/* * Copyright 2015 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include #include #include #include "atom-types.h" #include "atombios.h" #include "processpptables.h" #include "pp_debug.h" #include "cgs_common.h" #include "smu/smu_8_0_d.h" #include "smu8_fusion.h" #include "smu/smu_8_0_sh_mask.h" #include "smumgr.h" #include "hwmgr.h" #include "hardwaremanager.h" #include "cz_ppsmc.h" #include "cz_hwmgr.h" #include "power_state.h" #include "cz_clockpowergating.h" #include "pp_debug.h" #define ixSMUSVI_NB_CURRENTVID 0xD8230044 #define CURRENT_NB_VID_MASK 0xff000000 #define CURRENT_NB_VID__SHIFT 24 #define ixSMUSVI_GFX_CURRENTVID 0xD8230048 #define CURRENT_GFX_VID_MASK 0xff000000 #define CURRENT_GFX_VID__SHIFT 24 static const unsigned long PhwCz_Magic = (unsigned long) PHM_Cz_Magic; static struct cz_power_state *cast_PhwCzPowerState(struct pp_hw_power_state *hw_ps) { if (PhwCz_Magic != hw_ps->magic) return NULL; return (struct cz_power_state *)hw_ps; } static const struct cz_power_state *cast_const_PhwCzPowerState( const struct pp_hw_power_state *hw_ps) { if (PhwCz_Magic != hw_ps->magic) return NULL; return (struct cz_power_state *)hw_ps; } uint32_t cz_get_eclk_level(struct pp_hwmgr *hwmgr, uint32_t clock, uint32_t msg) { int i = 0; struct phm_vce_clock_voltage_dependency_table *ptable = hwmgr->dyn_state.vce_clock_voltage_dependency_table; switch (msg) { case PPSMC_MSG_SetEclkSoftMin: case PPSMC_MSG_SetEclkHardMin: for (i = 0; i < (int)ptable->count; i++) { if (clock <= ptable->entries[i].ecclk) break; } break; case PPSMC_MSG_SetEclkSoftMax: case PPSMC_MSG_SetEclkHardMax: for (i = ptable->count - 1; i >= 0; i--) { if (clock >= ptable->entries[i].ecclk) break; } break; default: break; } return i; } static uint32_t cz_get_sclk_level(struct pp_hwmgr *hwmgr, uint32_t clock, uint32_t msg) { int i = 0; struct phm_clock_voltage_dependency_table *table = hwmgr->dyn_state.vddc_dependency_on_sclk; switch (msg) { case PPSMC_MSG_SetSclkSoftMin: case PPSMC_MSG_SetSclkHardMin: for (i = 0; i < (int)table->count; i++) { if (clock <= table->entries[i].clk) break; } break; case PPSMC_MSG_SetSclkSoftMax: case PPSMC_MSG_SetSclkHardMax: for (i = table->count - 1; i >= 0; i--) { if (clock >= table->entries[i].clk) break; } break; default: break; } return i; } static uint32_t cz_get_uvd_level(struct pp_hwmgr *hwmgr, uint32_t clock, uint32_t msg) { int i = 0; struct phm_uvd_clock_voltage_dependency_table *ptable = hwmgr->dyn_state.uvd_clock_voltage_dependency_table; switch (msg) { case PPSMC_MSG_SetUvdSoftMin: case PPSMC_MSG_SetUvdHardMin: for (i = 0; i < (int)ptable->count; i++) { if (clock <= ptable->entries[i].vclk) break; } break; case PPSMC_MSG_SetUvdSoftMax: case PPSMC_MSG_SetUvdHardMax: for (i = ptable->count - 1; i >= 0; i--) { if (clock >= ptable->entries[i].vclk) break; } break; default: break; } return i; } static uint32_t cz_get_max_sclk_level(struct pp_hwmgr *hwmgr) { struct cz_hwmgr *cz_hwmgr = (struct cz_hwmgr *)(hwmgr->backend); if (cz_hwmgr->max_sclk_level == 0) { smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_GetMaxSclkLevel); cz_hwmgr->max_sclk_level = smum_get_argument(hwmgr->smumgr) + 1; } return cz_hwmgr->max_sclk_level; } static int cz_initialize_dpm_defaults(struct pp_hwmgr *hwmgr) { struct cz_hwmgr *cz_hwmgr = (struct cz_hwmgr *)(hwmgr->backend); uint32_t i; cz_hwmgr->gfx_ramp_step = 256*25/100; cz_hwmgr->gfx_ramp_delay = 1; /* by default, we delay 1us */ for (i = 0; i < CZ_MAX_HARDWARE_POWERLEVELS; i++) cz_hwmgr->activity_target[i] = CZ_AT_DFLT; cz_hwmgr->mgcg_cgtt_local0 = 0x00000000; cz_hwmgr->mgcg_cgtt_local1 = 0x00000000; cz_hwmgr->clock_slow_down_freq = 25000; cz_hwmgr->skip_clock_slow_down = 1; cz_hwmgr->enable_nb_ps_policy = 1; /* disable until UNB is ready, Enabled */ cz_hwmgr->voltage_drop_in_dce_power_gating = 0; /* disable until fully verified */ cz_hwmgr->voting_rights_clients = 0x00C00033; cz_hwmgr->static_screen_threshold = 8; cz_hwmgr->ddi_power_gating_disabled = 0; cz_hwmgr->bapm_enabled = 1; cz_hwmgr->voltage_drop_threshold = 0; cz_hwmgr->gfx_power_gating_threshold = 500; cz_hwmgr->vce_slow_sclk_threshold = 20000; cz_hwmgr->dce_slow_sclk_threshold = 30000; cz_hwmgr->disable_driver_thermal_policy = 1; cz_hwmgr->disable_nb_ps3_in_battery = 0; phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ABM); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_NonABMSupportInPPLib); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DynamicM3Arbiter); cz_hwmgr->override_dynamic_mgpg = 1; phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DynamicPatchPowerState); cz_hwmgr->thermal_auto_throttling_treshold = 0; cz_hwmgr->tdr_clock = 0; cz_hwmgr->disable_gfx_power_gating_in_uvd = 0; phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DynamicUVDState); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UVDDPM); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_VCEDPM); cz_hwmgr->cc6_settings.cpu_cc6_disable = false; cz_hwmgr->cc6_settings.cpu_pstate_disable = false; cz_hwmgr->cc6_settings.nb_pstate_switch_disable = false; cz_hwmgr->cc6_settings.cpu_pstate_separation_time = 0; phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DisableVoltageIsland); return 0; } static uint32_t cz_convert_8Bit_index_to_voltage( struct pp_hwmgr *hwmgr, uint16_t voltage) { return 6200 - (voltage * 25); } static int cz_construct_max_power_limits_table(struct pp_hwmgr *hwmgr, struct phm_clock_and_voltage_limits *table) { struct cz_hwmgr *cz_hwmgr = (struct cz_hwmgr *)hwmgr->backend; struct cz_sys_info *sys_info = &cz_hwmgr->sys_info; struct phm_clock_voltage_dependency_table *dep_table = hwmgr->dyn_state.vddc_dependency_on_sclk; if (dep_table->count > 0) { table->sclk = dep_table->entries[dep_table->count-1].clk; table->vddc = cz_convert_8Bit_index_to_voltage(hwmgr, (uint16_t)dep_table->entries[dep_table->count-1].v); } table->mclk = sys_info->nbp_memory_clock[0]; return 0; } static int cz_init_dynamic_state_adjustment_rule_settings( struct pp_hwmgr *hwmgr, ATOM_CLK_VOLT_CAPABILITY *disp_voltage_table) { uint32_t table_size = sizeof(struct phm_clock_voltage_dependency_table) + (7 * sizeof(struct phm_clock_voltage_dependency_record)); struct phm_clock_voltage_dependency_table *table_clk_vlt = kzalloc(table_size, GFP_KERNEL); if (NULL == table_clk_vlt) { printk(KERN_ERR "[ powerplay ] Can not allocate memory!\n"); return -ENOMEM; } table_clk_vlt->count = 8; table_clk_vlt->entries[0].clk = PP_DAL_POWERLEVEL_0; table_clk_vlt->entries[0].v = 0; table_clk_vlt->entries[1].clk = PP_DAL_POWERLEVEL_1; table_clk_vlt->entries[1].v = 1; table_clk_vlt->entries[2].clk = PP_DAL_POWERLEVEL_2; table_clk_vlt->entries[2].v = 2; table_clk_vlt->entries[3].clk = PP_DAL_POWERLEVEL_3; table_clk_vlt->entries[3].v = 3; table_clk_vlt->entries[4].clk = PP_DAL_POWERLEVEL_4; table_clk_vlt->entries[4].v = 4; table_clk_vlt->entries[5].clk = PP_DAL_POWERLEVEL_5; table_clk_vlt->entries[5].v = 5; table_clk_vlt->entries[6].clk = PP_DAL_POWERLEVEL_6; table_clk_vlt->entries[6].v = 6; table_clk_vlt->entries[7].clk = PP_DAL_POWERLEVEL_7; table_clk_vlt->entries[7].v = 7; hwmgr->dyn_state.vddc_dep_on_dal_pwrl = table_clk_vlt; return 0; } static int cz_get_system_info_data(struct pp_hwmgr *hwmgr) { struct cz_hwmgr *cz_hwmgr = (struct cz_hwmgr *)hwmgr->backend; ATOM_INTEGRATED_SYSTEM_INFO_V1_9 *info = NULL; uint32_t i; int result = 0; uint8_t frev, crev; uint16_t size; info = (ATOM_INTEGRATED_SYSTEM_INFO_V1_9 *) cgs_atom_get_data_table( hwmgr->device, GetIndexIntoMasterTable(DATA, IntegratedSystemInfo), &size, &frev, &crev); if (crev != 9) { printk(KERN_ERR "[ powerplay ] Unsupported IGP table: %d %d\n", frev, crev); return -EINVAL; } if (info == NULL) { printk(KERN_ERR "[ powerplay ] Could not retrieve the Integrated System Info Table!\n"); return -EINVAL; } cz_hwmgr->sys_info.bootup_uma_clock = le32_to_cpu(info->ulBootUpUMAClock); cz_hwmgr->sys_info.bootup_engine_clock = le32_to_cpu(info->ulBootUpEngineClock); cz_hwmgr->sys_info.dentist_vco_freq = le32_to_cpu(info->ulDentistVCOFreq); cz_hwmgr->sys_info.system_config = le32_to_cpu(info->ulSystemConfig); cz_hwmgr->sys_info.bootup_nb_voltage_index = le16_to_cpu(info->usBootUpNBVoltage); cz_hwmgr->sys_info.htc_hyst_lmt = (info->ucHtcHystLmt == 0) ? 5 : info->ucHtcHystLmt; cz_hwmgr->sys_info.htc_tmp_lmt = (info->ucHtcTmpLmt == 0) ? 203 : info->ucHtcTmpLmt; if (cz_hwmgr->sys_info.htc_tmp_lmt <= cz_hwmgr->sys_info.htc_hyst_lmt) { printk(KERN_ERR "[ powerplay ] The htcTmpLmt should be larger than htcHystLmt.\n"); return -EINVAL; } cz_hwmgr->sys_info.nb_dpm_enable = cz_hwmgr->enable_nb_ps_policy && (le32_to_cpu(info->ulSystemConfig) >> 3 & 0x1); for (i = 0; i < CZ_NUM_NBPSTATES; i++) { if (i < CZ_NUM_NBPMEMORYCLOCK) { cz_hwmgr->sys_info.nbp_memory_clock[i] = le32_to_cpu(info->ulNbpStateMemclkFreq[i]); } cz_hwmgr->sys_info.nbp_n_clock[i] = le32_to_cpu(info->ulNbpStateNClkFreq[i]); } for (i = 0; i < MAX_DISPLAY_CLOCK_LEVEL; i++) { cz_hwmgr->sys_info.display_clock[i] = le32_to_cpu(info->sDispClkVoltageMapping[i].ulMaximumSupportedCLK); } /* Here use 4 levels, make sure not exceed */ for (i = 0; i < CZ_NUM_NBPSTATES; i++) { cz_hwmgr->sys_info.nbp_voltage_index[i] = le16_to_cpu(info->usNBPStateVoltage[i]); } if (!cz_hwmgr->sys_info.nb_dpm_enable) { for (i = 1; i < CZ_NUM_NBPSTATES; i++) { if (i < CZ_NUM_NBPMEMORYCLOCK) { cz_hwmgr->sys_info.nbp_memory_clock[i] = cz_hwmgr->sys_info.nbp_memory_clock[0]; } cz_hwmgr->sys_info.nbp_n_clock[i] = cz_hwmgr->sys_info.nbp_n_clock[0]; cz_hwmgr->sys_info.nbp_voltage_index[i] = cz_hwmgr->sys_info.nbp_voltage_index[0]; } } if (le32_to_cpu(info->ulGPUCapInfo) & SYS_INFO_GPUCAPS__ENABEL_DFS_BYPASS) { phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EnableDFSBypass); } cz_hwmgr->sys_info.uma_channel_number = info->ucUMAChannelNumber; cz_construct_max_power_limits_table (hwmgr, &hwmgr->dyn_state.max_clock_voltage_on_ac); cz_init_dynamic_state_adjustment_rule_settings(hwmgr, &info->sDISPCLK_Voltage[0]); return result; } static int cz_construct_boot_state(struct pp_hwmgr *hwmgr) { struct cz_hwmgr *cz_hwmgr = (struct cz_hwmgr *)(hwmgr->backend); cz_hwmgr->boot_power_level.engineClock = cz_hwmgr->sys_info.bootup_engine_clock; cz_hwmgr->boot_power_level.vddcIndex = (uint8_t)cz_hwmgr->sys_info.bootup_nb_voltage_index; cz_hwmgr->boot_power_level.dsDividerIndex = 0; cz_hwmgr->boot_power_level.ssDividerIndex = 0; cz_hwmgr->boot_power_level.allowGnbSlow = 1; cz_hwmgr->boot_power_level.forceNBPstate = 0; cz_hwmgr->boot_power_level.hysteresis_up = 0; cz_hwmgr->boot_power_level.numSIMDToPowerDown = 0; cz_hwmgr->boot_power_level.display_wm = 0; cz_hwmgr->boot_power_level.vce_wm = 0; return 0; } static int cz_tf_reset_active_process_mask(struct pp_hwmgr *hwmgr, void *input, void *output, void *storage, int result) { return 0; } static int cz_tf_upload_pptable_to_smu(struct pp_hwmgr *hwmgr, void *input, void *output, void *storage, int result) { struct SMU8_Fusion_ClkTable *clock_table; int ret; uint32_t i; void *table = NULL; pp_atomctrl_clock_dividers_kong dividers; struct phm_clock_voltage_dependency_table *vddc_table = hwmgr->dyn_state.vddc_dependency_on_sclk; struct phm_clock_voltage_dependency_table *vdd_gfx_table = hwmgr->dyn_state.vdd_gfx_dependency_on_sclk; struct phm_acp_clock_voltage_dependency_table *acp_table = hwmgr->dyn_state.acp_clock_voltage_dependency_table; struct phm_uvd_clock_voltage_dependency_table *uvd_table = hwmgr->dyn_state.uvd_clock_voltage_dependency_table; struct phm_vce_clock_voltage_dependency_table *vce_table = hwmgr->dyn_state.vce_clock_voltage_dependency_table; if (!hwmgr->need_pp_table_upload) return 0; ret = smum_download_powerplay_table(hwmgr->smumgr, &table); PP_ASSERT_WITH_CODE((0 == ret && NULL != table), "Fail to get clock table from SMU!", return -EINVAL;); clock_table = (struct SMU8_Fusion_ClkTable *)table; /* patch clock table */ PP_ASSERT_WITH_CODE((vddc_table->count <= CZ_MAX_HARDWARE_POWERLEVELS), "Dependency table entry exceeds max limit!", return -EINVAL;); PP_ASSERT_WITH_CODE((vdd_gfx_table->count <= CZ_MAX_HARDWARE_POWERLEVELS), "Dependency table entry exceeds max limit!", return -EINVAL;); PP_ASSERT_WITH_CODE((acp_table->count <= CZ_MAX_HARDWARE_POWERLEVELS), "Dependency table entry exceeds max limit!", return -EINVAL;); PP_ASSERT_WITH_CODE((uvd_table->count <= CZ_MAX_HARDWARE_POWERLEVELS), "Dependency table entry exceeds max limit!", return -EINVAL;); PP_ASSERT_WITH_CODE((vce_table->count <= CZ_MAX_HARDWARE_POWERLEVELS), "Dependency table entry exceeds max limit!", return -EINVAL;); for (i = 0; i < CZ_MAX_HARDWARE_POWERLEVELS; i++) { /* vddc_sclk */ clock_table->SclkBreakdownTable.ClkLevel[i].GnbVid = (i < vddc_table->count) ? (uint8_t)vddc_table->entries[i].v : 0; clock_table->SclkBreakdownTable.ClkLevel[i].Frequency = (i < vddc_table->count) ? vddc_table->entries[i].clk : 0; atomctrl_get_engine_pll_dividers_kong(hwmgr, clock_table->SclkBreakdownTable.ClkLevel[i].Frequency, ÷rs); clock_table->SclkBreakdownTable.ClkLevel[i].DfsDid = (uint8_t)dividers.pll_post_divider; /* vddgfx_sclk */ clock_table->SclkBreakdownTable.ClkLevel[i].GfxVid = (i < vdd_gfx_table->count) ? (uint8_t)vdd_gfx_table->entries[i].v : 0; /* acp breakdown */ clock_table->AclkBreakdownTable.ClkLevel[i].GfxVid = (i < acp_table->count) ? (uint8_t)acp_table->entries[i].v : 0; clock_table->AclkBreakdownTable.ClkLevel[i].Frequency = (i < acp_table->count) ? acp_table->entries[i].acpclk : 0; atomctrl_get_engine_pll_dividers_kong(hwmgr, clock_table->AclkBreakdownTable.ClkLevel[i].Frequency, ÷rs); clock_table->AclkBreakdownTable.ClkLevel[i].DfsDid = (uint8_t)dividers.pll_post_divider; /* uvd breakdown */ clock_table->VclkBreakdownTable.ClkLevel[i].GfxVid = (i < uvd_table->count) ? (uint8_t)uvd_table->entries[i].v : 0; clock_table->VclkBreakdownTable.ClkLevel[i].Frequency = (i < uvd_table->count) ? uvd_table->entries[i].vclk : 0; atomctrl_get_engine_pll_dividers_kong(hwmgr, clock_table->VclkBreakdownTable.ClkLevel[i].Frequency, ÷rs); clock_table->VclkBreakdownTable.ClkLevel[i].DfsDid = (uint8_t)dividers.pll_post_divider; clock_table->DclkBreakdownTable.ClkLevel[i].GfxVid = (i < uvd_table->count) ? (uint8_t)uvd_table->entries[i].v : 0; clock_table->DclkBreakdownTable.ClkLevel[i].Frequency = (i < uvd_table->count) ? uvd_table->entries[i].dclk : 0; atomctrl_get_engine_pll_dividers_kong(hwmgr, clock_table->DclkBreakdownTable.ClkLevel[i].Frequency, ÷rs); clock_table->DclkBreakdownTable.ClkLevel[i].DfsDid = (uint8_t)dividers.pll_post_divider; /* vce breakdown */ clock_table->EclkBreakdownTable.ClkLevel[i].GfxVid = (i < vce_table->count) ? (uint8_t)vce_table->entries[i].v : 0; clock_table->EclkBreakdownTable.ClkLevel[i].Frequency = (i < vce_table->count) ? vce_table->entries[i].ecclk : 0; atomctrl_get_engine_pll_dividers_kong(hwmgr, clock_table->EclkBreakdownTable.ClkLevel[i].Frequency, ÷rs); clock_table->EclkBreakdownTable.ClkLevel[i].DfsDid = (uint8_t)dividers.pll_post_divider; } ret = smum_upload_powerplay_table(hwmgr->smumgr); return ret; } static int cz_tf_init_sclk_limit(struct pp_hwmgr *hwmgr, void *input, void *output, void *storage, int result) { struct cz_hwmgr *cz_hwmgr = (struct cz_hwmgr *)(hwmgr->backend); struct phm_clock_voltage_dependency_table *table = hwmgr->dyn_state.vddc_dependency_on_sclk; unsigned long clock = 0, level; if (NULL == table || table->count <= 0) return -EINVAL; cz_hwmgr->sclk_dpm.soft_min_clk = table->entries[0].clk; cz_hwmgr->sclk_dpm.hard_min_clk = table->entries[0].clk; level = cz_get_max_sclk_level(hwmgr) - 1; if (level < table->count) clock = table->entries[level].clk; else clock = table->entries[table->count - 1].clk; cz_hwmgr->sclk_dpm.soft_max_clk = clock; cz_hwmgr->sclk_dpm.hard_max_clk = clock; return 0; } static int cz_tf_init_uvd_limit(struct pp_hwmgr *hwmgr, void *input, void *output, void *storage, int result) { struct cz_hwmgr *cz_hwmgr = (struct cz_hwmgr *)(hwmgr->backend); struct phm_uvd_clock_voltage_dependency_table *table = hwmgr->dyn_state.uvd_clock_voltage_dependency_table; unsigned long clock = 0, level; if (NULL == table || table->count <= 0) return -EINVAL; cz_hwmgr->uvd_dpm.soft_min_clk = 0; cz_hwmgr->uvd_dpm.hard_min_clk = 0; smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_GetMaxUvdLevel); level = smum_get_argument(hwmgr->smumgr); if (level < table->count) clock = table->entries[level].vclk; else clock = table->entries[table->count - 1].vclk; cz_hwmgr->uvd_dpm.soft_max_clk = clock; cz_hwmgr->uvd_dpm.hard_max_clk = clock; return 0; } static int cz_tf_init_vce_limit(struct pp_hwmgr *hwmgr, void *input, void *output, void *storage, int result) { struct cz_hwmgr *cz_hwmgr = (struct cz_hwmgr *)(hwmgr->backend); struct phm_vce_clock_voltage_dependency_table *table = hwmgr->dyn_state.vce_clock_voltage_dependency_table; unsigned long clock = 0, level; if (NULL == table || table->count <= 0) return -EINVAL; cz_hwmgr->vce_dpm.soft_min_clk = 0; cz_hwmgr->vce_dpm.hard_min_clk = 0; smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_GetMaxEclkLevel); level = smum_get_argument(hwmgr->smumgr); if (level < table->count) clock = table->entries[level].ecclk; else clock = table->entries[table->count - 1].ecclk; cz_hwmgr->vce_dpm.soft_max_clk = clock; cz_hwmgr->vce_dpm.hard_max_clk = clock; return 0; } static int cz_tf_init_acp_limit(struct pp_hwmgr *hwmgr, void *input, void *output, void *storage, int result) { struct cz_hwmgr *cz_hwmgr = (struct cz_hwmgr *)(hwmgr->backend); struct phm_acp_clock_voltage_dependency_table *table = hwmgr->dyn_state.acp_clock_voltage_dependency_table; unsigned long clock = 0, level; if (NULL == table || table->count <= 0) return -EINVAL; cz_hwmgr->acp_dpm.soft_min_clk = 0; cz_hwmgr->acp_dpm.hard_min_clk = 0; smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_GetMaxAclkLevel); level = smum_get_argument(hwmgr->smumgr); if (level < table->count) clock = table->entries[level].acpclk; else clock = table->entries[table->count - 1].acpclk; cz_hwmgr->acp_dpm.soft_max_clk = clock; cz_hwmgr->acp_dpm.hard_max_clk = clock; return 0; } static int cz_tf_init_power_gate_state(struct pp_hwmgr *hwmgr, void *input, void *output, void *storage, int result) { struct cz_hwmgr *cz_hwmgr = (struct cz_hwmgr *)(hwmgr->backend); cz_hwmgr->uvd_power_gated = false; cz_hwmgr->vce_power_gated = false; cz_hwmgr->samu_power_gated = false; cz_hwmgr->acp_power_gated = false; cz_hwmgr->pgacpinit = true; return 0; } static int cz_tf_init_sclk_threshold(struct pp_hwmgr *hwmgr, void *input, void *output, void *storage, int result) { struct cz_hwmgr *cz_hwmgr = (struct cz_hwmgr *)(hwmgr->backend); cz_hwmgr->low_sclk_interrupt_threshold = 0; return 0; } static int cz_tf_update_sclk_limit(struct pp_hwmgr *hwmgr, void *input, void *output, void *storage, int result) { struct cz_hwmgr *cz_hwmgr = (struct cz_hwmgr *)(hwmgr->backend); struct phm_clock_voltage_dependency_table *table = hwmgr->dyn_state.vddc_dependency_on_sclk; unsigned long clock = 0; unsigned long level; unsigned long stable_pstate_sclk; unsigned long percentage; cz_hwmgr->sclk_dpm.soft_min_clk = table->entries[0].clk; level = cz_get_max_sclk_level(hwmgr) - 1; if (level < table->count) cz_hwmgr->sclk_dpm.soft_max_clk = table->entries[level].clk; else cz_hwmgr->sclk_dpm.soft_max_clk = table->entries[table->count - 1].clk; clock = hwmgr->display_config.min_core_set_clock; ; if (clock == 0) printk(KERN_INFO "[ powerplay ] min_core_set_clock not set\n"); if (cz_hwmgr->sclk_dpm.hard_min_clk != clock) { cz_hwmgr->sclk_dpm.hard_min_clk = clock; smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetSclkHardMin, cz_get_sclk_level(hwmgr, cz_hwmgr->sclk_dpm.hard_min_clk, PPSMC_MSG_SetSclkHardMin)); } clock = cz_hwmgr->sclk_dpm.soft_min_clk; /* update minimum clocks for Stable P-State feature */ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) { percentage = 75; /*Sclk - calculate sclk value based on percentage and find FLOOR sclk from VddcDependencyOnSCLK table */ stable_pstate_sclk = (hwmgr->dyn_state.max_clock_voltage_on_ac.mclk * percentage) / 100; if (clock < stable_pstate_sclk) clock = stable_pstate_sclk; } else { if (clock < hwmgr->gfx_arbiter.sclk) clock = hwmgr->gfx_arbiter.sclk; } if (cz_hwmgr->sclk_dpm.soft_min_clk != clock) { cz_hwmgr->sclk_dpm.soft_min_clk = clock; smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetSclkSoftMin, cz_get_sclk_level(hwmgr, cz_hwmgr->sclk_dpm.soft_min_clk, PPSMC_MSG_SetSclkSoftMin)); } if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState) && cz_hwmgr->sclk_dpm.soft_max_clk != clock) { cz_hwmgr->sclk_dpm.soft_max_clk = clock; smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetSclkSoftMax, cz_get_sclk_level(hwmgr, cz_hwmgr->sclk_dpm.soft_max_clk, PPSMC_MSG_SetSclkSoftMax)); } return 0; } static int cz_tf_set_deep_sleep_sclk_threshold(struct pp_hwmgr *hwmgr, void *input, void *output, void *storage, int result) { if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) { uint32_t clks = hwmgr->display_config.min_core_set_clock_in_sr; if (clks == 0) clks = CZ_MIN_DEEP_SLEEP_SCLK; PP_DBG_LOG("Setting Deep Sleep Clock: %d\n", clks); smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetMinDeepSleepSclk, clks); } return 0; } static int cz_tf_set_watermark_threshold(struct pp_hwmgr *hwmgr, void *input, void *output, void *storage, int result) { struct cz_hwmgr *cz_hwmgr = (struct cz_hwmgr *)(hwmgr->backend); smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetWatermarkFrequency, cz_hwmgr->sclk_dpm.soft_max_clk); return 0; } static int cz_tf_set_enabled_levels(struct pp_hwmgr *hwmgr, void *input, void *output, void *storage, int result) { return 0; } static int cz_tf_enable_nb_dpm(struct pp_hwmgr *hwmgr, void *input, void *output, void *storage, int result) { int ret = 0; struct cz_hwmgr *cz_hwmgr = (struct cz_hwmgr *)(hwmgr->backend); unsigned long dpm_features = 0; if (!cz_hwmgr->is_nb_dpm_enabled) { PP_DBG_LOG("enabling ALL SMU features.\n"); dpm_features |= NB_DPM_MASK; ret = smum_send_msg_to_smc_with_parameter( hwmgr->smumgr, PPSMC_MSG_EnableAllSmuFeatures, dpm_features); if (ret == 0) cz_hwmgr->is_nb_dpm_enabled = true; } return ret; } static int cz_nbdpm_pstate_enable_disable(struct pp_hwmgr *hwmgr, bool enable, bool lock) { struct cz_hwmgr *hw_data = (struct cz_hwmgr *)(hwmgr->backend); if (hw_data->is_nb_dpm_enabled) { if (enable) { PP_DBG_LOG("enable Low Memory PState.\n"); return smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_EnableLowMemoryPstate, (lock ? 1 : 0)); } else { PP_DBG_LOG("disable Low Memory PState.\n"); return smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_DisableLowMemoryPstate, (lock ? 1 : 0)); } } return 0; } static int cz_tf_update_low_mem_pstate(struct pp_hwmgr *hwmgr, void *input, void *output, void *storage, int result) { bool disable_switch; bool enable_low_mem_state; struct cz_hwmgr *hw_data = (struct cz_hwmgr *)(hwmgr->backend); const struct phm_set_power_state_input *states = (struct phm_set_power_state_input *)input; const struct cz_power_state *pnew_state = cast_const_PhwCzPowerState(states->pnew_state); if (hw_data->sys_info.nb_dpm_enable) { disable_switch = hw_data->cc6_settings.nb_pstate_switch_disable ? true : false; enable_low_mem_state = hw_data->cc6_settings.nb_pstate_switch_disable ? false : true; if (pnew_state->action == FORCE_HIGH) cz_nbdpm_pstate_enable_disable(hwmgr, false, disable_switch); else if (pnew_state->action == CANCEL_FORCE_HIGH) cz_nbdpm_pstate_enable_disable(hwmgr, true, disable_switch); else cz_nbdpm_pstate_enable_disable(hwmgr, enable_low_mem_state, disable_switch); } return 0; } static struct phm_master_table_item cz_set_power_state_list[] = { {NULL, cz_tf_update_sclk_limit}, {NULL, cz_tf_set_deep_sleep_sclk_threshold}, {NULL, cz_tf_set_watermark_threshold}, {NULL, cz_tf_set_enabled_levels}, {NULL, cz_tf_enable_nb_dpm}, {NULL, cz_tf_update_low_mem_pstate}, {NULL, NULL} }; static struct phm_master_table_header cz_set_power_state_master = { 0, PHM_MasterTableFlag_None, cz_set_power_state_list }; static struct phm_master_table_item cz_setup_asic_list[] = { {NULL, cz_tf_reset_active_process_mask}, {NULL, cz_tf_upload_pptable_to_smu}, {NULL, cz_tf_init_sclk_limit}, {NULL, cz_tf_init_uvd_limit}, {NULL, cz_tf_init_vce_limit}, {NULL, cz_tf_init_acp_limit}, {NULL, cz_tf_init_power_gate_state}, {NULL, cz_tf_init_sclk_threshold}, {NULL, NULL} }; static struct phm_master_table_header cz_setup_asic_master = { 0, PHM_MasterTableFlag_None, cz_setup_asic_list }; static int cz_tf_power_up_display_clock_sys_pll(struct pp_hwmgr *hwmgr, void *input, void *output, void *storage, int result) { struct cz_hwmgr *hw_data = (struct cz_hwmgr *)(hwmgr->backend); hw_data->disp_clk_bypass_pending = false; hw_data->disp_clk_bypass = false; return 0; } static int cz_tf_clear_nb_dpm_flag(struct pp_hwmgr *hwmgr, void *input, void *output, void *storage, int result) { struct cz_hwmgr *hw_data = (struct cz_hwmgr *)(hwmgr->backend); hw_data->is_nb_dpm_enabled = false; return 0; } static int cz_tf_reset_cc6_data(struct pp_hwmgr *hwmgr, void *input, void *output, void *storage, int result) { struct cz_hwmgr *hw_data = (struct cz_hwmgr *)(hwmgr->backend); hw_data->cc6_settings.cc6_setting_changed = false; hw_data->cc6_settings.cpu_pstate_separation_time = 0; hw_data->cc6_settings.cpu_cc6_disable = false; hw_data->cc6_settings.cpu_pstate_disable = false; return 0; } static struct phm_master_table_item cz_power_down_asic_list[] = { {NULL, cz_tf_power_up_display_clock_sys_pll}, {NULL, cz_tf_clear_nb_dpm_flag}, {NULL, cz_tf_reset_cc6_data}, {NULL, NULL} }; static struct phm_master_table_header cz_power_down_asic_master = { 0, PHM_MasterTableFlag_None, cz_power_down_asic_list }; static int cz_tf_program_voting_clients(struct pp_hwmgr *hwmgr, void *input, void *output, void *storage, int result) { PHMCZ_WRITE_SMC_REGISTER(hwmgr->device, CG_FREQ_TRAN_VOTING_0, PPCZ_VOTINGRIGHTSCLIENTS_DFLT0); return 0; } static int cz_tf_start_dpm(struct pp_hwmgr *hwmgr, void *input, void *output, void *storage, int result) { int res = 0xff; struct cz_hwmgr *cz_hwmgr = (struct cz_hwmgr *)(hwmgr->backend); unsigned long dpm_features = 0; cz_hwmgr->dpm_flags |= DPMFlags_SCLK_Enabled; dpm_features |= SCLK_DPM_MASK; res = smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_EnableAllSmuFeatures, dpm_features); return res; } static int cz_tf_program_bootup_state(struct pp_hwmgr *hwmgr, void *input, void *output, void *storage, int result) { struct cz_hwmgr *cz_hwmgr = (struct cz_hwmgr *)(hwmgr->backend); cz_hwmgr->sclk_dpm.soft_min_clk = cz_hwmgr->sys_info.bootup_engine_clock; cz_hwmgr->sclk_dpm.soft_max_clk = cz_hwmgr->sys_info.bootup_engine_clock; smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetSclkSoftMin, cz_get_sclk_level(hwmgr, cz_hwmgr->sclk_dpm.soft_min_clk, PPSMC_MSG_SetSclkSoftMin)); smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetSclkSoftMax, cz_get_sclk_level(hwmgr, cz_hwmgr->sclk_dpm.soft_max_clk, PPSMC_MSG_SetSclkSoftMax)); return 0; } int cz_tf_reset_acp_boot_level(struct pp_hwmgr *hwmgr, void *input, void *output, void *storage, int result) { struct cz_hwmgr *cz_hwmgr = (struct cz_hwmgr *)(hwmgr->backend); cz_hwmgr->acp_boot_level = 0xff; return 0; } static bool cz_dpm_check_smu_features(struct pp_hwmgr *hwmgr, unsigned long check_feature) { int result; unsigned long features; result = smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_GetFeatureStatus, 0); if (result == 0) { features = smum_get_argument(hwmgr->smumgr); if (features & check_feature) return true; } return result; } static int cz_tf_check_for_dpm_disabled(struct pp_hwmgr *hwmgr, void *input, void *output, void *storage, int result) { if (cz_dpm_check_smu_features(hwmgr, SMU_EnabledFeatureScoreboard_SclkDpmOn)) return PP_Result_TableImmediateExit; return 0; } static int cz_tf_enable_didt(struct pp_hwmgr *hwmgr, void *input, void *output, void *storage, int result) { /* TO DO */ return 0; } static int cz_tf_check_for_dpm_enabled(struct pp_hwmgr *hwmgr, void *input, void *output, void *storage, int result) { if (!cz_dpm_check_smu_features(hwmgr, SMU_EnabledFeatureScoreboard_SclkDpmOn)) return PP_Result_TableImmediateExit; return 0; } static struct phm_master_table_item cz_disable_dpm_list[] = { { NULL, cz_tf_check_for_dpm_enabled}, {NULL, NULL}, }; static struct phm_master_table_header cz_disable_dpm_master = { 0, PHM_MasterTableFlag_None, cz_disable_dpm_list }; static struct phm_master_table_item cz_enable_dpm_list[] = { { NULL, cz_tf_check_for_dpm_disabled }, { NULL, cz_tf_program_voting_clients }, { NULL, cz_tf_start_dpm}, { NULL, cz_tf_program_bootup_state}, { NULL, cz_tf_enable_didt }, { NULL, cz_tf_reset_acp_boot_level }, {NULL, NULL}, }; static struct phm_master_table_header cz_enable_dpm_master = { 0, PHM_MasterTableFlag_None, cz_enable_dpm_list }; static int cz_apply_state_adjust_rules(struct pp_hwmgr *hwmgr, struct pp_power_state *prequest_ps, const struct pp_power_state *pcurrent_ps) { struct cz_power_state *cz_ps = cast_PhwCzPowerState(&prequest_ps->hardware); const struct cz_power_state *cz_current_ps = cast_const_PhwCzPowerState(&pcurrent_ps->hardware); struct cz_hwmgr *cz_hwmgr = (struct cz_hwmgr *)(hwmgr->backend); struct PP_Clocks clocks = {0, 0, 0, 0}; bool force_high; uint32_t num_of_active_displays = 0; struct cgs_display_info info = {0}; cz_ps->evclk = hwmgr->vce_arbiter.evclk; cz_ps->ecclk = hwmgr->vce_arbiter.ecclk; cz_ps->need_dfs_bypass = true; cz_hwmgr->video_start = (hwmgr->uvd_arbiter.vclk != 0 || hwmgr->uvd_arbiter.dclk != 0 || hwmgr->vce_arbiter.evclk != 0 || hwmgr->vce_arbiter.ecclk != 0); cz_hwmgr->battery_state = (PP_StateUILabel_Battery == prequest_ps->classification.ui_label); clocks.memoryClock = hwmgr->display_config.min_mem_set_clock != 0 ? hwmgr->display_config.min_mem_set_clock : cz_hwmgr->sys_info.nbp_memory_clock[1]; cgs_get_active_displays_info(hwmgr->device, &info); num_of_active_displays = info.display_count; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) clocks.memoryClock = hwmgr->dyn_state.max_clock_voltage_on_ac.mclk; if (clocks.memoryClock < hwmgr->gfx_arbiter.mclk) clocks.memoryClock = hwmgr->gfx_arbiter.mclk; force_high = (clocks.memoryClock > cz_hwmgr->sys_info.nbp_memory_clock[CZ_NUM_NBPMEMORYCLOCK - 1]) || (num_of_active_displays >= 3); cz_ps->action = cz_current_ps->action; if ((force_high == false) && (cz_ps->action == FORCE_HIGH)) cz_ps->action = CANCEL_FORCE_HIGH; else if ((force_high == true) && (cz_ps->action != FORCE_HIGH)) cz_ps->action = FORCE_HIGH; else cz_ps->action = DO_NOTHING; return 0; } static int cz_hwmgr_backend_init(struct pp_hwmgr *hwmgr) { int result = 0; result = cz_initialize_dpm_defaults(hwmgr); if (result != 0) { printk(KERN_ERR "[ powerplay ] cz_initialize_dpm_defaults failed\n"); return result; } result = cz_get_system_info_data(hwmgr); if (result != 0) { printk(KERN_ERR "[ powerplay ] cz_get_system_info_data failed\n"); return result; } cz_construct_boot_state(hwmgr); result = phm_construct_table(hwmgr, &cz_setup_asic_master, &(hwmgr->setup_asic)); if (result != 0) { printk(KERN_ERR "[ powerplay ] Fail to construct setup ASIC\n"); return result; } result = phm_construct_table(hwmgr, &cz_power_down_asic_master, &(hwmgr->power_down_asic)); if (result != 0) { printk(KERN_ERR "[ powerplay ] Fail to construct power down ASIC\n"); return result; } result = phm_construct_table(hwmgr, &cz_disable_dpm_master, &(hwmgr->disable_dynamic_state_management)); if (result != 0) { printk(KERN_ERR "[ powerplay ] Fail to disable_dynamic_state\n"); return result; } result = phm_construct_table(hwmgr, &cz_enable_dpm_master, &(hwmgr->enable_dynamic_state_management)); if (result != 0) { printk(KERN_ERR "[ powerplay ] Fail to enable_dynamic_state\n"); return result; } result = phm_construct_table(hwmgr, &cz_set_power_state_master, &(hwmgr->set_power_state)); if (result != 0) { printk(KERN_ERR "[ powerplay ] Fail to construct set_power_state\n"); return result; } hwmgr->platform_descriptor.hardwareActivityPerformanceLevels = CZ_MAX_HARDWARE_POWERLEVELS; result = phm_construct_table(hwmgr, &cz_phm_enable_clock_power_gatings_master, &(hwmgr->enable_clock_power_gatings)); if (result != 0) { printk(KERN_ERR "[ powerplay ] Fail to construct enable_clock_power_gatings\n"); return result; } return result; } static int cz_hwmgr_backend_fini(struct pp_hwmgr *hwmgr) { if (hwmgr != NULL || hwmgr->backend != NULL) { kfree(hwmgr->backend); kfree(hwmgr); } return 0; } int cz_phm_force_dpm_highest(struct pp_hwmgr *hwmgr) { struct cz_hwmgr *cz_hwmgr = (struct cz_hwmgr *)(hwmgr->backend); if (cz_hwmgr->sclk_dpm.soft_min_clk != cz_hwmgr->sclk_dpm.soft_max_clk) smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetSclkSoftMin, cz_get_sclk_level(hwmgr, cz_hwmgr->sclk_dpm.soft_max_clk, PPSMC_MSG_SetSclkSoftMin)); return 0; } int cz_phm_unforce_dpm_levels(struct pp_hwmgr *hwmgr) { struct cz_hwmgr *cz_hwmgr = (struct cz_hwmgr *)(hwmgr->backend); struct phm_clock_voltage_dependency_table *table = hwmgr->dyn_state.vddc_dependency_on_sclk; unsigned long clock = 0, level; if (NULL == table || table->count <= 0) return -EINVAL; cz_hwmgr->sclk_dpm.soft_min_clk = table->entries[0].clk; cz_hwmgr->sclk_dpm.hard_min_clk = table->entries[0].clk; level = cz_get_max_sclk_level(hwmgr) - 1; if (level < table->count) clock = table->entries[level].clk; else clock = table->entries[table->count - 1].clk; cz_hwmgr->sclk_dpm.soft_max_clk = clock; cz_hwmgr->sclk_dpm.hard_max_clk = clock; smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetSclkSoftMin, cz_get_sclk_level(hwmgr, cz_hwmgr->sclk_dpm.soft_min_clk, PPSMC_MSG_SetSclkSoftMin)); smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetSclkSoftMax, cz_get_sclk_level(hwmgr, cz_hwmgr->sclk_dpm.soft_max_clk, PPSMC_MSG_SetSclkSoftMax)); return 0; } int cz_phm_force_dpm_lowest(struct pp_hwmgr *hwmgr) { struct cz_hwmgr *cz_hwmgr = (struct cz_hwmgr *)(hwmgr->backend); if (cz_hwmgr->sclk_dpm.soft_min_clk != cz_hwmgr->sclk_dpm.soft_max_clk) { cz_hwmgr->sclk_dpm.soft_max_clk = cz_hwmgr->sclk_dpm.soft_min_clk; smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetSclkSoftMax, cz_get_sclk_level(hwmgr, cz_hwmgr->sclk_dpm.soft_max_clk, PPSMC_MSG_SetSclkSoftMax)); } return 0; } static int cz_dpm_force_dpm_level(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level) { int ret = 0; switch (level) { case AMD_DPM_FORCED_LEVEL_HIGH: ret = cz_phm_force_dpm_highest(hwmgr); if (ret) return ret; break; case AMD_DPM_FORCED_LEVEL_LOW: ret = cz_phm_force_dpm_lowest(hwmgr); if (ret) return ret; break; case AMD_DPM_FORCED_LEVEL_AUTO: ret = cz_phm_unforce_dpm_levels(hwmgr); if (ret) return ret; break; default: break; } hwmgr->dpm_level = level; return ret; } int cz_dpm_powerdown_uvd(struct pp_hwmgr *hwmgr) { if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UVDPowerGating)) return smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_UVDPowerOFF); return 0; } int cz_dpm_powerup_uvd(struct pp_hwmgr *hwmgr) { if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UVDPowerGating)) { if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UVDDynamicPowerGating)) { return smum_send_msg_to_smc_with_parameter( hwmgr->smumgr, PPSMC_MSG_UVDPowerON, 1); } else { return smum_send_msg_to_smc_with_parameter( hwmgr->smumgr, PPSMC_MSG_UVDPowerON, 0); } } return 0; } int cz_dpm_update_uvd_dpm(struct pp_hwmgr *hwmgr, bool bgate) { struct cz_hwmgr *cz_hwmgr = (struct cz_hwmgr *)(hwmgr->backend); struct phm_uvd_clock_voltage_dependency_table *ptable = hwmgr->dyn_state.uvd_clock_voltage_dependency_table; if (!bgate) { /* Stable Pstate is enabled and we need to set the UVD DPM to highest level */ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) { cz_hwmgr->uvd_dpm.hard_min_clk = ptable->entries[ptable->count - 1].vclk; smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetUvdHardMin, cz_get_uvd_level(hwmgr, cz_hwmgr->uvd_dpm.hard_min_clk, PPSMC_MSG_SetUvdHardMin)); cz_enable_disable_uvd_dpm(hwmgr, true); } else cz_enable_disable_uvd_dpm(hwmgr, true); } else cz_enable_disable_uvd_dpm(hwmgr, false); return 0; } int cz_dpm_update_vce_dpm(struct pp_hwmgr *hwmgr) { struct cz_hwmgr *cz_hwmgr = (struct cz_hwmgr *)(hwmgr->backend); struct phm_vce_clock_voltage_dependency_table *ptable = hwmgr->dyn_state.vce_clock_voltage_dependency_table; /* Stable Pstate is enabled and we need to set the VCE DPM to highest level */ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) { cz_hwmgr->vce_dpm.hard_min_clk = ptable->entries[ptable->count - 1].ecclk; smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetEclkHardMin, cz_get_eclk_level(hwmgr, cz_hwmgr->vce_dpm.hard_min_clk, PPSMC_MSG_SetEclkHardMin)); } else { /*EPR# 419220 -HW limitation to to */ cz_hwmgr->vce_dpm.hard_min_clk = hwmgr->vce_arbiter.ecclk; smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetEclkHardMin, cz_get_eclk_level(hwmgr, cz_hwmgr->vce_dpm.hard_min_clk, PPSMC_MSG_SetEclkHardMin)); } return 0; } int cz_dpm_powerdown_vce(struct pp_hwmgr *hwmgr) { if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_VCEPowerGating)) return smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_VCEPowerOFF); return 0; } int cz_dpm_powerup_vce(struct pp_hwmgr *hwmgr) { if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_VCEPowerGating)) return smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_VCEPowerON); return 0; } static int cz_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low) { struct cz_hwmgr *cz_hwmgr = (struct cz_hwmgr *)(hwmgr->backend); return cz_hwmgr->sys_info.bootup_uma_clock; } static int cz_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low) { struct pp_power_state *ps; struct cz_power_state *cz_ps; if (hwmgr == NULL) return -EINVAL; ps = hwmgr->request_ps; if (ps == NULL) return -EINVAL; cz_ps = cast_PhwCzPowerState(&ps->hardware); if (low) return cz_ps->levels[0].engineClock; else return cz_ps->levels[cz_ps->level-1].engineClock; } static int cz_dpm_patch_boot_state(struct pp_hwmgr *hwmgr, struct pp_hw_power_state *hw_ps) { struct cz_hwmgr *cz_hwmgr = (struct cz_hwmgr *)(hwmgr->backend); struct cz_power_state *cz_ps = cast_PhwCzPowerState(hw_ps); cz_ps->level = 1; cz_ps->nbps_flags = 0; cz_ps->bapm_flags = 0; cz_ps->levels[0] = cz_hwmgr->boot_power_level; return 0; } static int cz_dpm_get_pp_table_entry_callback( struct pp_hwmgr *hwmgr, struct pp_hw_power_state *hw_ps, unsigned int index, const void *clock_info) { struct cz_power_state *cz_ps = cast_PhwCzPowerState(hw_ps); const ATOM_PPLIB_CZ_CLOCK_INFO *cz_clock_info = clock_info; struct phm_clock_voltage_dependency_table *table = hwmgr->dyn_state.vddc_dependency_on_sclk; uint8_t clock_info_index = cz_clock_info->index; if (clock_info_index > (uint8_t)(hwmgr->platform_descriptor.hardwareActivityPerformanceLevels - 1)) clock_info_index = (uint8_t)(hwmgr->platform_descriptor.hardwareActivityPerformanceLevels - 1); cz_ps->levels[index].engineClock = table->entries[clock_info_index].clk; cz_ps->levels[index].vddcIndex = (uint8_t)table->entries[clock_info_index].v; cz_ps->level = index + 1; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) { cz_ps->levels[index].dsDividerIndex = 5; cz_ps->levels[index].ssDividerIndex = 5; } return 0; } static int cz_dpm_get_num_of_pp_table_entries(struct pp_hwmgr *hwmgr) { int result; unsigned long ret = 0; result = pp_tables_get_num_of_entries(hwmgr, &ret); return result ? 0 : ret; } static int cz_dpm_get_pp_table_entry(struct pp_hwmgr *hwmgr, unsigned long entry, struct pp_power_state *ps) { int result; struct cz_power_state *cz_ps; ps->hardware.magic = PhwCz_Magic; cz_ps = cast_PhwCzPowerState(&(ps->hardware)); result = pp_tables_get_entry(hwmgr, entry, ps, cz_dpm_get_pp_table_entry_callback); cz_ps->uvd_clocks.vclk = ps->uvd_clocks.VCLK; cz_ps->uvd_clocks.dclk = ps->uvd_clocks.DCLK; return result; } int cz_get_power_state_size(struct pp_hwmgr *hwmgr) { return sizeof(struct cz_power_state); } static void cz_print_current_perforce_level(struct pp_hwmgr *hwmgr, struct seq_file *m) { struct cz_hwmgr *cz_hwmgr = (struct cz_hwmgr *)(hwmgr->backend); struct phm_clock_voltage_dependency_table *table = hwmgr->dyn_state.vddc_dependency_on_sclk; struct phm_vce_clock_voltage_dependency_table *vce_table = hwmgr->dyn_state.vce_clock_voltage_dependency_table; struct phm_uvd_clock_voltage_dependency_table *uvd_table = hwmgr->dyn_state.uvd_clock_voltage_dependency_table; uint32_t sclk_index = PHM_GET_FIELD(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixTARGET_AND_CURRENT_PROFILE_INDEX), TARGET_AND_CURRENT_PROFILE_INDEX, CURR_SCLK_INDEX); uint32_t uvd_index = PHM_GET_FIELD(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixTARGET_AND_CURRENT_PROFILE_INDEX_2), TARGET_AND_CURRENT_PROFILE_INDEX_2, CURR_UVD_INDEX); uint32_t vce_index = PHM_GET_FIELD(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixTARGET_AND_CURRENT_PROFILE_INDEX_2), TARGET_AND_CURRENT_PROFILE_INDEX_2, CURR_VCE_INDEX); uint32_t sclk, vclk, dclk, ecclk, tmp, activity_percent; uint16_t vddnb, vddgfx; int result; if (sclk_index >= NUM_SCLK_LEVELS) { seq_printf(m, "\n invalid sclk dpm profile %d\n", sclk_index); } else { sclk = table->entries[sclk_index].clk; seq_printf(m, "\n index: %u sclk: %u MHz\n", sclk_index, sclk/100); } tmp = (cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixSMUSVI_NB_CURRENTVID) & CURRENT_NB_VID_MASK) >> CURRENT_NB_VID__SHIFT; vddnb = cz_convert_8Bit_index_to_voltage(hwmgr, tmp); tmp = (cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixSMUSVI_GFX_CURRENTVID) & CURRENT_GFX_VID_MASK) >> CURRENT_GFX_VID__SHIFT; vddgfx = cz_convert_8Bit_index_to_voltage(hwmgr, (u16)tmp); seq_printf(m, "\n vddnb: %u vddgfx: %u\n", vddnb, vddgfx); seq_printf(m, "\n uvd %sabled\n", cz_hwmgr->uvd_power_gated ? "dis" : "en"); if (!cz_hwmgr->uvd_power_gated) { if (uvd_index >= CZ_MAX_HARDWARE_POWERLEVELS) { seq_printf(m, "\n invalid uvd dpm level %d\n", uvd_index); } else { vclk = uvd_table->entries[uvd_index].vclk; dclk = uvd_table->entries[uvd_index].dclk; seq_printf(m, "\n index: %u uvd vclk: %u MHz dclk: %u MHz\n", uvd_index, vclk/100, dclk/100); } } seq_printf(m, "\n vce %sabled\n", cz_hwmgr->vce_power_gated ? "dis" : "en"); if (!cz_hwmgr->vce_power_gated) { if (vce_index >= CZ_MAX_HARDWARE_POWERLEVELS) { seq_printf(m, "\n invalid vce dpm level %d\n", vce_index); } else { ecclk = vce_table->entries[vce_index].ecclk; seq_printf(m, "\n index: %u vce ecclk: %u MHz\n", vce_index, ecclk/100); } } result = smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_GetAverageGraphicsActivity); if (0 == result) { activity_percent = cgs_read_register(hwmgr->device, mmSMU_MP1_SRBM2P_ARG_0); activity_percent = activity_percent > 100 ? 100 : activity_percent; } else { activity_percent = 50; } seq_printf(m, "\n [GPU load]: %u %%\n\n", activity_percent); } static void cz_hw_print_display_cfg( const struct cc6_settings *cc6_settings) { PP_DBG_LOG("New Display Configuration:\n"); PP_DBG_LOG(" cpu_cc6_disable: %d\n", cc6_settings->cpu_cc6_disable); PP_DBG_LOG(" cpu_pstate_disable: %d\n", cc6_settings->cpu_pstate_disable); PP_DBG_LOG(" nb_pstate_switch_disable: %d\n", cc6_settings->nb_pstate_switch_disable); PP_DBG_LOG(" cpu_pstate_separation_time: %d\n\n", cc6_settings->cpu_pstate_separation_time); } static int cz_set_cpu_power_state(struct pp_hwmgr *hwmgr) { struct cz_hwmgr *hw_data = (struct cz_hwmgr *)(hwmgr->backend); uint32_t data = 0; if (hw_data->cc6_settings.cc6_setting_changed == true) { hw_data->cc6_settings.cc6_setting_changed = false; cz_hw_print_display_cfg(&hw_data->cc6_settings); data |= (hw_data->cc6_settings.cpu_pstate_separation_time & PWRMGT_SEPARATION_TIME_MASK) << PWRMGT_SEPARATION_TIME_SHIFT; data |= (hw_data->cc6_settings.cpu_cc6_disable ? 0x1 : 0x0) << PWRMGT_DISABLE_CPU_CSTATES_SHIFT; data |= (hw_data->cc6_settings.cpu_pstate_disable ? 0x1 : 0x0) << PWRMGT_DISABLE_CPU_PSTATES_SHIFT; PP_DBG_LOG("SetDisplaySizePowerParams data: 0x%X\n", data); smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetDisplaySizePowerParams, data); } return 0; } static int cz_store_cc6_data(struct pp_hwmgr *hwmgr, uint32_t separation_time, bool cc6_disable, bool pstate_disable, bool pstate_switch_disable) { struct cz_hwmgr *hw_data = (struct cz_hwmgr *)(hwmgr->backend); if (separation_time != hw_data->cc6_settings.cpu_pstate_separation_time || cc6_disable != hw_data->cc6_settings.cpu_cc6_disable || pstate_disable != hw_data->cc6_settings.cpu_pstate_disable || pstate_switch_disable != hw_data->cc6_settings.nb_pstate_switch_disable) { hw_data->cc6_settings.cc6_setting_changed = true; hw_data->cc6_settings.cpu_pstate_separation_time = separation_time; hw_data->cc6_settings.cpu_cc6_disable = cc6_disable; hw_data->cc6_settings.cpu_pstate_disable = pstate_disable; hw_data->cc6_settings.nb_pstate_switch_disable = pstate_switch_disable; } return 0; } static int cz_get_dal_power_level(struct pp_hwmgr *hwmgr, struct amd_pp_simple_clock_info *info) { uint32_t i; const struct phm_clock_voltage_dependency_table *table = hwmgr->dyn_state.vddc_dep_on_dal_pwrl; const struct phm_clock_and_voltage_limits *limits = &hwmgr->dyn_state.max_clock_voltage_on_ac; info->engine_max_clock = limits->sclk; info->memory_max_clock = limits->mclk; for (i = table->count - 1; i > 0; i--) { if (limits->vddc >= table->entries[i].v) { info->level = table->entries[i].clk; return 0; } } return -EINVAL; } static int cz_force_clock_level(struct pp_hwmgr *hwmgr, enum pp_clock_type type, int level) { if (hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL) return -EINVAL; switch (type) { case PP_SCLK: smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetSclkSoftMin, (1 << level)); smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetSclkSoftMax, (1 << level)); break; default: break; } return 0; } static int cz_print_clock_levels(struct pp_hwmgr *hwmgr, enum pp_clock_type type, char *buf) { struct phm_clock_voltage_dependency_table *sclk_table = hwmgr->dyn_state.vddc_dependency_on_sclk; int i, now, size = 0; switch (type) { case PP_SCLK: now = PHM_GET_FIELD(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixTARGET_AND_CURRENT_PROFILE_INDEX), TARGET_AND_CURRENT_PROFILE_INDEX, CURR_SCLK_INDEX); for (i = 0; i < sclk_table->count; i++) size += sprintf(buf + size, "%d: %uMhz %s\n", i, sclk_table->entries[i].clk / 100, (i == now) ? "*" : ""); break; default: break; } return size; } static int cz_get_performance_level(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state, PHM_PerformanceLevelDesignation designation, uint32_t index, PHM_PerformanceLevel *level) { const struct cz_power_state *ps; struct cz_hwmgr *data; uint32_t level_index; uint32_t i; if (level == NULL || hwmgr == NULL || state == NULL) return -EINVAL; data = (struct cz_hwmgr *)(hwmgr->backend); ps = cast_const_PhwCzPowerState(state); level_index = index > ps->level - 1 ? ps->level - 1 : index; level->coreClock = ps->levels[level_index].engineClock; if (designation == PHM_PerformanceLevelDesignation_PowerContainment) { for (i = 1; i < ps->level; i++) { if (ps->levels[i].engineClock > data->dce_slow_sclk_threshold) { level->coreClock = ps->levels[i].engineClock; break; } } } if (level_index == 0) level->memory_clock = data->sys_info.nbp_memory_clock[CZ_NUM_NBPMEMORYCLOCK - 1]; else level->memory_clock = data->sys_info.nbp_memory_clock[0]; level->vddc = (cz_convert_8Bit_index_to_voltage(hwmgr, ps->levels[level_index].vddcIndex) + 2) / 4; level->nonLocalMemoryFreq = 0; level->nonLocalMemoryWidth = 0; return 0; } static int cz_get_current_shallow_sleep_clocks(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state, struct pp_clock_info *clock_info) { const struct cz_power_state *ps = cast_const_PhwCzPowerState(state); clock_info->min_eng_clk = ps->levels[0].engineClock / (1 << (ps->levels[0].ssDividerIndex)); clock_info->max_eng_clk = ps->levels[ps->level - 1].engineClock / (1 << (ps->levels[ps->level - 1].ssDividerIndex)); return 0; } static int cz_get_clock_by_type(struct pp_hwmgr *hwmgr, enum amd_pp_clock_type type, struct amd_pp_clocks *clocks) { struct cz_hwmgr *data = (struct cz_hwmgr *)(hwmgr->backend); int i; struct phm_clock_voltage_dependency_table *table; clocks->count = cz_get_max_sclk_level(hwmgr); switch (type) { case amd_pp_disp_clock: for (i = 0; i < clocks->count; i++) clocks->clock[i] = data->sys_info.display_clock[i]; break; case amd_pp_sys_clock: table = hwmgr->dyn_state.vddc_dependency_on_sclk; for (i = 0; i < clocks->count; i++) clocks->clock[i] = table->entries[i].clk; break; case amd_pp_mem_clock: clocks->count = CZ_NUM_NBPMEMORYCLOCK; for (i = 0; i < clocks->count; i++) clocks->clock[i] = data->sys_info.nbp_memory_clock[clocks->count - 1 - i]; break; default: return -1; } return 0; } static int cz_get_max_high_clocks(struct pp_hwmgr *hwmgr, struct amd_pp_simple_clock_info *clocks) { struct phm_clock_voltage_dependency_table *table = hwmgr->dyn_state.vddc_dependency_on_sclk; unsigned long level; const struct phm_clock_and_voltage_limits *limits = &hwmgr->dyn_state.max_clock_voltage_on_ac; if ((NULL == table) || (table->count <= 0) || (clocks == NULL)) return -EINVAL; level = cz_get_max_sclk_level(hwmgr) - 1; if (level < table->count) clocks->engine_max_clock = table->entries[level].clk; else clocks->engine_max_clock = table->entries[table->count - 1].clk; clocks->memory_max_clock = limits->mclk; return 0; } static const struct pp_hwmgr_func cz_hwmgr_funcs = { .backend_init = cz_hwmgr_backend_init, .backend_fini = cz_hwmgr_backend_fini, .asic_setup = NULL, .apply_state_adjust_rules = cz_apply_state_adjust_rules, .force_dpm_level = cz_dpm_force_dpm_level, .get_power_state_size = cz_get_power_state_size, .powerdown_uvd = cz_dpm_powerdown_uvd, .powergate_uvd = cz_dpm_powergate_uvd, .powergate_vce = cz_dpm_powergate_vce, .get_mclk = cz_dpm_get_mclk, .get_sclk = cz_dpm_get_sclk, .patch_boot_state = cz_dpm_patch_boot_state, .get_pp_table_entry = cz_dpm_get_pp_table_entry, .get_num_of_pp_table_entries = cz_dpm_get_num_of_pp_table_entries, .print_current_perforce_level = cz_print_current_perforce_level, .set_cpu_power_state = cz_set_cpu_power_state, .store_cc6_data = cz_store_cc6_data, .force_clock_level = cz_force_clock_level, .print_clock_levels = cz_print_clock_levels, .get_dal_power_level = cz_get_dal_power_level, .get_performance_level = cz_get_performance_level, .get_current_shallow_sleep_clocks = cz_get_current_shallow_sleep_clocks, .get_clock_by_type = cz_get_clock_by_type, .get_max_high_clocks = cz_get_max_high_clocks, }; int cz_hwmgr_init(struct pp_hwmgr *hwmgr) { struct cz_hwmgr *cz_hwmgr; int ret = 0; cz_hwmgr = kzalloc(sizeof(struct cz_hwmgr), GFP_KERNEL); if (cz_hwmgr == NULL) return -ENOMEM; hwmgr->backend = cz_hwmgr; hwmgr->hwmgr_func = &cz_hwmgr_funcs; hwmgr->pptable_func = &pptable_funcs; return ret; }