/* * Copyright(c) 2013-2015 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include "nd-core.h" #include "label.h" #include "pmem.h" #include "nd.h" static DEFINE_IDA(dimm_ida); /* * Retrieve bus and dimm handle and return if this bus supports * get_config_data commands */ int nvdimm_check_config_data(struct device *dev) { struct nvdimm *nvdimm = to_nvdimm(dev); if (!nvdimm->cmd_mask || !test_bit(ND_CMD_GET_CONFIG_DATA, &nvdimm->cmd_mask)) { if (test_bit(NDD_ALIASING, &nvdimm->flags)) return -ENXIO; else return -ENOTTY; } return 0; } static int validate_dimm(struct nvdimm_drvdata *ndd) { int rc; if (!ndd) return -EINVAL; rc = nvdimm_check_config_data(ndd->dev); if (rc) dev_dbg(ndd->dev, "%pf: %s error: %d\n", __builtin_return_address(0), __func__, rc); return rc; } /** * nvdimm_init_nsarea - determine the geometry of a dimm's namespace area * @nvdimm: dimm to initialize */ int nvdimm_init_nsarea(struct nvdimm_drvdata *ndd) { struct nd_cmd_get_config_size *cmd = &ndd->nsarea; struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(ndd->dev); struct nvdimm_bus_descriptor *nd_desc; int rc = validate_dimm(ndd); int cmd_rc = 0; if (rc) return rc; if (cmd->config_size) return 0; /* already valid */ memset(cmd, 0, sizeof(*cmd)); nd_desc = nvdimm_bus->nd_desc; rc = nd_desc->ndctl(nd_desc, to_nvdimm(ndd->dev), ND_CMD_GET_CONFIG_SIZE, cmd, sizeof(*cmd), &cmd_rc); if (rc < 0) return rc; return cmd_rc; } int nvdimm_init_config_data(struct nvdimm_drvdata *ndd) { struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(ndd->dev); int rc = validate_dimm(ndd), cmd_rc = 0; struct nd_cmd_get_config_data_hdr *cmd; struct nvdimm_bus_descriptor *nd_desc; u32 max_cmd_size, config_size; size_t offset; if (rc) return rc; if (ndd->data) return 0; if (ndd->nsarea.status || ndd->nsarea.max_xfer == 0 || ndd->nsarea.config_size < ND_LABEL_MIN_SIZE) { dev_dbg(ndd->dev, "failed to init config data area: (%d:%d)\n", ndd->nsarea.max_xfer, ndd->nsarea.config_size); return -ENXIO; } ndd->data = kvmalloc(ndd->nsarea.config_size, GFP_KERNEL); if (!ndd->data) return -ENOMEM; max_cmd_size = min_t(u32, PAGE_SIZE, ndd->nsarea.max_xfer); cmd = kzalloc(max_cmd_size + sizeof(*cmd), GFP_KERNEL); if (!cmd) return -ENOMEM; nd_desc = nvdimm_bus->nd_desc; for (config_size = ndd->nsarea.config_size, offset = 0; config_size; config_size -= cmd->in_length, offset += cmd->in_length) { cmd->in_length = min(config_size, max_cmd_size); cmd->in_offset = offset; rc = nd_desc->ndctl(nd_desc, to_nvdimm(ndd->dev), ND_CMD_GET_CONFIG_DATA, cmd, cmd->in_length + sizeof(*cmd), &cmd_rc); if (rc < 0) break; if (cmd_rc < 0) { rc = cmd_rc; break; } memcpy(ndd->data + offset, cmd->out_buf, cmd->in_length); } dev_dbg(ndd->dev, "len: %zu rc: %d\n", offset, rc); kfree(cmd); return rc; } int nvdimm_set_config_data(struct nvdimm_drvdata *ndd, size_t offset, void *buf, size_t len) { size_t max_cmd_size, buf_offset; struct nd_cmd_set_config_hdr *cmd; int rc = validate_dimm(ndd), cmd_rc = 0; struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(ndd->dev); struct nvdimm_bus_descriptor *nd_desc = nvdimm_bus->nd_desc; if (rc) return rc; if (!ndd->data) return -ENXIO; if (offset + len > ndd->nsarea.config_size) return -ENXIO; max_cmd_size = min_t(u32, PAGE_SIZE, len); max_cmd_size = min_t(u32, max_cmd_size, ndd->nsarea.max_xfer); cmd = kzalloc(max_cmd_size + sizeof(*cmd) + sizeof(u32), GFP_KERNEL); if (!cmd) return -ENOMEM; for (buf_offset = 0; len; len -= cmd->in_length, buf_offset += cmd->in_length) { size_t cmd_size; cmd->in_offset = offset + buf_offset; cmd->in_length = min(max_cmd_size, len); memcpy(cmd->in_buf, buf + buf_offset, cmd->in_length); /* status is output in the last 4-bytes of the command buffer */ cmd_size = sizeof(*cmd) + cmd->in_length + sizeof(u32); rc = nd_desc->ndctl(nd_desc, to_nvdimm(ndd->dev), ND_CMD_SET_CONFIG_DATA, cmd, cmd_size, &cmd_rc); if (rc < 0) break; if (cmd_rc < 0) { rc = cmd_rc; break; } } kfree(cmd); return rc; } void nvdimm_set_aliasing(struct device *dev) { struct nvdimm *nvdimm = to_nvdimm(dev); set_bit(NDD_ALIASING, &nvdimm->flags); } void nvdimm_set_locked(struct device *dev) { struct nvdimm *nvdimm = to_nvdimm(dev); set_bit(NDD_LOCKED, &nvdimm->flags); } void nvdimm_clear_locked(struct device *dev) { struct nvdimm *nvdimm = to_nvdimm(dev); clear_bit(NDD_LOCKED, &nvdimm->flags); } static void nvdimm_release(struct device *dev) { struct nvdimm *nvdimm = to_nvdimm(dev); ida_simple_remove(&dimm_ida, nvdimm->id); kfree(nvdimm); } static struct device_type nvdimm_device_type = { .name = "nvdimm", .release = nvdimm_release, }; bool is_nvdimm(struct device *dev) { return dev->type == &nvdimm_device_type; } struct nvdimm *to_nvdimm(struct device *dev) { struct nvdimm *nvdimm = container_of(dev, struct nvdimm, dev); WARN_ON(!is_nvdimm(dev)); return nvdimm; } EXPORT_SYMBOL_GPL(to_nvdimm); struct nvdimm *nd_blk_region_to_dimm(struct nd_blk_region *ndbr) { struct nd_region *nd_region = &ndbr->nd_region; struct nd_mapping *nd_mapping = &nd_region->mapping[0]; return nd_mapping->nvdimm; } EXPORT_SYMBOL_GPL(nd_blk_region_to_dimm); unsigned long nd_blk_memremap_flags(struct nd_blk_region *ndbr) { /* pmem mapping properties are private to libnvdimm */ return ARCH_MEMREMAP_PMEM; } EXPORT_SYMBOL_GPL(nd_blk_memremap_flags); struct nvdimm_drvdata *to_ndd(struct nd_mapping *nd_mapping) { struct nvdimm *nvdimm = nd_mapping->nvdimm; WARN_ON_ONCE(!is_nvdimm_bus_locked(&nvdimm->dev)); return dev_get_drvdata(&nvdimm->dev); } EXPORT_SYMBOL(to_ndd); void nvdimm_drvdata_release(struct kref *kref) { struct nvdimm_drvdata *ndd = container_of(kref, typeof(*ndd), kref); struct device *dev = ndd->dev; struct resource *res, *_r; dev_dbg(dev, "trace\n"); nvdimm_bus_lock(dev); for_each_dpa_resource_safe(ndd, res, _r) nvdimm_free_dpa(ndd, res); nvdimm_bus_unlock(dev); kvfree(ndd->data); kfree(ndd); put_device(dev); } void get_ndd(struct nvdimm_drvdata *ndd) { kref_get(&ndd->kref); } void put_ndd(struct nvdimm_drvdata *ndd) { if (ndd) kref_put(&ndd->kref, nvdimm_drvdata_release); } const char *nvdimm_name(struct nvdimm *nvdimm) { return dev_name(&nvdimm->dev); } EXPORT_SYMBOL_GPL(nvdimm_name); struct kobject *nvdimm_kobj(struct nvdimm *nvdimm) { return &nvdimm->dev.kobj; } EXPORT_SYMBOL_GPL(nvdimm_kobj); unsigned long nvdimm_cmd_mask(struct nvdimm *nvdimm) { return nvdimm->cmd_mask; } EXPORT_SYMBOL_GPL(nvdimm_cmd_mask); void *nvdimm_provider_data(struct nvdimm *nvdimm) { if (nvdimm) return nvdimm->provider_data; return NULL; } EXPORT_SYMBOL_GPL(nvdimm_provider_data); static ssize_t commands_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nvdimm *nvdimm = to_nvdimm(dev); int cmd, len = 0; if (!nvdimm->cmd_mask) return sprintf(buf, "\n"); for_each_set_bit(cmd, &nvdimm->cmd_mask, BITS_PER_LONG) len += sprintf(buf + len, "%s ", nvdimm_cmd_name(cmd)); len += sprintf(buf + len, "\n"); return len; } static DEVICE_ATTR_RO(commands); static ssize_t flags_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nvdimm *nvdimm = to_nvdimm(dev); return sprintf(buf, "%s%s\n", test_bit(NDD_ALIASING, &nvdimm->flags) ? "alias " : "", test_bit(NDD_LOCKED, &nvdimm->flags) ? "lock " : ""); } static DEVICE_ATTR_RO(flags); static ssize_t state_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nvdimm *nvdimm = to_nvdimm(dev); /* * The state may be in the process of changing, userspace should * quiesce probing if it wants a static answer */ nvdimm_bus_lock(dev); nvdimm_bus_unlock(dev); return sprintf(buf, "%s\n", atomic_read(&nvdimm->busy) ? "active" : "idle"); } static DEVICE_ATTR_RO(state); static ssize_t available_slots_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nvdimm_drvdata *ndd = dev_get_drvdata(dev); ssize_t rc; u32 nfree; if (!ndd) return -ENXIO; nvdimm_bus_lock(dev); nfree = nd_label_nfree(ndd); if (nfree - 1 > nfree) { dev_WARN_ONCE(dev, 1, "we ate our last label?\n"); nfree = 0; } else nfree--; rc = sprintf(buf, "%d\n", nfree); nvdimm_bus_unlock(dev); return rc; } static DEVICE_ATTR_RO(available_slots); static ssize_t security_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nvdimm *nvdimm = to_nvdimm(dev); switch (nvdimm->sec.state) { case NVDIMM_SECURITY_DISABLED: return sprintf(buf, "disabled\n"); case NVDIMM_SECURITY_UNLOCKED: return sprintf(buf, "unlocked\n"); case NVDIMM_SECURITY_LOCKED: return sprintf(buf, "locked\n"); case NVDIMM_SECURITY_FROZEN: return sprintf(buf, "frozen\n"); case NVDIMM_SECURITY_OVERWRITE: return sprintf(buf, "overwrite\n"); } return -ENOTTY; } #define OPS \ C( OP_FREEZE, "freeze", 1), \ C( OP_DISABLE, "disable", 2), \ C( OP_UPDATE, "update", 3) #undef C #define C(a, b, c) a enum nvdimmsec_op_ids { OPS }; #undef C #define C(a, b, c) { b, c } static struct { const char *name; int args; } ops[] = { OPS }; #undef C #define SEC_CMD_SIZE 32 #define KEY_ID_SIZE 10 static ssize_t __security_store(struct device *dev, const char *buf, size_t len) { struct nvdimm *nvdimm = to_nvdimm(dev); ssize_t rc; char cmd[SEC_CMD_SIZE+1], keystr[KEY_ID_SIZE+1], nkeystr[KEY_ID_SIZE+1]; unsigned int key, newkey; int i; if (atomic_read(&nvdimm->busy)) return -EBUSY; rc = sscanf(buf, "%"__stringify(SEC_CMD_SIZE)"s" " %"__stringify(KEY_ID_SIZE)"s" " %"__stringify(KEY_ID_SIZE)"s", cmd, keystr, nkeystr); if (rc < 1) return -EINVAL; for (i = 0; i < ARRAY_SIZE(ops); i++) if (sysfs_streq(cmd, ops[i].name)) break; if (i >= ARRAY_SIZE(ops)) return -EINVAL; if (ops[i].args > 1) rc = kstrtouint(keystr, 0, &key); if (rc >= 0 && ops[i].args > 2) rc = kstrtouint(nkeystr, 0, &newkey); if (rc < 0) return rc; if (i == OP_FREEZE) { dev_dbg(dev, "freeze\n"); rc = nvdimm_security_freeze(nvdimm); } else if (i == OP_DISABLE) { dev_dbg(dev, "disable %u\n", key); rc = nvdimm_security_disable(nvdimm, key); } else if (i == OP_UPDATE) { dev_dbg(dev, "update %u %u\n", key, newkey); rc = nvdimm_security_update(nvdimm, key, newkey); } else return -EINVAL; if (rc == 0) rc = len; return rc; } static ssize_t security_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { ssize_t rc; /* * Require all userspace triggered security management to be * done while probing is idle and the DIMM is not in active use * in any region. */ device_lock(dev); nvdimm_bus_lock(dev); wait_nvdimm_bus_probe_idle(dev); rc = __security_store(dev, buf, len); nvdimm_bus_unlock(dev); device_unlock(dev); return rc; } static DEVICE_ATTR_RW(security); static struct attribute *nvdimm_attributes[] = { &dev_attr_state.attr, &dev_attr_flags.attr, &dev_attr_commands.attr, &dev_attr_available_slots.attr, &dev_attr_security.attr, NULL, }; static umode_t nvdimm_visible(struct kobject *kobj, struct attribute *a, int n) { struct device *dev = container_of(kobj, typeof(*dev), kobj); struct nvdimm *nvdimm = to_nvdimm(dev); if (a != &dev_attr_security.attr) return a->mode; if (nvdimm->sec.state < 0) return 0; /* Are there any state mutation ops? */ if (nvdimm->sec.ops->freeze || nvdimm->sec.ops->disable || nvdimm->sec.ops->change_key) return a->mode; return 0444; } struct attribute_group nvdimm_attribute_group = { .attrs = nvdimm_attributes, .is_visible = nvdimm_visible, }; EXPORT_SYMBOL_GPL(nvdimm_attribute_group); struct nvdimm *__nvdimm_create(struct nvdimm_bus *nvdimm_bus, void *provider_data, const struct attribute_group **groups, unsigned long flags, unsigned long cmd_mask, int num_flush, struct resource *flush_wpq, const char *dimm_id, const struct nvdimm_security_ops *sec_ops) { struct nvdimm *nvdimm = kzalloc(sizeof(*nvdimm), GFP_KERNEL); struct device *dev; if (!nvdimm) return NULL; nvdimm->id = ida_simple_get(&dimm_ida, 0, 0, GFP_KERNEL); if (nvdimm->id < 0) { kfree(nvdimm); return NULL; } nvdimm->dimm_id = dimm_id; nvdimm->provider_data = provider_data; nvdimm->flags = flags; nvdimm->cmd_mask = cmd_mask; nvdimm->num_flush = num_flush; nvdimm->flush_wpq = flush_wpq; atomic_set(&nvdimm->busy, 0); dev = &nvdimm->dev; dev_set_name(dev, "nmem%d", nvdimm->id); dev->parent = &nvdimm_bus->dev; dev->type = &nvdimm_device_type; dev->devt = MKDEV(nvdimm_major, nvdimm->id); dev->groups = groups; nvdimm->sec.ops = sec_ops; /* * Security state must be initialized before device_add() for * attribute visibility. */ nvdimm->sec.state = nvdimm_security_state(nvdimm); nd_device_register(dev); return nvdimm; } EXPORT_SYMBOL_GPL(__nvdimm_create); int nvdimm_security_freeze(struct nvdimm *nvdimm) { int rc; WARN_ON_ONCE(!is_nvdimm_bus_locked(&nvdimm->dev)); if (!nvdimm->sec.ops || !nvdimm->sec.ops->freeze) return -EOPNOTSUPP; if (nvdimm->sec.state < 0) return -EIO; rc = nvdimm->sec.ops->freeze(nvdimm); nvdimm->sec.state = nvdimm_security_state(nvdimm); return rc; } int alias_dpa_busy(struct device *dev, void *data) { resource_size_t map_end, blk_start, new; struct blk_alloc_info *info = data; struct nd_mapping *nd_mapping; struct nd_region *nd_region; struct nvdimm_drvdata *ndd; struct resource *res; int i; if (!is_memory(dev)) return 0; nd_region = to_nd_region(dev); for (i = 0; i < nd_region->ndr_mappings; i++) { nd_mapping = &nd_region->mapping[i]; if (nd_mapping->nvdimm == info->nd_mapping->nvdimm) break; } if (i >= nd_region->ndr_mappings) return 0; ndd = to_ndd(nd_mapping); map_end = nd_mapping->start + nd_mapping->size - 1; blk_start = nd_mapping->start; /* * In the allocation case ->res is set to free space that we are * looking to validate against PMEM aliasing collision rules * (i.e. BLK is allocated after all aliased PMEM). */ if (info->res) { if (info->res->start >= nd_mapping->start && info->res->start < map_end) /* pass */; else return 0; } retry: /* * Find the free dpa from the end of the last pmem allocation to * the end of the interleave-set mapping. */ for_each_dpa_resource(ndd, res) { if (strncmp(res->name, "pmem", 4) != 0) continue; if ((res->start >= blk_start && res->start < map_end) || (res->end >= blk_start && res->end <= map_end)) { new = max(blk_start, min(map_end + 1, res->end + 1)); if (new != blk_start) { blk_start = new; goto retry; } } } /* update the free space range with the probed blk_start */ if (info->res && blk_start > info->res->start) { info->res->start = max(info->res->start, blk_start); if (info->res->start > info->res->end) info->res->end = info->res->start - 1; return 1; } info->available -= blk_start - nd_mapping->start; return 0; } /** * nd_blk_available_dpa - account the unused dpa of BLK region * @nd_mapping: container of dpa-resource-root + labels * * Unlike PMEM, BLK namespaces can occupy discontiguous DPA ranges, but * we arrange for them to never start at an lower dpa than the last * PMEM allocation in an aliased region. */ resource_size_t nd_blk_available_dpa(struct nd_region *nd_region) { struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev); struct nd_mapping *nd_mapping = &nd_region->mapping[0]; struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); struct blk_alloc_info info = { .nd_mapping = nd_mapping, .available = nd_mapping->size, .res = NULL, }; struct resource *res; if (!ndd) return 0; device_for_each_child(&nvdimm_bus->dev, &info, alias_dpa_busy); /* now account for busy blk allocations in unaliased dpa */ for_each_dpa_resource(ndd, res) { if (strncmp(res->name, "blk", 3) != 0) continue; info.available -= resource_size(res); } return info.available; } /** * nd_pmem_max_contiguous_dpa - For the given dimm+region, return the max * contiguous unallocated dpa range. * @nd_region: constrain available space check to this reference region * @nd_mapping: container of dpa-resource-root + labels */ resource_size_t nd_pmem_max_contiguous_dpa(struct nd_region *nd_region, struct nd_mapping *nd_mapping) { struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); struct nvdimm_bus *nvdimm_bus; resource_size_t max = 0; struct resource *res; /* if a dimm is disabled the available capacity is zero */ if (!ndd) return 0; nvdimm_bus = walk_to_nvdimm_bus(ndd->dev); if (__reserve_free_pmem(&nd_region->dev, nd_mapping->nvdimm)) return 0; for_each_dpa_resource(ndd, res) { if (strcmp(res->name, "pmem-reserve") != 0) continue; if (resource_size(res) > max) max = resource_size(res); } release_free_pmem(nvdimm_bus, nd_mapping); return max; } /** * nd_pmem_available_dpa - for the given dimm+region account unallocated dpa * @nd_mapping: container of dpa-resource-root + labels * @nd_region: constrain available space check to this reference region * @overlap: calculate available space assuming this level of overlap * * Validate that a PMEM label, if present, aligns with the start of an * interleave set and truncate the available size at the lowest BLK * overlap point. * * The expectation is that this routine is called multiple times as it * probes for the largest BLK encroachment for any single member DIMM of * the interleave set. Once that value is determined the PMEM-limit for * the set can be established. */ resource_size_t nd_pmem_available_dpa(struct nd_region *nd_region, struct nd_mapping *nd_mapping, resource_size_t *overlap) { resource_size_t map_start, map_end, busy = 0, available, blk_start; struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); struct resource *res; const char *reason; if (!ndd) return 0; map_start = nd_mapping->start; map_end = map_start + nd_mapping->size - 1; blk_start = max(map_start, map_end + 1 - *overlap); for_each_dpa_resource(ndd, res) { if (res->start >= map_start && res->start < map_end) { if (strncmp(res->name, "blk", 3) == 0) blk_start = min(blk_start, max(map_start, res->start)); else if (res->end > map_end) { reason = "misaligned to iset"; goto err; } else busy += resource_size(res); } else if (res->end >= map_start && res->end <= map_end) { if (strncmp(res->name, "blk", 3) == 0) { /* * If a BLK allocation overlaps the start of * PMEM the entire interleave set may now only * be used for BLK. */ blk_start = map_start; } else busy += resource_size(res); } else if (map_start > res->start && map_start < res->end) { /* total eclipse of the mapping */ busy += nd_mapping->size; blk_start = map_start; } } *overlap = map_end + 1 - blk_start; available = blk_start - map_start; if (busy < available) return available - busy; return 0; err: nd_dbg_dpa(nd_region, ndd, res, "%s\n", reason); return 0; } void nvdimm_free_dpa(struct nvdimm_drvdata *ndd, struct resource *res) { WARN_ON_ONCE(!is_nvdimm_bus_locked(ndd->dev)); kfree(res->name); __release_region(&ndd->dpa, res->start, resource_size(res)); } struct resource *nvdimm_allocate_dpa(struct nvdimm_drvdata *ndd, struct nd_label_id *label_id, resource_size_t start, resource_size_t n) { char *name = kmemdup(label_id, sizeof(*label_id), GFP_KERNEL); struct resource *res; if (!name) return NULL; WARN_ON_ONCE(!is_nvdimm_bus_locked(ndd->dev)); res = __request_region(&ndd->dpa, start, n, name, 0); if (!res) kfree(name); return res; } /** * nvdimm_allocated_dpa - sum up the dpa currently allocated to this label_id * @nvdimm: container of dpa-resource-root + labels * @label_id: dpa resource name of the form {pmem|blk}- */ resource_size_t nvdimm_allocated_dpa(struct nvdimm_drvdata *ndd, struct nd_label_id *label_id) { resource_size_t allocated = 0; struct resource *res; for_each_dpa_resource(ndd, res) if (strcmp(res->name, label_id->id) == 0) allocated += resource_size(res); return allocated; } static int count_dimms(struct device *dev, void *c) { int *count = c; if (is_nvdimm(dev)) (*count)++; return 0; } int nvdimm_bus_check_dimm_count(struct nvdimm_bus *nvdimm_bus, int dimm_count) { int count = 0; /* Flush any possible dimm registration failures */ nd_synchronize(); device_for_each_child(&nvdimm_bus->dev, &count, count_dimms); dev_dbg(&nvdimm_bus->dev, "count: %d\n", count); if (count != dimm_count) return -ENXIO; return 0; } EXPORT_SYMBOL_GPL(nvdimm_bus_check_dimm_count); void __exit nvdimm_devs_exit(void) { ida_destroy(&dimm_ida); }