n", rcd->ctxt); ret = -ENOMEM; goto bail_rcvegrbuf_phys; } new_size = rcd->egrbufs.rcvtid_size / 2; /* * If the first attempt to allocate memory failed, don't * fail everything but continue with the next lower * size. */ if (idx == 0) { rcd->egrbufs.rcvtid_size = new_size; continue; } /* * Re-partition already allocated buffers to a smaller * size. */ rcd->egrbufs.alloced = 0; for (i = 0, j = 0, offset = 0; j < idx; i++) { if (i >= rcd->egrbufs.count) break; rcd->egrbufs.rcvtids[i].dma = rcd->egrbufs.buffers[j].dma + offset; rcd->egrbufs.rcvtids[i].addr = rcd->egrbufs.buffers[j].addr + offset; rcd->egrbufs.alloced++; if ((rcd->egrbufs.buffers[j].dma + offset + new_size) == (rcd->egrbufs.buffers[j].dma + rcd->egrbufs.buffers[j].len)) { j++; offset = 0; } else { offset += new_size; } } rcd->egrbufs.rcvtid_size = new_size; } } rcd->egrbufs.numbufs = idx; rcd->egrbufs.size = alloced_bytes; hfi1_cdbg(PROC, "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %zuKB\n", rcd->ctxt, rcd->egrbufs.alloced, rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024); /* * Set the contexts rcv array head update threshold to the closest * power of 2 (so we can use a mask instead of modulo) below half * the allocated entries. */ rcd->egrbufs.threshold = rounddown_pow_of_two(rcd->egrbufs.alloced / 2); /* * Compute the expected RcvArray entry base. This is done after * allocating the eager buffers in order to maximize the * expected RcvArray entries for the context. */ max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size; egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size); rcd->expected_count = max_entries - egrtop; if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2) rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2; rcd->expected_base = rcd->eager_base + egrtop; hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n", rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count, rcd->eager_base, rcd->expected_base); if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) { hfi1_cdbg(PROC, "ctxt%u: current Eager buffer size is invalid %u\n", rcd->ctxt, rcd->egrbufs.rcvtid_size); ret = -EINVAL; goto bail_rcvegrbuf_phys; } for (idx = 0; idx < rcd->egrbufs.alloced; idx++) { hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER, rcd->egrbufs.rcvtids[idx].dma, order); cond_resched(); } return 0; bail_rcvegrbuf_phys: for (idx = 0; idx < rcd->egrbufs.alloced && rcd->egrbufs.buffers[idx].addr; idx++) { dma_free_coherent(&dd->pcidev->dev, rcd->egrbufs.buffers[idx].len, rcd->egrbufs.buffers[idx].addr, rcd->egrbufs.buffers[idx].dma); rcd->egrbufs.buffers[idx].addr = NULL; rcd->egrbufs.buffers[idx].dma = 0; rcd->egrbufs.buffers[idx].len = 0; } return ret; }