/* * linux/fs/ext3/super.c * * Copyright (C) 1992, 1993, 1994, 1995 * Remy Card (card@masi.ibp.fr) * Laboratoire MASI - Institut Blaise Pascal * Universite Pierre et Marie Curie (Paris VI) * * from * * linux/fs/minix/inode.c * * Copyright (C) 1991, 1992 Linus Torvalds * * Big-endian to little-endian byte-swapping/bitmaps by * David S. Miller (davem@caip.rutgers.edu), 1995 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "xattr.h" #include "acl.h" #include "namei.h" #define CREATE_TRACE_POINTS #include #ifdef CONFIG_EXT3_DEFAULTS_TO_ORDERED #define EXT3_MOUNT_DEFAULT_DATA_MODE EXT3_MOUNT_ORDERED_DATA #else #define EXT3_MOUNT_DEFAULT_DATA_MODE EXT3_MOUNT_WRITEBACK_DATA #endif static int ext3_load_journal(struct super_block *, struct ext3_super_block *, unsigned long journal_devnum); static int ext3_create_journal(struct super_block *, struct ext3_super_block *, unsigned int); static int ext3_commit_super(struct super_block *sb, struct ext3_super_block *es, int sync); static void ext3_mark_recovery_complete(struct super_block * sb, struct ext3_super_block * es); static void ext3_clear_journal_err(struct super_block * sb, struct ext3_super_block * es); static int ext3_sync_fs(struct super_block *sb, int wait); static const char *ext3_decode_error(struct super_block * sb, int errno, char nbuf[16]); static int ext3_remount (struct super_block * sb, int * flags, char * data); static int ext3_statfs (struct dentry * dentry, struct kstatfs * buf); static int ext3_unfreeze(struct super_block *sb); static int ext3_freeze(struct super_block *sb); /* * Wrappers for journal_start/end. * * The only special thing we need to do here is to make sure that all * journal_end calls result in the superblock being marked dirty, so * that sync() will call the filesystem's write_super callback if * appropriate. */ handle_t *ext3_journal_start_sb(struct super_block *sb, int nblocks) { journal_t *journal; if (sb->s_flags & MS_RDONLY) return ERR_PTR(-EROFS); /* Special case here: if the journal has aborted behind our * backs (eg. EIO in the commit thread), then we still need to * take the FS itself readonly cleanly. */ journal = EXT3_SB(sb)->s_journal; if (is_journal_aborted(journal)) { ext3_abort(sb, __func__, "Detected aborted journal"); return ERR_PTR(-EROFS); } return journal_start(journal, nblocks); } /* * The only special thing we need to do here is to make sure that all * journal_stop calls result in the superblock being marked dirty, so * that sync() will call the filesystem's write_super callback if * appropriate. */ int __ext3_journal_stop(const char *where, handle_t *handle) { struct super_block *sb; int err; int rc; sb = handle->h_transaction->t_journal->j_private; err = handle->h_err; rc = journal_stop(handle); if (!err) err = rc; if (err) __ext3_std_error(sb, where, err); return err; } void ext3_journal_abort_handle(const char *caller, const char *err_fn, struct buffer_head *bh, handle_t *handle, int err) { char nbuf[16]; const char *errstr = ext3_decode_error(NULL, err, nbuf); if (bh) BUFFER_TRACE(bh, "abort"); if (!handle->h_err) handle->h_err = err; if (is_handle_aborted(handle)) return; printk(KERN_ERR "EXT3-fs: %s: aborting transaction: %s in %s\n", caller, errstr, err_fn); journal_abort_handle(handle); } void ext3_msg(struct super_block *sb, const char *prefix, const char *fmt, ...) { struct va_format vaf; va_list args; va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; printk("%sEXT3-fs (%s): %pV\n", prefix, sb->s_id, &vaf); va_end(args); } /* Deal with the reporting of failure conditions on a filesystem such as * inconsistencies detected or read IO failures. * * On ext2, we can store the error state of the filesystem in the * superblock. That is not possible on ext3, because we may have other * write ordering constraints on the superblock which prevent us from * writing it out straight away; and given that the journal is about to * be aborted, we can't rely on the current, or future, transactions to * write out the superblock safely. * * We'll just use the journal_abort() error code to record an error in * the journal instead. On recovery, the journal will complain about * that error until we've noted it down and cleared it. */ static void ext3_handle_error(struct super_block *sb) { struct ext3_super_block *es = EXT3_SB(sb)->s_es; EXT3_SB(sb)->s_mount_state |= EXT3_ERROR_FS; es->s_state |= cpu_to_le16(EXT3_ERROR_FS); if (sb->s_flags & MS_RDONLY) return; if (!test_opt (sb, ERRORS_CONT)) { journal_t *journal = EXT3_SB(sb)->s_journal; set_opt(EXT3_SB(sb)->s_mount_opt, ABORT); if (journal) journal_abort(journal, -EIO); } if (test_opt (sb, ERRORS_RO)) { ext3_msg(sb, KERN_CRIT, "error: remounting filesystem read-only"); sb->s_flags |= MS_RDONLY; } ext3_commit_super(sb, es, 1); if (test_opt(sb, ERRORS_PANIC)) panic("EXT3-fs (%s): panic forced after error\n", sb->s_id); } void ext3_error(struct super_block *sb, const char *function, const char *fmt, ...) { struct va_format vaf; va_list args; va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; printk(KERN_CRIT "EXT3-fs error (device %s): %s: %pV\n", sb->s_id, function, &vaf); va_end(args); ext3_handle_error(sb); } static const char *ext3_decode_error(struct super_block * sb, int errno, char nbuf[16]) { char *errstr = NULL; switch (errno) { case -EIO: errstr = "IO failure"; break; case -ENOMEM: errstr = "Out of memory"; break; case -EROFS: if (!sb || EXT3_SB(sb)->s_journal->j_flags & JFS_ABORT) errstr = "Journal has aborted"; else errstr = "Readonly filesystem"; break; default: /* If the caller passed in an extra buffer for unknown * errors, textualise them now. Else we just return * NULL. */ if (nbuf) { /* Check for truncated error codes... */ if (snprintf(nbuf, 16, "error %d", -errno) >= 0) errstr = nbuf; } break; } return errstr; } /* __ext3_std_error decodes expected errors from journaling functions * automatically and invokes the appropriate error response. */ void __ext3_std_error (struct super_block * sb, const char * function, int errno) { char nbuf[16]; const char *errstr; /* Special case: if the error is EROFS, and we're not already * inside a transaction, then there's really no point in logging * an error. */ if (errno == -EROFS && journal_current_handle() == NULL && (sb->s_flags & MS_RDONLY)) return; errstr = ext3_decode_error(sb, errno, nbuf); ext3_msg(sb, KERN_CRIT, "error in %s: %s", function, errstr); ext3_handle_error(sb); } /* * ext3_abort is a much stronger failure handler than ext3_error. The * abort function may be used to deal with unrecoverable failures such * as journal IO errors or ENOMEM at a critical moment in log management. * * We unconditionally force the filesystem into an ABORT|READONLY state, * unless the error response on the fs has been set to panic in which * case we take the easy way out and panic immediately. */ void ext3_abort(struct super_block *sb, const char *function, const char *fmt, ...) { struct va_format vaf; va_list args; va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; printk(KERN_CRIT "EXT3-fs (%s): error: %s: %pV\n", sb->s_id, function, &vaf); va_end(args); if (test_opt(sb, ERRORS_PANIC)) panic("EXT3-fs: panic from previous error\n"); if (sb->s_flags & MS_RDONLY) return; ext3_msg(sb, KERN_CRIT, "error: remounting filesystem read-only"); EXT3_SB(sb)->s_mount_state |= EXT3_ERROR_FS; sb->s_flags |= MS_RDONLY; set_opt(EXT3_SB(sb)->s_mount_opt, ABORT); if (EXT3_SB(sb)->s_journal) journal_abort(EXT3_SB(sb)->s_journal, -EIO); } void ext3_warning(struct super_block *sb, const char *function, const char *fmt, ...) { struct va_format vaf; va_list args; va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; printk(KERN_WARNING "EXT3-fs (%s): warning: %s: %pV\n", sb->s_id, function, &vaf); va_end(args); } void ext3_update_dynamic_rev(struct super_block *sb) { struct ext3_super_block *es = EXT3_SB(sb)->s_es; if (le32_to_cpu(es->s_rev_level) > EXT3_GOOD_OLD_REV) return; ext3_msg(sb, KERN_WARNING, "warning: updating to rev %d because of " "new feature flag, running e2fsck is recommended", EXT3_DYNAMIC_REV); es->s_first_ino = cpu_to_le32(EXT3_GOOD_OLD_FIRST_INO); es->s_inode_size = cpu_to_le16(EXT3_GOOD_OLD_INODE_SIZE); es->s_rev_level = cpu_to_le32(EXT3_DYNAMIC_REV); /* leave es->s_feature_*compat flags alone */ /* es->s_uuid will be set by e2fsck if empty */ /* * The rest of the superblock fields should be zero, and if not it * means they are likely already in use, so leave them alone. We * can leave it up to e2fsck to clean up any inconsistencies there. */ } /* * Open the external journal device */ static struct block_device *ext3_blkdev_get(dev_t dev, struct super_block *sb) { struct block_device *bdev; char b[BDEVNAME_SIZE]; bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); if (IS_ERR(bdev)) goto fail; return bdev; fail: ext3_msg(sb, "error: failed to open journal device %s: %ld", __bdevname(dev, b), PTR_ERR(bdev)); return NULL; } /* * Release the journal device */ static int ext3_blkdev_put(struct block_device *bdev) { return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); } static int ext3_blkdev_remove(struct ext3_sb_info *sbi) { struct block_device *bdev; int ret = -ENODEV; bdev = sbi->journal_bdev; if (bdev) { ret = ext3_blkdev_put(bdev); sbi->journal_bdev = NULL; } return ret; } static inline struct inode *orphan_list_entry(struct list_head *l) { return &list_entry(l, struct ext3_inode_info, i_orphan)->vfs_inode; } static void dump_orphan_list(struct super_block *sb, struct ext3_sb_info *sbi) { struct list_head *l; ext3_msg(sb, KERN_ERR, "error: sb orphan head is %d", le32_to_cpu(sbi->s_es->s_last_orphan)); ext3_msg(sb, KERN_ERR, "sb_info orphan list:"); list_for_each(l, &sbi->s_orphan) { struct inode *inode = orphan_list_entry(l); ext3_msg(sb, KERN_ERR, " " "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", inode->i_sb->s_id, inode->i_ino, inode, inode->i_mode, inode->i_nlink, NEXT_ORPHAN(inode)); } } static void ext3_put_super (struct super_block * sb) { struct ext3_sb_info *sbi = EXT3_SB(sb); struct ext3_super_block *es = sbi->s_es; int i, err; dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); ext3_xattr_put_super(sb); err = journal_destroy(sbi->s_journal); sbi->s_journal = NULL; if (err < 0) ext3_abort(sb, __func__, "Couldn't clean up the journal"); if (!(sb->s_flags & MS_RDONLY)) { EXT3_CLEAR_INCOMPAT_FEATURE(sb, EXT3_FEATURE_INCOMPAT_RECOVER); es->s_state = cpu_to_le16(sbi->s_mount_state); BUFFER_TRACE(sbi->s_sbh, "marking dirty"); mark_buffer_dirty(sbi->s_sbh); ext3_commit_super(sb, es, 1); } for (i = 0; i < sbi->s_gdb_count; i++) brelse(sbi->s_group_desc[i]); kfree(sbi->s_group_desc); percpu_counter_destroy(&sbi->s_freeblocks_counter); percpu_counter_destroy(&sbi->s_freeinodes_counter); percpu_counter_destroy(&sbi->s_dirs_counter); brelse(sbi->s_sbh); #ifdef CONFIG_QUOTA for (i = 0; i < MAXQUOTAS; i++) kfree(sbi->s_qf_names[i]); #endif /* Debugging code just in case the in-memory inode orphan list * isn't empty. The on-disk one can be non-empty if we've * detected an error and taken the fs readonly, but the * in-memory list had better be clean by this point. */ if (!list_empty(&sbi->s_orphan)) dump_orphan_list(sb, sbi); J_ASSERT(list_empty(&sbi->s_orphan)); invalidate_bdev(sb->s_bdev); if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { /* * Invalidate the journal device's buffers. We don't want them * floating about in memory - the physical journal device may * hotswapped, and it breaks the `ro-after' testing code. */ sync_blockdev(sbi->journal_bdev); invalidate_bdev(sbi->journal_bdev); ext3_blkdev_remove(sbi); } sb->s_fs_info = NULL; kfree(sbi->s_blockgroup_lock); kfree(sbi); } static struct kmem_cache *ext3_inode_cachep; /* * Called inside transaction, so use GFP_NOFS */ static struct inode *ext3_alloc_inode(struct super_block *sb) { struct ext3_inode_info *ei; ei = kmem_cache_alloc(ext3_inode_cachep, GFP_NOFS); if (!ei) return NULL; ei->i_block_alloc_info = NULL; ei->vfs_inode.i_version = 1; atomic_set(&ei->i_datasync_tid, 0); atomic_set(&ei->i_sync_tid, 0); return &ei->vfs_inode; } static int ext3_drop_inode(struct inode *inode) { int drop = generic_drop_inode(inode); trace_ext3_drop_inode(inode, drop); return drop; } static void ext3_i_callback(struct rcu_head *head) { struct inode *inode = container_of(head, struct inode, i_rcu); INIT_LIST_HEAD(&inode->i_dentry); kmem_cache_free(ext3_inode_cachep, EXT3_I(inode)); } static void ext3_destroy_inode(struct inode *inode) { if (!list_empty(&(EXT3_I(inode)->i_orphan))) { printk("EXT3 Inode %p: orphan list check failed!\n", EXT3_I(inode)); print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, EXT3_I(inode), sizeof(struct ext3_inode_info), false); dump_stack(); } call_rcu(&inode->i_rcu, ext3_i_callback); } static void init_once(void *foo) { struct ext3_inode_info *ei = (struct ext3_inode_info *) foo; INIT_LIST_HEAD(&ei->i_orphan); #ifdef CONFIG_EXT3_FS_XATTR init_rwsem(&ei->xattr_sem); #endif mutex_init(&ei->truncate_mutex); inode_init_once(&ei->vfs_inode); } static int init_inodecache(void) { ext3_inode_cachep = kmem_cache_create("ext3_inode_cache", sizeof(struct ext3_inode_info), 0, (SLAB_RECLAIM_ACCOUNT| SLAB_MEM_SPREAD), init_once); if (ext3_inode_cachep == NULL) return -ENOMEM; return 0; } static void destroy_inodecache(void) { kmem_cache_destroy(ext3_inode_cachep); } static inline void ext3_show_quota_options(struct seq_file *seq, struct super_block *sb) { #if defined(CONFIG_QUOTA) struct ext3_sb_info *sbi = EXT3_SB(sb); if (sbi->s_jquota_fmt) { char *fmtname = ""; switch (sbi->s_jquota_fmt) { case QFMT_VFS_OLD: fmtname = "vfsold"; break; case QFMT_VFS_V0: fmtname = "vfsv0"; break; case QFMT_VFS_V1: fmtname = "vfsv1"; break; } seq_printf(seq, ",jqfmt=%s", fmtname); } if (sbi->s_qf_names[USRQUOTA]) seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]); if (sbi->s_qf_names[GRPQUOTA]) seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]); if (test_opt(sb, USRQUOTA)) seq_puts(seq, ",usrquota"); if (test_opt(sb, GRPQUOTA)) seq_puts(seq, ",grpquota"); #endif } static char *data_mode_string(unsigned long mode) { switch (mode) { case EXT3_MOUNT_JOURNAL_DATA: return "journal"; case EXT3_MOUNT_ORDERED_DATA: return "ordered"; case EXT3_MOUNT_WRITEBACK_DATA: return "writeback"; } return "unknown"; } /* * Show an option if * - it's set to a non-default value OR * - if the per-sb default is different from the global default */ static int ext3_show_options(struct seq_file *seq, struct vfsmount *vfs) { struct super_block *sb = vfs->mnt_sb; struct ext3_sb_info *sbi = EXT3_SB(sb); struct ext3_super_block *es = sbi->s_es; unsigned long def_mount_opts; def_mount_opts = le32_to_cpu(es->s_default_mount_opts); if (sbi->s_sb_block != 1) seq_printf(seq, ",sb=%lu", sbi->s_sb_block); if (test_opt(sb, MINIX_DF)) seq_puts(seq, ",minixdf"); if (test_opt(sb, GRPID)) seq_puts(seq, ",grpid"); if (!test_opt(sb, GRPID) && (def_mount_opts & EXT3_DEFM_BSDGROUPS)) seq_puts(seq, ",nogrpid"); if (sbi->s_resuid != EXT3_DEF_RESUID || le16_to_cpu(es->s_def_resuid) != EXT3_DEF_RESUID) { seq_printf(seq, ",resuid=%u", sbi->s_resuid); } if (sbi->s_resgid != EXT3_DEF_RESGID || le16_to_cpu(es->s_def_resgid) != EXT3_DEF_RESGID) { seq_printf(seq, ",resgid=%u", sbi->s_resgid); } if (test_opt(sb, ERRORS_RO)) { int def_errors = le16_to_cpu(es->s_errors); if (def_errors == EXT3_ERRORS_PANIC || def_errors == EXT3_ERRORS_CONTINUE) { seq_puts(seq, ",errors=remount-ro"); } } if (test_opt(sb, ERRORS_CONT)) seq_puts(seq, ",errors=continue"); if (test_opt(sb, ERRORS_PANIC)) seq_puts(seq, ",errors=panic"); if (test_opt(sb, NO_UID32)) seq_puts(seq, ",nouid32"); if (test_opt(sb, DEBUG)) seq_puts(seq, ",debug"); #ifdef CONFIG_EXT3_FS_XATTR if (test_opt(sb, XATTR_USER)) seq_puts(seq, ",user_xattr"); if (!test_opt(sb, XATTR_USER) && (def_mount_opts & EXT3_DEFM_XATTR_USER)) { seq_puts(seq, ",nouser_xattr"); } #endif #ifdef CONFIG_EXT3_FS_POSIX_ACL if (test_opt(sb, POSIX_ACL)) seq_puts(seq, ",acl"); if (!test_opt(sb, POSIX_ACL) && (def_mount_opts & EXT3_DEFM_ACL)) seq_puts(seq, ",noacl"); #endif if (!test_opt(sb, RESERVATION)) seq_puts(seq, ",noreservation"); if (sbi->s_commit_interval) { seq_printf(seq, ",commit=%u", (unsigned) (sbi->s_commit_interval / HZ)); } /* * Always display barrier state so it's clear what the status is. */ seq_puts(seq, ",barrier="); seq_puts(seq, test_opt(sb, BARRIER) ? "1" : "0"); seq_printf(seq, ",data=%s", data_mode_string(test_opt(sb, DATA_FLAGS))); if (test_opt(sb, DATA_ERR_ABORT)) seq_puts(seq, ",data_err=abort"); if (test_opt(sb, NOLOAD)) seq_puts(seq, ",norecovery"); ext3_show_quota_options(seq, sb); return 0; } static struct inode *ext3_nfs_get_inode(struct super_block *sb, u64 ino, u32 generation) { struct inode *inode; if (ino < EXT3_FIRST_INO(sb) && ino != EXT3_ROOT_INO) return ERR_PTR(-ESTALE); if (ino > le32_to_cpu(EXT3_SB(sb)->s_es->s_inodes_count)) return ERR_PTR(-ESTALE); /* iget isn't really right if the inode is currently unallocated!! * * ext3_read_inode will return a bad_inode if the inode had been * deleted, so we should be safe. * * Currently we don't know the generation for parent directory, so * a generation of 0 means "accept any" */ inode = ext3_iget(sb, ino); if (IS_ERR(inode)) return ERR_CAST(inode); if (generation && inode->i_generation != generation) { iput(inode); return ERR_PTR(-ESTALE); } return inode; } static struct dentry *ext3_fh_to_dentry(struct super_block *sb, struct fid *fid, int fh_len, int fh_type) { return generic_fh_to_dentry(sb, fid, fh_len, fh_type, ext3_nfs_get_inode); } static struct dentry *ext3_fh_to_parent(struct super_block *sb, struct fid *fid, int fh_len, int fh_type) { return generic_fh_to_parent(sb, fid, fh_len, fh_type, ext3_nfs_get_inode); } /* * Try to release metadata pages (indirect blocks, directories) which are * mapped via the block device. Since these pages could have journal heads * which would prevent try_to_free_buffers() from freeing them, we must use * jbd layer's try_to_free_buffers() function to release them. */ static int bdev_try_to_free_page(struct super_block *sb, struct page *page, gfp_t wait) { journal_t *journal = EXT3_SB(sb)->s_journal; WARN_ON(PageChecked(page)); if (!page_has_buffers(page)) return 0; if (journal) return journal_try_to_free_buffers(journal, page, wait & ~__GFP_WAIT); return try_to_free_buffers(page); } #ifdef CONFIG_QUOTA #define QTYPE2NAME(t) ((t)==USRQUOTA?"user":"group") #define QTYPE2MOPT(on, t) ((t)==USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) static int ext3_write_dquot(struct dquot *dquot); static int ext3_acquire_dquot(struct dquot *dquot); static int ext3_release_dquot(struct dquot *dquot); static int ext3_mark_dquot_dirty(struct dquot *dquot); static int ext3_write_info(struct super_block *sb, int type); static int ext3_quota_on(struct super_block *sb, int type, int format_id, struct path *path); static int ext3_quota_on_mount(struct super_block *sb, int type); static ssize_t ext3_quota_read(struct super_block *sb, int type, char *data, size_t len, loff_t off); static ssize_t ext3_quota_write(struct super_block *sb, int type, const char *data, size_t len, loff_t off); static const struct dquot_operations ext3_quota_operations = { .write_dquot = ext3_write_dquot, .acquire_dquot = ext3_acquire_dquot, .release_dquot = ext3_release_dquot, .mark_dirty = ext3_mark_dquot_dirty, .write_info = ext3_write_info, .alloc_dquot = dquot_alloc, .destroy_dquot = dquot_destroy, }; static const struct quotactl_ops ext3_qctl_operations = { .quota_on = ext3_quota_on, .quota_off = dquot_quota_off, .quota_sync = dquot_quota_sync, .get_info = dquot_get_dqinfo, .set_info = dquot_set_dqinfo, .get_dqblk = dquot_get_dqblk, .set_dqblk = dquot_set_dqblk }; #endif static const struct super_operations ext3_sops = { .alloc_inode = ext3_alloc_inode, .destroy_inode = ext3_destroy_inode, .write_inode = ext3_write_inode, .dirty_inode = ext3_dirty_inode, .drop_inode = ext3_drop_inode, .evict_inode = ext3_evict_inode, .put_super = ext3_put_super, .sync_fs = ext3_sync_fs, .freeze_fs = ext3_freeze, .unfreeze_fs = ext3_unfreeze, .statfs = ext3_statfs, .remount_fs = ext3_remount, .show_options = ext3_show_options, #ifdef CONFIG_QUOTA .quota_read = ext3_quota_read, .quota_write = ext3_quota_write, #endif .bdev_try_to_free_page = bdev_try_to_free_page, }; static const struct export_operations ext3_export_ops = { .fh_to_dentry = ext3_fh_to_dentry, .fh_to_parent = ext3_fh_to_parent, .get_parent = ext3_get_parent, }; enum { Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, Opt_nouid32, Opt_nocheck, Opt_debug, Opt_oldalloc, Opt_orlov, Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, Opt_reservation, Opt_noreservation, Opt_noload, Opt_nobh, Opt_bh, Opt_commit, Opt_journal_update, Opt_journal_inum, Opt_journal_dev, Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, Opt_data_err_abort, Opt_data_err_ignore, Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, Opt_noquota, Opt_ignore, Opt_barrier, Opt_nobarrier, Opt_err, Opt_resize, Opt_usrquota, Opt_grpquota }; static const match_table_t tokens = { {Opt_bsd_df, "bsddf"}, {Opt_minix_df, "minixdf"}, {Opt_grpid, "grpid"}, {Opt_grpid, "bsdgroups"}, {Opt_nogrpid, "nogrpid"}, {Opt_nogrpid, "sysvgroups"}, {Opt_resgid, "resgid=%u"}, {Opt_resuid, "resuid=%u"}, {Opt_sb, "sb=%u"}, {Opt_err_cont, "errors=continue"}, {Opt_err_panic, "errors=panic"}, {Opt_err_ro, "errors=remount-ro"}, {Opt_nouid32, "nouid32"}, {Opt_nocheck, "nocheck"}, {Opt_nocheck, "check=none"}, {Opt_debug, "debug"}, {Opt_oldalloc, "oldalloc"}, {Opt_orlov, "orlov"}, {Opt_user_xattr, "user_xattr"}, {Opt_nouser_xattr, "nouser_xattr"}, {Opt_acl, "acl"}, {Opt_noacl, "noacl"}, {Opt_reservation, "reservation"}, {Opt_noreservation, "noreservation"}, {Opt_noload, "noload"}, {Opt_noload, "norecovery"}, {Opt_nobh, "nobh"}, {Opt_bh, "bh"}, {Opt_commit, "commit=%u"}, {Opt_journal_update, "journal=update"}, {Opt_journal_inum, "journal=%u"}, {Opt_journal_dev, "journal_dev=%u"}, {Opt_abort, "abort"}, {Opt_data_journal, "data=journal"}, {Opt_data_ordered, "data=ordered"}, {Opt_data_writeback, "data=writeback"}, {Opt_data_err_abort, "data_err=abort"}, {Opt_data_err_ignore, "data_err=ignore"}, {Opt_offusrjquota, "usrjquota="}, {Opt_usrjquota, "usrjquota=%s"}, {Opt_offgrpjquota, "grpjquota="}, {Opt_grpjquota, "grpjquota=%s"}, {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, {Opt_grpquota, "grpquota"}, {Opt_noquota, "noquota"}, {Opt_quota, "quota"}, {Opt_usrquota, "usrquota"}, {Opt_barrier, "barrier=%u"}, {Opt_barrier, "barrier"}, {Opt_nobarrier, "nobarrier"}, {Opt_resize, "resize"}, {Opt_err, NULL}, }; static ext3_fsblk_t get_sb_block(void **data, struct super_block *sb) { ext3_fsblk_t sb_block; char *options = (char *) *data; if (!options || strncmp(options, "sb=", 3) != 0) return 1; /* Default location */ options += 3; /*todo: use simple_strtoll with >32bit ext3 */ sb_block = simple_strtoul(options, &options, 0); if (*options && *options != ',') { ext3_msg(sb, "error: invalid sb specification: %s", (char *) *data); return 1; } if (*options == ',') options++; *data = (void *) options; return sb_block; } #ifdef CONFIG_QUOTA static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) { struct ext3_sb_info *sbi = EXT3_SB(sb); char *qname; if (sb_any_quota_loaded(sb) && !sbi->s_qf_names[qtype]) { ext3_msg(sb, KERN_ERR, "Cannot change journaled " "quota options when quota turned on"); return 0; } qname = match_strdup(args); if (!qname) { ext3_msg(sb, KERN_ERR, "Not enough memory for storing quotafile name"); return 0; } if (sbi->s_qf_names[qtype] && strcmp(sbi->s_qf_names[qtype], qname)) { ext3_msg(sb, KERN_ERR, "%s quota file already specified", QTYPE2NAME(qtype)); kfree(qname); return 0; } sbi->s_qf_names[qtype] = qname; if (strchr(sbi->s_qf_names[qtype], '/')) { ext3_msg(sb, KERN_ERR, "quotafile must be on filesystem root"); kfree(sbi->s_qf_names[qtype]); sbi->s_qf_names[qtype] = NULL; return 0; } set_opt(sbi->s_mount_opt, QUOTA); return 1; } static int clear_qf_name(struct super_block *sb, int qtype) { struct ext3_sb_info *sbi = EXT3_SB(sb); if (sb_any_quota_loaded(sb) && sbi->s_qf_names[qtype]) { ext3_msg(sb, KERN_ERR, "Cannot change journaled quota options" " when quota turned on"); return 0; } /* * The space will be released later when all options are confirmed * to be correct */ sbi->s_qf_names[qtype] = NULL; return 1; } #endif static int parse_options (char *options, struct super_block *sb, unsigned int *inum, unsigned long *journal_devnum, ext3_fsblk_t *n_blocks_count, int is_remount) { struct ext3_sb_info *sbi = EXT3_SB(sb); char * p; substring_t args[MAX_OPT_ARGS]; int data_opt = 0; int option; #ifdef CONFIG_QUOTA int qfmt; #endif if (!options) return 1; while ((p = strsep (&options, ",")) != NULL) { int token; if (!*p) continue; /* * Initialize args struct so we know whether arg was * found; some options take optional arguments. */ args[0].to = args[0].from = 0; token = match_token(p, tokens, args); switch (token) { case Opt_bsd_df: clear_opt (sbi->s_mount_opt, MINIX_DF); break; case Opt_minix_df: set_opt (sbi->s_mount_opt, MINIX_DF); break; case Opt_grpid: set_opt (sbi->s_mount_opt, GRPID); break; case Opt_nogrpid: clear_opt (sbi->s_mount_opt, GRPID); break; case Opt_resuid: if (match_int(&args[0], &option)) return 0; sbi->s_resuid = option; break; case Opt_resgid: if (match_int(&args[0], &option)) return 0; sbi->s_resgid = option; break; case Opt_sb: /* handled by get_sb_block() instead of here */ /* *sb_block = match_int(&args[0]); */ break; case Opt_err_panic: clear_opt (sbi->s_mount_opt, ERRORS_CONT); clear_opt (sbi->s_mount_opt, ERRORS_RO); set_opt (sbi->s_mount_opt, ERRORS_PANIC); break; case Opt_err_ro: clear_opt (sbi->s_mount_opt, ERRORS_CONT); clear_opt (sbi->s_mount_opt, ERRORS_PANIC); set_opt (sbi->s_mount_opt, ERRORS_RO); break; case Opt_err_cont: clear_opt (sbi->s_mount_opt, ERRORS_RO); clear_opt (sbi->s_mount_opt, ERRORS_PANIC); set_opt (sbi->s_mount_opt, ERRORS_CONT); break; case Opt_nouid32: set_opt (sbi->s_mount_opt, NO_UID32); break; case Opt_nocheck: clear_opt (sbi->s_mount_opt, CHECK); break; case Opt_debug: set_opt (sbi->s_mount_opt, DEBUG); break; case Opt_oldalloc: ext3_msg(sb, KERN_WARNING, "Ignoring deprecated oldalloc option"); break; case Opt_orlov: ext3_msg(sb, KERN_WARNING, "Ignoring deprecated orlov option"); break; #ifdef CONFIG_EXT3_FS_XATTR case Opt_user_xattr: set_opt (sbi->s_mount_opt, XATTR_USER); break; case Opt_nouser_xattr: clear_opt (sbi->s_mount_opt, XATTR_USER); break; #else case Opt_user_xattr: case Opt_nouser_xattr: ext3_msg(sb, KERN_INFO, "(no)user_xattr options not supported"); break; #endif #ifdef CONFIG_EXT3_FS_POSIX_ACL case Opt_acl: set_opt(sbi->s_mount_opt, POSIX_ACL); break; case Opt_noacl: clear_opt(sbi->s_mount_opt, POSIX_ACL); break; #else case Opt_acl: case Opt_noacl: ext3_msg(sb, KERN_INFO, "(no)acl options not supported"); break; #endif case Opt_reservation: set_opt(sbi->s_mount_opt, RESERVATION); break; case Opt_noreservation: clear_opt(sbi->s_mount_opt, RESERVATION); break; case Opt_journal_update: /* @@@ FIXME */ /* Eventually we will want to be able to create a journal file here. For now, only allow the user to specify an existing inode to be the journal file. */ if (is_remount) { ext3_msg(sb, KERN_ERR, "error: cannot specify " "journal on remount"); return 0; } set_opt (sbi->s_mount_opt, UPDATE_JOURNAL); break; case Opt_journal_inum: if (is_remount) { ext3_msg(sb, KERN_ERR, "error: cannot specify " "journal on remount"); return 0; } if (match_int(&args[0], &option)) return 0; *inum = option; break; case Opt_journal_dev: if (is_remount) { ext3_msg(sb, KERN_ERR, "error: cannot specify " "journal on remount"); return 0; } if (match_int(&args[0], &option)) return 0; *journal_devnum = option; break; case Opt_noload: set_opt (sbi->s_mount_opt, NOLOAD); break; case Opt_commit: if (match_int(&args[0], &option)) return 0; if (option < 0) return 0; if (option == 0) option = JBD_DEFAULT_MAX_COMMIT_AGE; sbi->s_commit_interval = HZ * option; break; case Opt_data_journal: data_opt = EXT3_MOUNT_JOURNAL_DATA; goto datacheck; case Opt_data_ordered: data_opt = EXT3_MOUNT_ORDERED_DATA; goto datacheck; case Opt_data_writeback: data_opt = EXT3_MOUNT_WRITEBACK_DATA; datacheck: if (is_remount) { if (test_opt(sb, DATA_FLAGS) == data_opt) break; ext3_msg(sb, KERN_ERR, "error: cannot change " "data mode on remount. The filesystem " "is mounted in data=%s mode and you " "try to remount it in data=%s mode.", data_mode_string(test_opt(sb, DATA_FLAGS)), data_mode_string(data_opt)); return 0; } else { clear_opt(sbi->s_mount_opt, DATA_FLAGS); sbi->s_mount_opt |= data_opt; } break; case Opt_data_err_abort: set_opt(sbi->s_mount_opt, DATA_ERR_ABORT); break; case Opt_data_err_ignore: clear_opt(sbi->s_mount_opt, DATA_ERR_ABORT); break; #ifdef CONFIG_QUOTA case Opt_usrjquota: if (!set_qf_name(sb, USRQUOTA, &args[0])) return 0; break; case Opt_grpjquota: if (!set_qf_name(sb, GRPQUOTA, &args[0])) return 0; break; case Opt_offusrjquota: if (!clear_qf_name(sb, USRQUOTA)) return 0; break; case Opt_offgrpjquota: if (!clear_qf_name(sb, GRPQUOTA)) return 0; break; case Opt_jqfmt_vfsold: qfmt = QFMT_VFS_OLD; goto set_qf_format; case Opt_jqfmt_vfsv0: qfmt = QFMT_VFS_V0; goto set_qf_format; case Opt_jqfmt_vfsv1: qfmt = QFMT_VFS_V1; set_qf_format: if (sb_any_quota_loaded(sb) && sbi->s_jquota_fmt != qfmt) { ext3_msg(sb, KERN_ERR, "error: cannot change " "journaled quota options when " "quota turned on."); return 0; } sbi->s_jquota_fmt = qfmt; break; case Opt_quota: case Opt_usrquota: set_opt(sbi->s_mount_opt, QUOTA); set_opt(sbi->s_mount_opt, USRQUOTA); break; case Opt_grpquota: set_opt(sbi->s_mount_opt, QUOTA); set_opt(sbi->s_mount_opt, GRPQUOTA); break; case Opt_noquota: if (sb_any_quota_loaded(sb)) { ext3_msg(sb, KERN_ERR, "error: cannot change " "quota options when quota turned on."); return 0; } clear_opt(sbi->s_mount_opt, QUOTA); clear_opt(sbi->s_mount_opt, USRQUOTA); clear_opt(sbi->s_mount_opt, GRPQUOTA); break; #else case Opt_quota: case Opt_usrquota: case Opt_grpquota: ext3_msg(sb, KERN_ERR, "error: quota options not supported."); break; case Opt_usrjquota: case Opt_grpjquota: case Opt_offusrjquota: case Opt_offgrpjquota: case Opt_jqfmt_vfsold: case Opt_jqfmt_vfsv0: case Opt_jqfmt_vfsv1: ext3_msg(sb, KERN_ERR, "error: journaled quota options not " "supported."); break; case Opt_noquota: break; #endif case Opt_abort: set_opt(sbi->s_mount_opt, ABORT); break; case Opt_nobarrier: clear_opt(sbi->s_mount_opt, BARRIER); break; case Opt_barrier: if (args[0].from) { if (match_int(&args[0], &option)) return 0; } else option = 1; /* No argument, default to 1 */ if (option) set_opt(sbi->s_mount_opt, BARRIER); else clear_opt(sbi->s_mount_opt, BARRIER); break; case Opt_ignore: break; case Opt_resize: if (!is_remount) { ext3_msg(sb, KERN_ERR, "error: resize option only available " "for remount"); return 0; } if (match_int(&args[0], &option) != 0) return 0; *n_blocks_count = option; break; case Opt_nobh: ext3_msg(sb, KERN_WARNING, "warning: ignoring deprecated nobh option"); break; case Opt_bh: ext3_msg(sb, KERN_WARNING, "warning: ignoring deprecated bh option"); break; default: ext3_msg(sb, KERN_ERR, "error: unrecognized mount option \"%s\" " "or missing value", p); return 0; } } #ifdef CONFIG_QUOTA if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) clear_opt(sbi->s_mount_opt, USRQUOTA); if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) clear_opt(sbi->s_mount_opt, GRPQUOTA); if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { ext3_msg(sb, KERN_ERR, "error: old and new quota " "format mixing."); return 0; } if (!sbi->s_jquota_fmt) { ext3_msg(sb, KERN_ERR, "error: journaled quota format " "not specified."); return 0; } } else { if (sbi->s_jquota_fmt) { ext3_msg(sb, KERN_ERR, "error: journaled quota format " "specified with no journaling " "enabled."); return 0; } } #endif return 1; } static int ext3_setup_super(struct super_block *sb, struct ext3_super_block *es, int read_only) { struct ext3_sb_info *sbi = EXT3_SB(sb); int res = 0; if (le32_to_cpu(es->s_rev_level) > EXT3_MAX_SUPP_REV) { ext3_msg(sb, KERN_ERR, "error: revision level too high, " "forcing read-only mode"); res = MS_RDONLY; } if (read_only) return res; if (!(sbi->s_mount_state & EXT3_VALID_FS)) ext3_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " "running e2fsck is recommended"); else if ((sbi->s_mount_state & EXT3_ERROR_FS)) ext3_msg(sb, KERN_WARNING, "warning: mounting fs with errors, " "running e2fsck is recommended"); else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && le16_to_cpu(es->s_mnt_count) >= le16_to_cpu(es->s_max_mnt_count)) ext3_msg(sb, KERN_WARNING, "warning: maximal mount count reached, " "running e2fsck is recommended"); else if (le32_to_cpu(es->s_checkinterval) && (le32_to_cpu(es->s_lastcheck) + le32_to_cpu(es->s_checkinterval) <= get_seconds())) ext3_msg(sb, KERN_WARNING, "warning: checktime reached, " "running e2fsck is recommended"); #if 0 /* @@@ We _will_ want to clear the valid bit if we find inconsistencies, to force a fsck at reboot. But for a plain journaled filesystem we can keep it set as valid forever! :) */ es->s_state &= cpu_to_le16(~EXT3_VALID_FS); #endif if (!le16_to_cpu(es->s_max_mnt_count)) es->s_max_mnt_count = cpu_to_le16(EXT3_DFL_MAX_MNT_COUNT); le16_add_cpu(&es->s_mnt_count, 1); es->s_mtime = cpu_to_le32(get_seconds()); ext3_update_dynamic_rev(sb); EXT3_SET_INCOMPAT_FEATURE(sb, EXT3_FEATURE_INCOMPAT_RECOVER); ext3_commit_super(sb, es, 1); if (test_opt(sb, DEBUG)) ext3_msg(sb, KERN_INFO, "[bs=%lu, gc=%lu, " "bpg=%lu, ipg=%lu, mo=%04lx]", sb->s_blocksize, sbi->s_groups_count, EXT3_BLOCKS_PER_GROUP(sb), EXT3_INODES_PER_GROUP(sb), sbi->s_mount_opt); if (EXT3_SB(sb)->s_journal->j_inode == NULL) { char b[BDEVNAME_SIZE]; ext3_msg(sb, KERN_INFO, "using external journal on %s", bdevname(EXT3_SB(sb)->s_journal->j_dev, b)); } else { ext3_msg(sb, KERN_INFO, "using internal journal"); } cleancache_init_fs(sb); return res; } /* Called at mount-time, super-block is locked */ static int ext3_check_descriptors(struct super_block *sb) { struct ext3_sb_info *sbi = EXT3_SB(sb); int i; ext3_debug ("Checking group descriptors"); for (i = 0; i < sbi->s_groups_count; i++) { struct ext3_group_desc *gdp = ext3_get_group_desc(sb, i, NULL); ext3_fsblk_t first_block = ext3_group_first_block_no(sb, i); ext3_fsblk_t last_block; if (i == sbi->s_groups_count - 1) last_block = le32_to_cpu(sbi->s_es->s_blocks_count) - 1; else last_block = first_block + (EXT3_BLOCKS_PER_GROUP(sb) - 1); if (le32_to_cpu(gdp->bg_block_bitmap) < first_block || le32_to_cpu(gdp->bg_block_bitmap) > last_block) { ext3_error (sb, "ext3_check_descriptors", "Block bitmap for group %d" " not in group (block %lu)!", i, (unsigned long) le32_to_cpu(gdp->bg_block_bitmap)); return 0; } if (le32_to_cpu(gdp->bg_inode_bitmap) < first_block || le32_to_cpu(gdp->bg_inode_bitmap) > last_block) { ext3_error (sb, "ext3_check_descriptors", "Inode bitmap for group %d" " not in group (block %lu)!", i, (unsigned long) le32_to_cpu(gdp->bg_inode_bitmap)); return 0; } if (le32_to_cpu(gdp->bg_inode_table) < first_block || le32_to_cpu(gdp->bg_inode_table) + sbi->s_itb_per_group - 1 > last_block) { ext3_error (sb, "ext3_check_descriptors", "Inode table for group %d" " not in group (block %lu)!", i, (unsigned long) le32_to_cpu(gdp->bg_inode_table)); return 0; } } sbi->s_es->s_free_blocks_count=cpu_to_le32(ext3_count_free_blocks(sb)); sbi->s_es->s_free_inodes_count=cpu_to_le32(ext3_count_free_inodes(sb)); return 1; } /* ext3_orphan_cleanup() walks a singly-linked list of inodes (starting at * the superblock) which were deleted from all directories, but held open by * a process at the time of a crash. We walk the list and try to delete these * inodes at recovery time (only with a read-write filesystem). * * In order to keep the orphan inode chain consistent during traversal (in * case of crash during recovery), we link each inode into the superblock * orphan list_head and handle it the same way as an inode deletion during * normal operation (which journals the operations for us). * * We only do an iget() and an iput() on each inode, which is very safe if we * accidentally point at an in-use or already deleted inode. The worst that * can happen in this case is that we get a "bit already cleared" message from * ext3_free_inode(). The only reason we would point at a wrong inode is if * e2fsck was run on this filesystem, and it must have already done the orphan * inode cleanup for us, so we can safely abort without any further action. */ static void ext3_orphan_cleanup (struct super_block * sb, struct ext3_super_block * es) { unsigned int s_flags = sb->s_flags; int nr_orphans = 0, nr_truncates = 0; #ifdef CONFIG_QUOTA int i; #endif if (!es->s_last_orphan) { jbd_debug(4, "no orphan inodes to clean up\n"); return; } if (bdev_read_only(sb->s_bdev)) { ext3_msg(sb, KERN_ERR, "error: write access " "unavailable, skipping orphan cleanup."); return; } /* Check if feature set allows readwrite operations */ if (EXT3_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP)) { ext3_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " "unknown ROCOMPAT features"); return; } if (EXT3_SB(sb)->s_mount_state & EXT3_ERROR_FS) { if (es->s_last_orphan) jbd_debug(1, "Errors on filesystem, " "clearing orphan list.\n"); es->s_last_orphan = 0; jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); return; } if (s_flags & MS_RDONLY) { ext3_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); sb->s_flags &= ~MS_RDONLY; } #ifdef CONFIG_QUOTA /* Needed for iput() to work correctly and not trash data */ sb->s_flags |= MS_ACTIVE; /* Turn on quotas so that they are updated correctly */ for (i = 0; i < MAXQUOTAS; i++) { if (EXT3_SB(sb)->s_qf_names[i]) { int ret = ext3_quota_on_mount(sb, i); if (ret < 0) ext3_msg(sb, KERN_ERR, "error: cannot turn on journaled " "quota: %d", ret); } } #endif while (es->s_last_orphan) { struct inode *inode; inode = ext3_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); if (IS_ERR(inode)) { es->s_last_orphan = 0; break; } list_add(&EXT3_I(inode)->i_orphan, &EXT3_SB(sb)->s_orphan); dquot_initialize(inode); if (inode->i_nlink) { printk(KERN_DEBUG "%s: truncating inode %lu to %Ld bytes\n", __func__, inode->i_ino, inode->i_size); jbd_debug(2, "truncating inode %lu to %Ld bytes\n", inode->i_ino, inode->i_size); ext3_truncate(inode); nr_truncates++; } else { printk(KERN_DEBUG "%s: deleting unreferenced inode %lu\n", __func__, inode->i_ino); jbd_debug(2, "deleting unreferenced inode %lu\n", inode->i_ino); nr_orphans++; } iput(inode); /* The delete magic happens here! */ } #define PLURAL(x) (x), ((x)==1) ? "" : "s" if (nr_orphans) ext3_msg(sb, KERN_INFO, "%d orphan inode%s deleted", PLURAL(nr_orphans)); if (nr_truncates) ext3_msg(sb, KERN_INFO, "%d truncate%s cleaned up", PLURAL(nr_truncates)); #ifdef CONFIG_QUOTA /* Turn quotas off */ for (i = 0; i < MAXQUOTAS; i++) { if (sb_dqopt(sb)->files[i]) dquot_quota_off(sb, i); } #endif sb->s_flags = s_flags; /* Restore MS_RDONLY status */ } /* * Maximal file size. There is a direct, and {,double-,triple-}indirect * block limit, and also a limit of (2^32 - 1) 512-byte sectors in i_blocks. * We need to be 1 filesystem block less than the 2^32 sector limit. */ static loff_t ext3_max_size(int bits) { loff_t res = EXT3_NDIR_BLOCKS; int meta_blocks; loff_t upper_limit; /* This is calculated to be the largest file size for a * dense, file such that the total number of * sectors in the file, including data and all indirect blocks, * does not exceed 2^32 -1 * __u32 i_blocks representing the total number of * 512 bytes blocks of the file */ upper_limit = (1LL << 32) - 1; /* total blocks in file system block size */ upper_limit >>= (bits - 9); /* indirect blocks */ meta_blocks = 1; /* double indirect blocks */ meta_blocks += 1 + (1LL << (bits-2)); /* tripple indirect blocks */ meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); upper_limit -= meta_blocks; upper_limit <<= bits; res += 1LL << (bits-2); res += 1LL << (2*(bits-2)); res += 1LL << (3*(bits-2)); res <<= bits; if (res > upper_limit) res = upper_limit; if (res > MAX_LFS_FILESIZE) res = MAX_LFS_FILESIZE; return res; } static ext3_fsblk_t descriptor_loc(struct super_block *sb, ext3_fsblk_t logic_sb_block, int nr) { struct ext3_sb_info *sbi = EXT3_SB(sb); unsigned long bg, first_meta_bg; int has_super = 0; first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); if (!EXT3_HAS_INCOMPAT_FEATURE(sb, EXT3_FEATURE_INCOMPAT_META_BG) || nr < first_meta_bg) return (logic_sb_block + nr + 1); bg = sbi->s_desc_per_block * nr; if (ext3_bg_has_super(sb, bg)) has_super = 1; return (has_super + ext3_group_first_block_no(sb, bg)); } static int ext3_fill_super (struct super_block *sb, void *data, int silent) { struct buffer_head * bh; struct ext3_super_block *es = NULL; struct ext3_sb_info *sbi; ext3_fsblk_t block; ext3_fsblk_t sb_block = get_sb_block(&data, sb); ext3_fsblk_t logic_sb_block; unsigned long offset = 0; unsigned int journal_inum = 0; unsigned long journal_devnum = 0; unsigned long def_mount_opts; struct inode *root; int blocksize; int hblock; int db_count; int i; int needs_recovery; int ret = -EINVAL; __le32 features; int err; sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); if (!sbi) return -ENOMEM; sbi->s_blockgroup_lock = kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); if (!sbi->s_blockgroup_lock) { kfree(sbi); return -ENOMEM; } sb->s_fs_info = sbi; sbi->s_mount_opt = 0; sbi->s_resuid = EXT3_DEF_RESUID; sbi->s_resgid = EXT3_DEF_RESGID; sbi->s_sb_block = sb_block; blocksize = sb_min_blocksize(sb, EXT3_MIN_BLOCK_SIZE); if (!blocksize) { ext3_msg(sb, KERN_ERR, "error: unable to set blocksize"); goto out_fail; } /* * The ext3 superblock will not be buffer aligned for other than 1kB * block sizes. We need to calculate the offset from buffer start. */ if (blocksize != EXT3_MIN_BLOCK_SIZE) { logic_sb_block = (sb_block * EXT3_MIN_BLOCK_SIZE) / blocksize; offset = (sb_block * EXT3_MIN_BLOCK_SIZE) % blocksize; } else { logic_sb_block = sb_block; } if (!(bh = sb_bread(sb, logic_sb_block))) { ext3_msg(sb, KERN_ERR, "error: unable to read superblock"); goto out_fail; } /* * Note: s_es must be initialized as soon as possible because * some ext3 macro-instructions depend on its value */ es = (struct ext3_super_block *) (bh->b_data + offset); sbi->s_es = es; sb->s_magic = le16_to_cpu(es->s_magic); if (sb->s_magic != EXT3_SUPER_MAGIC) goto cantfind_ext3; /* Set defaults before we parse the mount options */ def_mount_opts = le32_to_cpu(es->s_default_mount_opts); if (def_mount_opts & EXT3_DEFM_DEBUG) set_opt(sbi->s_mount_opt, DEBUG); if (def_mount_opts & EXT3_DEFM_BSDGROUPS) set_opt(sbi->s_mount_opt, GRPID); if (def_mount_opts & EXT3_DEFM_UID16) set_opt(sbi->s_mount_opt, NO_UID32); #ifdef CONFIG_EXT3_FS_XATTR if (def_mount_opts & EXT3_DEFM_XATTR_USER) set_opt(sbi->s_mount_opt, XATTR_USER); #endif #ifdef CONFIG_EXT3_FS_POSIX_ACL if (def_mount_opts & EXT3_DEFM_ACL) set_opt(sbi->s_mount_opt, POSIX_ACL); #endif if ((def_mount_opts & EXT3_DEFM_JMODE) == EXT3_DEFM_JMODE_DATA) set_opt(sbi->s_mount_opt, JOURNAL_DATA); else if ((def_mount_opts & EXT3_DEFM_JMODE) == EXT3_DEFM_JMODE_ORDERED) set_opt(sbi->s_mount_opt, ORDERED_DATA); else if ((def_mount_opts & EXT3_DEFM_JMODE) == EXT3_DEFM_JMODE_WBACK) set_opt(sbi->s_mount_opt, WRITEBACK_DATA); if (le16_to_cpu(sbi->s_es->s_errors) == EXT3_ERRORS_PANIC) set_opt(sbi->s_mount_opt, ERRORS_PANIC); else if (le16_to_cpu(sbi->s_es->s_errors) == EXT3_ERRORS_CONTINUE) set_opt(sbi->s_mount_opt, ERRORS_CONT); else set_opt(sbi->s_mount_opt, ERRORS_RO); sbi->s_resuid = le16_to_cpu(es->s_def_resuid); sbi->s_resgid = le16_to_cpu(es->s_def_resgid); /* enable barriers by default */ set_opt(sbi->s_mount_opt, BARRIER); set_opt(sbi->s_mount_opt, RESERVATION); if (!parse_options ((char *) data, sb, &journal_inum, &journal_devnum, NULL, 0)) goto failed_mount; sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); if (le32_to_cpu(es->s_rev_level) == EXT3_GOOD_OLD_REV && (EXT3_HAS_COMPAT_FEATURE(sb, ~0U) || EXT3_HAS_RO_COMPAT_FEATURE(sb, ~0U) || EXT3_HAS_INCOMPAT_FEATURE(sb, ~0U))) ext3_msg(sb, KERN_WARNING, "warning: feature flags set on rev 0 fs, " "running e2fsck is recommended"); /* * Check feature flags regardless of the revision level, since we * previously didn't change the revision level when setting the flags, * so there is a chance incompat flags are set on a rev 0 filesystem. */ features = EXT3_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP); if (features) { ext3_msg(sb, KERN_ERR, "error: couldn't mount because of unsupported " "optional features (%x)", le32_to_cpu(features)); goto failed_mount; } features = EXT3_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP); if (!(sb->s_flags & MS_RDONLY) && features) { ext3_msg(sb, KERN_ERR, "error: couldn't mount RDWR because of unsupported " "optional features (%x)", le32_to_cpu(features)); goto failed_mount; } blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); if (blocksize < EXT3_MIN_BLOCK_SIZE || blocksize > EXT3_MAX_BLOCK_SIZE) { ext3_msg(sb, KERN_ERR, "error: couldn't mount because of unsupported " "filesystem blocksize %d", blocksize); goto failed_mount; } hblock = bdev_logical_block_size(sb->s_bdev); if (sb->s_blocksize != blocksize) { /* * Make sure the blocksize for the filesystem is larger * than the hardware sectorsize for the machine. */ if (blocksize < hblock) { ext3_msg(sb, KERN_ERR, "error: fsblocksize %d too small for " "hardware sectorsize %d", blocksize, hblock); goto failed_mount; } brelse (bh); if (!sb_set_blocksize(sb, blocksize)) { ext3_msg(sb, KERN_ERR, "error: bad blocksize %d", blocksize); goto out_fail; } logic_sb_block = (sb_block * EXT3_MIN_BLOCK_SIZE) / blocksize; offset = (sb_block * EXT3_MIN_BLOCK_SIZE) % blocksize; bh = sb_bread(sb, logic_sb_block); if (!bh) { ext3_msg(sb, KERN_ERR, "error: can't read superblock on 2nd try"); goto failed_mount; } es = (struct ext3_super_block *)(bh->b_data + offset); sbi->s_es = es; if (es->s_magic != cpu_to_le16(EXT3_SUPER_MAGIC)) { ext3_msg(sb, KERN_ERR, "error: magic mismatch"); goto failed_mount; } } sb->s_maxbytes = ext3_max_size(sb->s_blocksize_bits); if (le32_to_cpu(es->s_rev_level) == EXT3_GOOD_OLD_REV) { sbi->s_inode_size = EXT3_GOOD_OLD_INODE_SIZE; sbi->s_first_ino = EXT3_GOOD_OLD_FIRST_INO; } else { sbi->s_inode_size = le16_to_cpu(es->s_inode_size); sbi->s_first_ino = le32_to_cpu(es->s_first_ino); if ((sbi->s_inode_size < EXT3_GOOD_OLD_INODE_SIZE) || (!is_power_of_2(sbi->s_inode_size)) || (sbi->s_inode_size > blocksize)) { ext3_msg(sb, KERN_ERR, "error: unsupported inode size: %d", sbi->s_inode_size); goto failed_mount; } } sbi->s_frag_size = EXT3_MIN_FRAG_SIZE << le32_to_cpu(es->s_log_frag_size); if (blocksize != sbi->s_frag_size) { ext3_msg(sb, KERN_ERR, "error: fragsize %lu != blocksize %u (unsupported)", sbi->s_frag_size, blocksize); goto failed_mount; } sbi->s_frags_per_block = 1; sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); sbi->s_frags_per_group = le32_to_cpu(es->s_frags_per_group); sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); if (EXT3_INODE_SIZE(sb) == 0 || EXT3_INODES_PER_GROUP(sb) == 0) goto cantfind_ext3; sbi->s_inodes_per_block = blocksize / EXT3_INODE_SIZE(sb); if (sbi->s_inodes_per_block == 0) goto cantfind_ext3; sbi->s_itb_per_group = sbi->s_inodes_per_group / sbi->s_inodes_per_block; sbi->s_desc_per_block = blocksize / sizeof(struct ext3_group_desc); sbi->s_sbh = bh; sbi->s_mount_state = le16_to_cpu(es->s_state); sbi->s_addr_per_block_bits = ilog2(EXT3_ADDR_PER_BLOCK(sb)); sbi->s_desc_per_block_bits = ilog2(EXT3_DESC_PER_BLOCK(sb)); for (i=0; i < 4; i++) sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); sbi->s_def_hash_version = es->s_def_hash_version; i = le32_to_cpu(es->s_flags); if (i & EXT2_FLAGS_UNSIGNED_HASH) sbi->s_hash_unsigned = 3; else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { #ifdef __CHAR_UNSIGNED__ es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); sbi->s_hash_unsigned = 3; #else es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); #endif } if (sbi->s_blocks_per_group > blocksize * 8) { ext3_msg(sb, KERN_ERR, "#blocks per group too big: %lu", sbi->s_blocks_per_group); goto failed_mount; } if (sbi->s_frags_per_group > blocksize * 8) { ext3_msg(sb, KERN_ERR, "error: #fragments per group too big: %lu", sbi->s_frags_per_group); goto failed_mount; } if (sbi->s_inodes_per_group > blocksize * 8) { ext3_msg(sb, KERN_ERR, "error: #inodes per group too big: %lu", sbi->s_inodes_per_group); goto failed_mount; } err = generic_check_addressable(sb->s_blocksize_bits, le32_to_cpu(es->s_blocks_count)); if (err) { ext3_msg(sb, KERN_ERR, "error: filesystem is too large to mount safely"); if (sizeof(sector_t) < 8) ext3_msg(sb, KERN_ERR, "error: CONFIG_LBDAF not enabled"); ret = err; goto failed_mount; } if (EXT3_BLOCKS_PER_GROUP(sb) == 0) goto cantfind_ext3; sbi->s_groups_count = ((le32_to_cpu(es->s_blocks_count) - le32_to_cpu(es->s_first_data_block) - 1) / EXT3_BLOCKS_PER_GROUP(sb)) + 1; db_count = DIV_ROUND_UP(sbi->s_groups_count, EXT3_DESC_PER_BLOCK(sb)); sbi->s_group_desc = kmalloc(db_count * sizeof (struct buffer_head *), GFP_KERNEL); if (sbi->s_group_desc == NULL) { ext3_msg(sb, KERN_ERR, "error: not enough memory"); ret = -ENOMEM; goto failed_mount; } bgl_lock_init(sbi->s_blockgroup_lock); for (i = 0; i < db_count; i++) { block = descriptor_loc(sb, logic_sb_block, i); sbi->s_group_desc[i] = sb_bread(sb, block); if (!sbi->s_group_desc[i]) { ext3_msg(sb, KERN_ERR, "error: can't read group descriptor %d", i); db_count = i; goto failed_mount2; } } if (!ext3_check_descriptors (sb)) { ext3_msg(sb, KERN_ERR, "error: group descriptors corrupted"); goto failed_mount2; } sbi->s_gdb_count = db_count; get_random_bytes(&sbi->s_next_generation, sizeof(u32)); spin_lock_init(&sbi->s_next_gen_lock); /* per fileystem reservation list head & lock */ spin_lock_init(&sbi->s_rsv_window_lock); sbi->s_rsv_window_root = RB_ROOT; /* Add a single, static dummy reservation to the start of the * reservation window list --- it gives us a placeholder for * append-at-start-of-list which makes the allocation logic * _much_ simpler. */ sbi->s_rsv_window_head.rsv_start = EXT3_RESERVE_WINDOW_NOT_ALLOCATED; sbi->s_rsv_window_head.rsv_end = EXT3_RESERVE_WINDOW_NOT_ALLOCATED; sbi->s_rsv_window_head.rsv_alloc_hit = 0; sbi->s_rsv_window_head.rsv_goal_size = 0; ext3_rsv_window_add(sb, &sbi->s_rsv_window_head); /* * set up enough so that it can read an inode */ sb->s_op = &ext3_sops; sb->s_export_op = &ext3_export_ops; sb->s_xattr = ext3_xattr_handlers; #ifdef CONFIG_QUOTA sb->s_qcop = &ext3_qctl_operations; sb->dq_op = &ext3_quota_operations; #endif memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ mutex_init(&sbi->s_orphan_lock); mutex_init(&sbi->s_resize_lock); sb->s_root = NULL; needs_recovery = (es->s_last_orphan != 0 || EXT3_HAS_INCOMPAT_FEATURE(sb, EXT3_FEATURE_INCOMPAT_RECOVER)); /* * The first inode we look at is the journal inode. Don't try * root first: it may be modified in the journal! */ if (!test_opt(sb, NOLOAD) && EXT3_HAS_COMPAT_FEATURE(sb, EXT3_FEATURE_COMPAT_HAS_JOURNAL)) { if (ext3_load_journal(sb, es, journal_devnum)) goto failed_mount2; } else if (journal_inum) { if (ext3_create_journal(sb, es, journal_inum)) goto failed_mount2; } else { if (!silent) ext3_msg(sb, KERN_ERR, "error: no journal found. " "mounting ext3 over ext2?"); goto failed_mount2; } err = percpu_counter_init(&sbi->s_freeblocks_counter, ext3_count_free_blocks(sb)); if (!err) { err = percpu_counter_init(&sbi->s_freeinodes_counter, ext3_count_free_inodes(sb)); } if (!err) { err = percpu_counter_init(&sbi->s_dirs_counter, ext3_count_dirs(sb)); } if (err) { ext3_msg(sb, KERN_ERR, "error: insufficient memory"); ret = err; goto failed_mount3; } /* We have now updated the journal if required, so we can * validate the data journaling mode. */ switch (test_opt(sb, DATA_FLAGS)) { case 0: /* No mode set, assume a default based on the journal capabilities: ORDERED_DATA if the journal can cope, else JOURNAL_DATA */ if (journal_check_available_features (sbi->s_journal, 0, 0, JFS_FEATURE_INCOMPAT_REVOKE)) set_opt(sbi->s_mount_opt, DEFAULT_DATA_MODE); else set_opt(sbi->s_mount_opt, JOURNAL_DATA); break; case EXT3_MOUNT_ORDERED_DATA: case EXT3_MOUNT_WRITEBACK_DATA: if (!journal_check_available_features (sbi->s_journal, 0, 0, JFS_FEATURE_INCOMPAT_REVOKE)) { ext3_msg(sb, KERN_ERR, "error: journal does not support " "requested data journaling mode"); goto failed_mount3; } default: break; } /* * The journal_load will have done any necessary log recovery, * so we can safely mount the rest of the filesystem now. */ root = ext3_iget(sb, EXT3_ROOT_INO); if (IS_ERR(root)) { ext3_msg(sb, KERN_ERR, "error: get root inode failed"); ret = PTR_ERR(root); goto failed_mount3; } if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { iput(root); ext3_msg(sb, KERN_ERR, "error: corrupt root inode, run e2fsck"); goto failed_mount3; } sb->s_root = d_alloc_root(root); if (!sb->s_root) { ext3_msg(sb, KERN_ERR, "error: get root dentry failed"); iput(root); ret = -ENOMEM; goto failed_mount3; } ext3_setup_super (sb, es, sb->s_flags & MS_RDONLY); EXT3_SB(sb)->s_mount_state |= EXT3_ORPHAN_FS; ext3_orphan_cleanup(sb, es); EXT3_SB(sb)->s_mount_state &= ~EXT3_ORPHAN_FS; if (needs_recovery) { ext3_mark_recovery_complete(sb, es); ext3_msg(sb, KERN_INFO, "recovery complete"); } ext3_msg(sb, KERN_INFO, "mounted filesystem with %s data mode", test_opt(sb,DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ? "journal": test_opt(sb,DATA_FLAGS) == EXT3_MOUNT_ORDERED_DATA ? "ordered": "writeback"); return 0; cantfind_ext3: if (!silent) ext3_msg(sb, KERN_INFO, "error: can't find ext3 filesystem on dev %s.", sb->s_id); goto failed_mount; failed_mount3: percpu_counter_destroy(&sbi->s_freeblocks_counter); percpu_counter_destroy(&sbi->s_freeinodes_counter); percpu_counter_destroy(&sbi->s_dirs_counter); journal_destroy(sbi->s_journal); failed_mount2: for (i = 0; i < db_count; i++) brelse(sbi->s_group_desc[i]); kfree(sbi->s_group_desc); failed_mount: #ifdef CONFIG_QUOTA for (i = 0; i < MAXQUOTAS; i++) kfree(sbi->s_qf_names[i]); #endif ext3_blkdev_remove(sbi); brelse(bh); out_fail: sb->s_fs_info = NULL; kfree(sbi->s_blockgroup_lock); kfree(sbi); return ret; } /* * Setup any per-fs journal parameters now. We'll do this both on * initial mount, once the journal has been initialised but before we've * done any recovery; and again on any subsequent remount. */ static void ext3_init_journal_params(struct super_block *sb, journal_t *journal) { struct ext3_sb_info *sbi = EXT3_SB(sb); if (sbi->s_commit_interval) journal->j_commit_interval = sbi->s_commit_interval; /* We could also set up an ext3-specific default for the commit * interval here, but for now we'll just fall back to the jbd * default. */ spin_lock(&journal->j_state_lock); if (test_opt(sb, BARRIER)) journal->j_flags |= JFS_BARRIER; else journal->j_flags &= ~JFS_BARRIER; if (test_opt(sb, DATA_ERR_ABORT)) journal->j_flags |= JFS_ABORT_ON_SYNCDATA_ERR; else journal->j_flags &= ~JFS_ABORT_ON_SYNCDATA_ERR; spin_unlock(&journal->j_state_lock); } static journal_t *ext3_get_journal(struct super_block *sb, unsigned int journal_inum) { struct inode *journal_inode; journal_t *journal; /* First, test for the existence of a valid inode on disk. Bad * things happen if we iget() an unused inode, as the subsequent * iput() will try to delete it. */ journal_inode = ext3_iget(sb, journal_inum); if (IS_ERR(journal_inode)) { ext3_msg(sb, KERN_ERR, "error: no journal found"); return NULL; } if (!journal_inode->i_nlink) { make_bad_inode(journal_inode); iput(journal_inode); ext3_msg(sb, KERN_ERR, "error: journal inode is deleted"); return NULL; } jbd_debug(2, "Journal inode found at %p: %Ld bytes\n", journal_inode, journal_inode->i_size); if (!S_ISREG(journal_inode->i_mode)) { ext3_msg(sb, KERN_ERR, "error: invalid journal inode"); iput(journal_inode); return NULL; } journal = journal_init_inode(journal_inode); if (!journal) { ext3_msg(sb, KERN_ERR, "error: could not load journal inode"); iput(journal_inode); return NULL; } journal->j_private = sb; ext3_init_journal_params(sb, journal); return journal; } static journal_t *ext3_get_dev_journal(struct super_block *sb, dev_t j_dev) { struct buffer_head * bh; journal_t *journal; ext3_fsblk_t start; ext3_fsblk_t len; int hblock, blocksize; ext3_fsblk_t sb_block; unsigned long offset; struct ext3_super_block * es; struct block_device *bdev; bdev = ext3_blkdev_get(j_dev, sb); if (bdev == NULL) return NULL; blocksize = sb->s_blocksize; hblock = bdev_logical_block_size(bdev); if (blocksize < hblock) { ext3_msg(sb, KERN_ERR, "error: blocksize too small for journal device"); goto out_bdev; } sb_block = EXT3_MIN_BLOCK_SIZE / blocksize; offset = EXT3_MIN_BLOCK_SIZE % blocksize; set_blocksize(bdev, blocksize); if (!(bh = __bread(bdev, sb_block, blocksize))) { ext3_msg(sb, KERN_ERR, "error: couldn't read superblock of " "external journal"); goto out_bdev; } es = (struct ext3_super_block *) (bh->b_data + offset); if ((le16_to_cpu(es->s_magic) != EXT3_SUPER_MAGIC) || !(le32_to_cpu(es->s_feature_incompat) & EXT3_FEATURE_INCOMPAT_JOURNAL_DEV)) { ext3_msg(sb, KERN_ERR, "error: external journal has " "bad superblock"); brelse(bh); goto out_bdev; } if (memcmp(EXT3_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { ext3_msg(sb, KERN_ERR, "error: journal UUID does not match"); brelse(bh); goto out_bdev; } len = le32_to_cpu(es->s_blocks_count); start = sb_block + 1; brelse(bh); /* we're done with the superblock */ journal = journal_init_dev(bdev, sb->s_bdev, start, len, blocksize); if (!journal) { ext3_msg(sb, KERN_ERR, "error: failed to create device journal"); goto out_bdev; } journal->j_private = sb; ll_rw_block(READ, 1, &journal->j_sb_buffer); wait_on_buffer(journal->j_sb_buffer); if (!buffer_uptodate(journal->j_sb_buffer)) { ext3_msg(sb, KERN_ERR, "I/O error on journal device"); goto out_journal; } if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { ext3_msg(sb, KERN_ERR, "error: external journal has more than one " "user (unsupported) - %d", be32_to_cpu(journal->j_superblock->s_nr_users)); goto out_journal; } EXT3_SB(sb)->journal_bdev = bdev; ext3_init_journal_params(sb, journal); return journal; out_journal: journal_destroy(journal); out_bdev: ext3_blkdev_put(bdev); return NULL; } static int ext3_load_journal(struct super_block *sb, struct ext3_super_block *es, unsigned long journal_devnum) { journal_t *journal; unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); dev_t journal_dev; int err = 0; int really_read_only; if (journal_devnum && journal_devnum != le32_to_cpu(es->s_journal_dev)) { ext3_msg(sb, KERN_INFO, "external journal device major/minor " "numbers have changed"); journal_dev = new_decode_dev(journal_devnum); } else journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); really_read_only = bdev_read_only(sb->s_bdev); /* * Are we loading a blank journal or performing recovery after a * crash? For recovery, we need to check in advance whether we * can get read-write access to the device. */ if (EXT3_HAS_INCOMPAT_FEATURE(sb, EXT3_FEATURE_INCOMPAT_RECOVER)) { if (sb->s_flags & MS_RDONLY) { ext3_msg(sb, KERN_INFO, "recovery required on readonly filesystem"); if (really_read_only) { ext3_msg(sb, KERN_ERR, "error: write access " "unavailable, cannot proceed"); return -EROFS; } ext3_msg(sb, KERN_INFO, "write access will be enabled during recovery"); } } if (journal_inum && journal_dev) { ext3_msg(sb, KERN_ERR, "error: filesystem has both journal " "and inode journals"); return -EINVAL; } if (journal_inum) { if (!(journal = ext3_get_journal(sb, journal_inum))) return -EINVAL; } else { if (!(journal = ext3_get_dev_journal(sb, journal_dev))) return -EINVAL; } if (!(journal->j_flags & JFS_BARRIER)) printk(KERN_INFO "EXT3-fs: barriers not enabled\n"); if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) { err = journal_update_format(journal); if (err) { ext3_msg(sb, KERN_ERR, "error updating journal"); journal_destroy(journal); return err; } } if (!EXT3_HAS_INCOMPAT_FEATURE(sb, EXT3_FEATURE_INCOMPAT_RECOVER)) err = journal_wipe(journal, !really_read_only); if (!err) err = journal_load(journal); if (err) { ext3_msg(sb, KERN_ERR, "error loading journal"); journal_destroy(journal); return err; } EXT3_SB(sb)->s_journal = journal; ext3_clear_journal_err(sb, es); if (!really_read_only && journal_devnum && journal_devnum != le32_to_cpu(es->s_journal_dev)) { es->s_journal_dev = cpu_to_le32(journal_devnum); /* Make sure we flush the recovery flag to disk. */ ext3_commit_super(sb, es, 1); } return 0; } static int ext3_create_journal(struct super_block *sb, struct ext3_super_block *es, unsigned int journal_inum) { journal_t *journal; int err; if (sb->s_flags & MS_RDONLY) { ext3_msg(sb, KERN_ERR, "error: readonly filesystem when trying to " "create journal"); return -EROFS; } journal = ext3_get_journal(sb, journal_inum); if (!journal) return -EINVAL; ext3_msg(sb, KERN_INFO, "creating new journal on inode %u", journal_inum); err = journal_create(journal); if (err) { ext3_msg(sb, KERN_ERR, "error creating journal"); journal_destroy(journal); return -EIO; } EXT3_SB(sb)->s_journal = journal; ext3_update_dynamic_rev(sb); EXT3_SET_INCOMPAT_FEATURE(sb, EXT3_FEATURE_INCOMPAT_RECOVER); EXT3_SET_COMPAT_FEATURE(sb, EXT3_FEATURE_COMPAT_HAS_JOURNAL); es->s_journal_inum = cpu_to_le32(journal_inum); /* Make sure we flush the recovery flag to disk. */ ext3_commit_super(sb, es, 1); return 0; } static int ext3_commit_super(struct super_block *sb, struct ext3_super_block *es, int sync) { struct buffer_head *sbh = EXT3_SB(sb)->s_sbh; int error = 0; if (!sbh) return error; if (buffer_write_io_error(sbh)) { /* * Oh, dear. A previous attempt to write the * superblock failed. This could happen because the * USB device was yanked out. Or it could happen to * be a transient write error and maybe the block will * be remapped. Nothing we can do but to retry the * write and hope for the best. */ ext3_msg(sb, KERN_ERR, "previous I/O error to " "superblock detected"); clear_buffer_write_io_error(sbh); set_buffer_uptodate(sbh); } /* * If the file system is mounted read-only, don't update the * superblock write time. This avoids updating the superblock * write time when we are mounting the root file system * read/only but we need to replay the journal; at that point, * for people who are east of GMT and who make their clock * tick in localtime for Windows bug-for-bug compatibility, * the clock is set in the future, and this will cause e2fsck * to complain and force a full file system check. */ if (!(sb->s_flags & MS_RDONLY)) es->s_wtime = cpu_to_le32(get_seconds()); es->s_free_blocks_count = cpu_to_le32(ext3_count_free_blocks(sb)); es->s_free_inodes_count = cpu_to_le32(ext3_count_free_inodes(sb)); BUFFER_TRACE(sbh, "marking dirty"); mark_buffer_dirty(sbh); if (sync) { error = sync_dirty_buffer(sbh); if (buffer_write_io_error(sbh)) { ext3_msg(sb, KERN_ERR, "I/O error while writing " "superblock"); clear_buffer_write_io_error(sbh); set_buffer_uptodate(sbh); } } return error; } /* * Have we just finished recovery? If so, and if we are mounting (or * remounting) the filesystem readonly, then we will end up with a * consistent fs on disk. Record that fact. */ static void ext3_mark_recovery_complete(struct super_block * sb, struct ext3_super_block * es) { journal_t *journal = EXT3_SB(sb)->s_journal; journal_lock_updates(journal); if (journal_flush(journal) < 0) goto out; if (EXT3_HAS_INCOMPAT_FEATURE(sb, EXT3_FEATURE_INCOMPAT_RECOVER) && sb->s_flags & MS_RDONLY) { EXT3_CLEAR_INCOMPAT_FEATURE(sb, EXT3_FEATURE_INCOMPAT_RECOVER); ext3_commit_super(sb, es, 1); } out: journal_unlock_updates(journal); } /* * If we are mounting (or read-write remounting) a filesystem whose journal * has recorded an error from a previous lifetime, move that error to the * main filesystem now. */ static void ext3_clear_journal_err(struct super_block *sb, struct ext3_super_block *es) { journal_t *journal; int j_errno; const char *errstr; journal = EXT3_SB(sb)->s_journal; /* * Now check for any error status which may have been recorded in the * journal by a prior ext3_error() or ext3_abort() */ j_errno = journal_errno(journal); if (j_errno) { char nbuf[16]; errstr = ext3_decode_error(sb, j_errno, nbuf); ext3_warning(sb, __func__, "Filesystem error recorded " "from previous mount: %s", errstr); ext3_warning(sb, __func__, "Marking fs in need of " "filesystem check."); EXT3_SB(sb)->s_mount_state |= EXT3_ERROR_FS; es->s_state |= cpu_to_le16(EXT3_ERROR_FS); ext3_commit_super (sb, es, 1); journal_clear_err(journal); } } /* * Force the running and committing transactions to commit, * and wait on the commit. */ int ext3_force_commit(struct super_block *sb) { journal_t *journal; int ret; if (sb->s_flags & MS_RDONLY) return 0; journal = EXT3_SB(sb)->s_journal; ret = ext3_journal_force_commit(journal); return ret; } static int ext3_sync_fs(struct super_block *sb, int wait) { tid_t target; trace_ext3_sync_fs(sb, wait); if (journal_start_commit(EXT3_SB(sb)->s_journal, &target)) { if (wait) log_wait_commit(EXT3_SB(sb)->s_journal, target); } return 0; } /* * LVM calls this function before a (read-only) snapshot is created. This * gives us a chance to flush the journal completely and mark the fs clean. */ static int ext3_freeze(struct super_block *sb) { int error = 0; journal_t *journal; if (!(sb->s_flags & MS_RDONLY)) { journal = EXT3_SB(sb)->s_journal; /* Now we set up the journal barrier. */ journal_lock_updates(journal); /* * We don't want to clear needs_recovery flag when we failed * to flush the journal. */ error = journal_flush(journal); if (error < 0) goto out; /* Journal blocked and flushed, clear needs_recovery flag. */ EXT3_CLEAR_INCOMPAT_FEATURE(sb, EXT3_FEATURE_INCOMPAT_RECOVER); error = ext3_commit_super(sb, EXT3_SB(sb)->s_es, 1); if (error) goto out; } return 0; out: journal_unlock_updates(journal); return error; } /* * Called by LVM after the snapshot is done. We need to reset the RECOVER * flag here, even though the filesystem is not technically dirty yet. */ static int ext3_unfreeze(struct super_block *sb) { if (!(sb->s_flags & MS_RDONLY)) { lock_super(sb); /* Reser the needs_recovery flag before the fs is unlocked. */ EXT3_SET_INCOMPAT_FEATURE(sb, EXT3_FEATURE_INCOMPAT_RECOVER); ext3_commit_super(sb, EXT3_SB(sb)->s_es, 1); unlock_super(sb); journal_unlock_updates(EXT3_SB(sb)->s_journal); } return 0; } static int ext3_remount (struct super_block * sb, int * flags, char * data) { struct ext3_super_block * es; struct ext3_sb_info *sbi = EXT3_SB(sb); ext3_fsblk_t n_blocks_count = 0; unsigned long old_sb_flags; struct ext3_mount_options old_opts; int enable_quota = 0; int err; #ifdef CONFIG_QUOTA int i; #endif /* Store the original options */ lock_super(sb); old_sb_flags = sb->s_flags; old_opts.s_mount_opt = sbi->s_mount_opt; old_opts.s_resuid = sbi->s_resuid; old_opts.s_resgid = sbi->s_resgid; old_opts.s_commit_interval = sbi->s_commit_interval; #ifdef CONFIG_QUOTA old_opts.s_jquota_fmt = sbi->s_jquota_fmt; for (i = 0; i < MAXQUOTAS; i++) old_opts.s_qf_names[i] = sbi->s_qf_names[i]; #endif /* * Allow the "check" option to be passed as a remount option. */ if (!parse_options(data, sb, NULL, NULL, &n_blocks_count, 1)) { err = -EINVAL; goto restore_opts; } if (test_opt(sb, ABORT)) ext3_abort(sb, __func__, "Abort forced by user"); sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); es = sbi->s_es; ext3_init_journal_params(sb, sbi->s_journal); if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) || n_blocks_count > le32_to_cpu(es->s_blocks_count)) { if (test_opt(sb, ABORT)) { err = -EROFS; goto restore_opts; } if (*flags & MS_RDONLY) { err = dquot_suspend(sb, -1); if (err < 0) goto restore_opts; /* * First of all, the unconditional stuff we have to do * to disable replay of the journal when we next remount */ sb->s_flags |= MS_RDONLY; /* * OK, test if we are remounting a valid rw partition * readonly, and if so set the rdonly flag and then * mark the partition as valid again. */ if (!(es->s_state & cpu_to_le16(EXT3_VALID_FS)) && (sbi->s_mount_state & EXT3_VALID_FS)) es->s_state = cpu_to_le16(sbi->s_mount_state); ext3_mark_recovery_complete(sb, es); } else { __le32 ret; if ((ret = EXT3_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))) { ext3_msg(sb, KERN_WARNING, "warning: couldn't remount RDWR " "because of unsupported optional " "features (%x)", le32_to_cpu(ret)); err = -EROFS; goto restore_opts; } /* * If we have an unprocessed orphan list hanging * around from a previously readonly bdev mount, * require a full umount & mount for now. */ if (es->s_last_orphan) { ext3_msg(sb, KERN_WARNING, "warning: couldn't " "remount RDWR because of unprocessed " "orphan inode list. Please " "umount & mount instead."); err = -EINVAL; goto restore_opts; } /* * Mounting a RDONLY partition read-write, so reread * and store the current valid flag. (It may have * been changed by e2fsck since we originally mounted * the partition.) */ ext3_clear_journal_err(sb, es); sbi->s_mount_state = le16_to_cpu(es->s_state); if ((err = ext3_group_extend(sb, es, n_blocks_count))) goto restore_opts; if (!ext3_setup_super (sb, es, 0)) sb->s_flags &= ~MS_RDONLY; enable_quota = 1; } } #ifdef CONFIG_QUOTA /* Release old quota file names */ for (i = 0; i < MAXQUOTAS; i++) if (old_opts.s_qf_names[i] && old_opts.s_qf_names[i] != sbi->s_qf_names[i]) kfree(old_opts.s_qf_names[i]); #endif unlock_super(sb); if (enable_quota) dquot_resume(sb, -1); return 0; restore_opts: sb->s_flags = old_sb_flags; sbi->s_mount_opt = old_opts.s_mount_opt; sbi->s_resuid = old_opts.s_resuid; sbi->s_resgid = old_opts.s_resgid; sbi->s_commit_interval = old_opts.s_commit_interval; #ifdef CONFIG_QUOTA sbi->s_jquota_fmt = old_opts.s_jquota_fmt; for (i = 0; i < MAXQUOTAS; i++) { if (sbi->s_qf_names[i] && old_opts.s_qf_names[i] != sbi->s_qf_names[i]) kfree(sbi->s_qf_names[i]); sbi->s_qf_names[i] = old_opts.s_qf_names[i]; } #endif unlock_super(sb); return err; } static int ext3_statfs (struct dentry * dentry, struct kstatfs * buf) { struct super_block *sb = dentry->d_sb; struct ext3_sb_info *sbi = EXT3_SB(sb); struct ext3_super_block *es = sbi->s_es; u64 fsid; if (test_opt(sb, MINIX_DF)) { sbi->s_overhead_last = 0; } else if (sbi->s_blocks_last != le32_to_cpu(es->s_blocks_count)) { unsigned long ngroups = sbi->s_groups_count, i; ext3_fsblk_t overhead = 0; smp_rmb(); /* * Compute the overhead (FS structures). This is constant * for a given filesystem unless the number of block groups * changes so we cache the previous value until it does. */ /* * All of the blocks before first_data_block are * overhead */ overhead = le32_to_cpu(es->s_first_data_block); /* * Add the overhead attributed to the superblock and * block group descriptors. If the sparse superblocks * feature is turned on, then not all groups have this. */ for (i = 0; i < ngroups; i++) { overhead += ext3_bg_has_super(sb, i) + ext3_bg_num_gdb(sb, i); cond_resched(); } /* * Every block group has an inode bitmap, a block * bitmap, and an inode table. */ overhead += ngroups * (2 + sbi->s_itb_per_group); sbi->s_overhead_last = overhead; smp_wmb(); sbi->s_blocks_last = le32_to_cpu(es->s_blocks_count); } buf->f_type = EXT3_SUPER_MAGIC; buf->f_bsize = sb->s_blocksize; buf->f_blocks = le32_to_cpu(es->s_blocks_count) - sbi->s_overhead_last; buf->f_bfree = percpu_counter_sum_positive(&sbi->s_freeblocks_counter); buf->f_bavail = buf->f_bfree - le32_to_cpu(es->s_r_blocks_count); if (buf->f_bfree < le32_to_cpu(es->s_r_blocks_count)) buf->f_bavail = 0; buf->f_files = le32_to_cpu(es->s_inodes_count); buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); buf->f_namelen = EXT3_NAME_LEN; fsid = le64_to_cpup((void *)es->s_uuid) ^ le64_to_cpup((void *)es->s_uuid + sizeof(u64)); buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; return 0; } /* Helper function for writing quotas on sync - we need to start transaction before quota file * is locked for write. Otherwise the are possible deadlocks: * Process 1 Process 2 * ext3_create() quota_sync() * journal_start() write_dquot() * dquot_initialize() down(dqio_mutex) * down(dqio_mutex) journal_start() * */ #ifdef CONFIG_QUOTA static inline struct inode *dquot_to_inode(struct dquot *dquot) { return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type]; } static int ext3_write_dquot(struct dquot *dquot) { int ret, err; handle_t *handle; struct inode *inode; inode = dquot_to_inode(dquot); handle = ext3_journal_start(inode, EXT3_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); if (IS_ERR(handle)) return PTR_ERR(handle); ret = dquot_commit(dquot); err = ext3_journal_stop(handle); if (!ret) ret = err; return ret; } static int ext3_acquire_dquot(struct dquot *dquot) { int ret, err; handle_t *handle; handle = ext3_journal_start(dquot_to_inode(dquot), EXT3_QUOTA_INIT_BLOCKS(dquot->dq_sb)); if (IS_ERR(handle)) return PTR_ERR(handle); ret = dquot_acquire(dquot); err = ext3_journal_stop(handle); if (!ret) ret = err; return ret; } static int ext3_release_dquot(struct dquot *dquot) { int ret, err; handle_t *handle; handle = ext3_journal_start(dquot_to_inode(dquot), EXT3_QUOTA_DEL_BLOCKS(dquot->dq_sb)); if (IS_ERR(handle)) { /* Release dquot anyway to avoid endless cycle in dqput() */ dquot_release(dquot); return PTR_ERR(handle); } ret = dquot_release(dquot); err = ext3_journal_stop(handle); if (!ret) ret = err; return ret; } static int ext3_mark_dquot_dirty(struct dquot *dquot) { /* Are we journaling quotas? */ if (EXT3_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] || EXT3_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) { dquot_mark_dquot_dirty(dquot); return ext3_write_dquot(dquot); } else { return dquot_mark_dquot_dirty(dquot); } } static int ext3_write_info(struct super_block *sb, int type) { int ret, err; handle_t *handle; /* Data block + inode block */ handle = ext3_journal_start(sb->s_root->d_inode, 2); if (IS_ERR(handle)) return PTR_ERR(handle); ret = dquot_commit_info(sb, type); err = ext3_journal_stop(handle); if (!ret) ret = err; return ret; } /* * Turn on quotas during mount time - we need to find * the quota file and such... */ static int ext3_quota_on_mount(struct super_block *sb, int type) { return dquot_quota_on_mount(sb, EXT3_SB(sb)->s_qf_names[type], EXT3_SB(sb)->s_jquota_fmt, type); } /* * Standard function to be called on quota_on */ static int ext3_quota_on(struct super_block *sb, int type, int format_id, struct path *path) { int err; if (!test_opt(sb, QUOTA)) return -EINVAL; /* Quotafile not on the same filesystem? */ if (path->mnt->mnt_sb != sb) return -EXDEV; /* Journaling quota? */ if (EXT3_SB(sb)->s_qf_names[type]) { /* Quotafile not of fs root? */ if (path->dentry->d_parent != sb->s_root) ext3_msg(sb, KERN_WARNING, "warning: Quota file not on filesystem root. " "Journaled quota will not work."); } /* * When we journal data on quota file, we have to flush journal to see * all updates to the file when we bypass pagecache... */ if (ext3_should_journal_data(path->dentry->d_inode)) { /* * We don't need to lock updates but journal_flush() could * otherwise be livelocked... */ journal_lock_updates(EXT3_SB(sb)->s_journal); err = journal_flush(EXT3_SB(sb)->s_journal); journal_unlock_updates(EXT3_SB(sb)->s_journal); if (err) return err; } return dquot_quota_on(sb, type, format_id, path); } /* Read data from quotafile - avoid pagecache and such because we cannot afford * acquiring the locks... As quota files are never truncated and quota code * itself serializes the operations (and no one else should touch the files) * we don't have to be afraid of races */ static ssize_t ext3_quota_read(struct super_block *sb, int type, char *data, size_t len, loff_t off) { struct inode *inode = sb_dqopt(sb)->files[type]; sector_t blk = off >> EXT3_BLOCK_SIZE_BITS(sb); int err = 0; int offset = off & (sb->s_blocksize - 1); int tocopy; size_t toread; struct buffer_head *bh; loff_t i_size = i_size_read(inode); if (off > i_size) return 0; if (off+len > i_size) len = i_size-off; toread = len; while (toread > 0) { tocopy = sb->s_blocksize - offset < toread ? sb->s_blocksize - offset : toread; bh = ext3_bread(NULL, inode, blk, 0, &err); if (err) return err; if (!bh) /* A hole? */ memset(data, 0, tocopy); else memcpy(data, bh->b_data+offset, tocopy); brelse(bh); offset = 0; toread -= tocopy; data += tocopy; blk++; } return len; } /* Write to quotafile (we know the transaction is already started and has * enough credits) */ static ssize_t ext3_quota_write(struct super_block *sb, int type, const char *data, size_t len, loff_t off) { struct inode *inode = sb_dqopt(sb)->files[type]; sector_t blk = off >> EXT3_BLOCK_SIZE_BITS(sb); int err = 0; int offset = off & (sb->s_blocksize - 1); int journal_quota = EXT3_SB(sb)->s_qf_names[type] != NULL; struct buffer_head *bh; handle_t *handle = journal_current_handle(); if (!handle) { ext3_msg(sb, KERN_WARNING, "warning: quota write (off=%llu, len=%llu)" " cancelled because transaction is not started.", (unsigned long long)off, (unsigned long long)len); return -EIO; } /* * Since we account only one data block in transaction credits, * then it is impossible to cross a block boundary. */ if (sb->s_blocksize - offset < len) { ext3_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" " cancelled because not block aligned", (unsigned long long)off, (unsigned long long)len); return -EIO; } mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA); bh = ext3_bread(handle, inode, blk, 1, &err); if (!bh) goto out; if (journal_quota) { err = ext3_journal_get_write_access(handle, bh); if (err) { brelse(bh); goto out; } } lock_buffer(bh); memcpy(bh->b_data+offset, data, len); flush_dcache_page(bh->b_page); unlock_buffer(bh); if (journal_quota) err = ext3_journal_dirty_metadata(handle, bh); else { /* Always do at least ordered writes for quotas */ err = ext3_journal_dirty_data(handle, bh); mark_buffer_dirty(bh); } brelse(bh); out: if (err) { mutex_unlock(&inode->i_mutex); return err; } if (inode->i_size < off + len) { i_size_write(inode, off + len); EXT3_I(inode)->i_disksize = inode->i_size; } inode->i_version++; inode->i_mtime = inode->i_ctime = CURRENT_TIME; ext3_mark_inode_dirty(handle, inode); mutex_unlock(&inode->i_mutex); return len; } #endif static struct dentry *ext3_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data) { return mount_bdev(fs_type, flags, dev_name, data, ext3_fill_super); } static struct file_system_type ext3_fs_type = { .owner = THIS_MODULE, .name = "ext3", .mount = ext3_mount, .kill_sb = kill_block_super, .fs_flags = FS_REQUIRES_DEV, }; static int __init init_ext3_fs(void) { int err = init_ext3_xattr(); if (err) return err; err = init_inodecache(); if (err) goto out1; err = register_filesystem(&ext3_fs_type); if (err) goto out; return 0; out: destroy_inodecache(); out1: exit_ext3_xattr(); return err; } static void __exit exit_ext3_fs(void) { unregister_filesystem(&ext3_fs_type); destroy_inodecache(); exit_ext3_xattr(); } MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); MODULE_DESCRIPTION("Second Extended Filesystem with journaling extensions"); MODULE_LICENSE("GPL"); module_init(init_ext3_fs) module_exit(exit_ext3_fs)