/* * Copyright (C) 2015, 2016 ARM Ltd. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include "vgic.h" #define CREATE_TRACE_POINTS #include "../trace.h" #ifdef CONFIG_DEBUG_SPINLOCK #define DEBUG_SPINLOCK_BUG_ON(p) BUG_ON(p) #else #define DEBUG_SPINLOCK_BUG_ON(p) #endif struct vgic_global __section(.hyp.text) kvm_vgic_global_state; /* * Locking order is always: * vgic_cpu->ap_list_lock * vgic_irq->irq_lock * * (that is, always take the ap_list_lock before the struct vgic_irq lock). * * When taking more than one ap_list_lock at the same time, always take the * lowest numbered VCPU's ap_list_lock first, so: * vcpuX->vcpu_id < vcpuY->vcpu_id: * spin_lock(vcpuX->arch.vgic_cpu.ap_list_lock); * spin_lock(vcpuY->arch.vgic_cpu.ap_list_lock); */ struct vgic_irq *vgic_get_irq(struct kvm *kvm, struct kvm_vcpu *vcpu, u32 intid) { /* SGIs and PPIs */ if (intid <= VGIC_MAX_PRIVATE) return &vcpu->arch.vgic_cpu.private_irqs[intid]; /* SPIs */ if (intid <= VGIC_MAX_SPI) return &kvm->arch.vgic.spis[intid - VGIC_NR_PRIVATE_IRQS]; /* LPIs are not yet covered */ if (intid >= VGIC_MIN_LPI) return NULL; WARN(1, "Looking up struct vgic_irq for reserved INTID"); return NULL; } /** * kvm_vgic_target_oracle - compute the target vcpu for an irq * * @irq: The irq to route. Must be already locked. * * Based on the current state of the interrupt (enabled, pending, * active, vcpu and target_vcpu), compute the next vcpu this should be * given to. Return NULL if this shouldn't be injected at all. * * Requires the IRQ lock to be held. */ static struct kvm_vcpu *vgic_target_oracle(struct vgic_irq *irq) { DEBUG_SPINLOCK_BUG_ON(!spin_is_locked(&irq->irq_lock)); /* If the interrupt is active, it must stay on the current vcpu */ if (irq->active) return irq->vcpu ? : irq->target_vcpu; /* * If the IRQ is not active but enabled and pending, we should direct * it to its configured target VCPU. * If the distributor is disabled, pending interrupts shouldn't be * forwarded. */ if (irq->enabled && irq->pending) { if (unlikely(irq->target_vcpu && !irq->target_vcpu->kvm->arch.vgic.enabled)) return NULL; return irq->target_vcpu; } /* If neither active nor pending and enabled, then this IRQ should not * be queued to any VCPU. */ return NULL; } /* * The order of items in the ap_lists defines how we'll pack things in LRs as * well, the first items in the list being the first things populated in the * LRs. * * A hard rule is that active interrupts can never be pushed out of the LRs * (and therefore take priority) since we cannot reliably trap on deactivation * of IRQs and therefore they have to be present in the LRs. * * Otherwise things should be sorted by the priority field and the GIC * hardware support will take care of preemption of priority groups etc. * * Return negative if "a" sorts before "b", 0 to preserve order, and positive * to sort "b" before "a". */ static int vgic_irq_cmp(void *priv, struct list_head *a, struct list_head *b) { struct vgic_irq *irqa = container_of(a, struct vgic_irq, ap_list); struct vgic_irq *irqb = container_of(b, struct vgic_irq, ap_list); bool penda, pendb; int ret; spin_lock(&irqa->irq_lock); spin_lock_nested(&irqb->irq_lock, SINGLE_DEPTH_NESTING); if (irqa->active || irqb->active) { ret = (int)irqb->active - (int)irqa->active; goto out; } penda = irqa->enabled && irqa->pending; pendb = irqb->enabled && irqb->pending; if (!penda || !pendb) { ret = (int)pendb - (int)penda; goto out; } /* Both pending and enabled, sort by priority */ ret = irqa->priority - irqb->priority; out: spin_unlock(&irqb->irq_lock); spin_unlock(&irqa->irq_lock); return ret; } /* Must be called with the ap_list_lock held */ static void vgic_sort_ap_list(struct kvm_vcpu *vcpu) { struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; DEBUG_SPINLOCK_BUG_ON(!spin_is_locked(&vgic_cpu->ap_list_lock)); list_sort(NULL, &vgic_cpu->ap_list_head, vgic_irq_cmp); } /* * Only valid injection if changing level for level-triggered IRQs or for a * rising edge. */ static bool vgic_validate_injection(struct vgic_irq *irq, bool level) { switch (irq->config) { case VGIC_CONFIG_LEVEL: return irq->line_level != level; case VGIC_CONFIG_EDGE: return level; } return false; } /* * Check whether an IRQ needs to (and can) be queued to a VCPU's ap list. * Do the queuing if necessary, taking the right locks in the right order. * Returns true when the IRQ was queued, false otherwise. * * Needs to be entered with the IRQ lock already held, but will return * with all locks dropped. */ bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq) { struct kvm_vcpu *vcpu; DEBUG_SPINLOCK_BUG_ON(!spin_is_locked(&irq->irq_lock)); retry: vcpu = vgic_target_oracle(irq); if (irq->vcpu || !vcpu) { /* * If this IRQ is already on a VCPU's ap_list, then it * cannot be moved or modified and there is no more work for * us to do. * * Otherwise, if the irq is not pending and enabled, it does * not need to be inserted into an ap_list and there is also * no more work for us to do. */ spin_unlock(&irq->irq_lock); return false; } /* * We must unlock the irq lock to take the ap_list_lock where * we are going to insert this new pending interrupt. */ spin_unlock(&irq->irq_lock); /* someone can do stuff here, which we re-check below */ spin_lock(&vcpu->arch.vgic_cpu.ap_list_lock); spin_lock(&irq->irq_lock); /* * Did something change behind our backs? * * There are two cases: * 1) The irq lost its pending state or was disabled behind our * backs and/or it was queued to another VCPU's ap_list. * 2) Someone changed the affinity on this irq behind our * backs and we are now holding the wrong ap_list_lock. * * In both cases, drop the locks and retry. */ if (unlikely(irq->vcpu || vcpu != vgic_target_oracle(irq))) { spin_unlock(&irq->irq_lock); spin_unlock(&vcpu->arch.vgic_cpu.ap_list_lock); spin_lock(&irq->irq_lock); goto retry; } list_add_tail(&irq->ap_list, &vcpu->arch.vgic_cpu.ap_list_head); irq->vcpu = vcpu; spin_unlock(&irq->irq_lock); spin_unlock(&vcpu->arch.vgic_cpu.ap_list_lock); kvm_vcpu_kick(vcpu); return true; } static int vgic_update_irq_pending(struct kvm *kvm, int cpuid, unsigned int intid, bool level, bool mapped_irq) { struct kvm_vcpu *vcpu; struct vgic_irq *irq; int ret; trace_vgic_update_irq_pending(cpuid, intid, level); vcpu = kvm_get_vcpu(kvm, cpuid); if (!vcpu && intid < VGIC_NR_PRIVATE_IRQS) return -EINVAL; irq = vgic_get_irq(kvm, vcpu, intid); if (!irq) return -EINVAL; if (irq->hw != mapped_irq) return -EINVAL; spin_lock(&irq->irq_lock); if (!vgic_validate_injection(irq, level)) { /* Nothing to see here, move along... */ spin_unlock(&irq->irq_lock); return 0; } if (irq->config == VGIC_CONFIG_LEVEL) { irq->line_level = level; irq->pending = level || irq->soft_pending; } else { irq->pending = true; } vgic_queue_irq_unlock(kvm, irq); return 0; } /** * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic * @kvm: The VM structure pointer * @cpuid: The CPU for PPIs * @intid: The INTID to inject a new state to. * @level: Edge-triggered: true: to trigger the interrupt * false: to ignore the call * Level-sensitive true: raise the input signal * false: lower the input signal * * The VGIC is not concerned with devices being active-LOW or active-HIGH for * level-sensitive interrupts. You can think of the level parameter as 1 * being HIGH and 0 being LOW and all devices being active-HIGH. */ int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int intid, bool level) { return vgic_update_irq_pending(kvm, cpuid, intid, level, false); } /** * vgic_prune_ap_list - Remove non-relevant interrupts from the list * * @vcpu: The VCPU pointer * * Go over the list of "interesting" interrupts, and prune those that we * won't have to consider in the near future. */ static void vgic_prune_ap_list(struct kvm_vcpu *vcpu) { struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; struct vgic_irq *irq, *tmp; retry: spin_lock(&vgic_cpu->ap_list_lock); list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) { struct kvm_vcpu *target_vcpu, *vcpuA, *vcpuB; spin_lock(&irq->irq_lock); BUG_ON(vcpu != irq->vcpu); target_vcpu = vgic_target_oracle(irq); if (!target_vcpu) { /* * We don't need to process this interrupt any * further, move it off the list. */ list_del(&irq->ap_list); irq->vcpu = NULL; spin_unlock(&irq->irq_lock); continue; } if (target_vcpu == vcpu) { /* We're on the right CPU */ spin_unlock(&irq->irq_lock); continue; } /* This interrupt looks like it has to be migrated. */ spin_unlock(&irq->irq_lock); spin_unlock(&vgic_cpu->ap_list_lock); /* * Ensure locking order by always locking the smallest * ID first. */ if (vcpu->vcpu_id < target_vcpu->vcpu_id) { vcpuA = vcpu; vcpuB = target_vcpu; } else { vcpuA = target_vcpu; vcpuB = vcpu; } spin_lock(&vcpuA->arch.vgic_cpu.ap_list_lock); spin_lock_nested(&vcpuB->arch.vgic_cpu.ap_list_lock, SINGLE_DEPTH_NESTING); spin_lock(&irq->irq_lock); /* * If the affinity has been preserved, move the * interrupt around. Otherwise, it means things have * changed while the interrupt was unlocked, and we * need to replay this. * * In all cases, we cannot trust the list not to have * changed, so we restart from the beginning. */ if (target_vcpu == vgic_target_oracle(irq)) { struct vgic_cpu *new_cpu = &target_vcpu->arch.vgic_cpu; list_del(&irq->ap_list); irq->vcpu = target_vcpu; list_add_tail(&irq->ap_list, &new_cpu->ap_list_head); } spin_unlock(&irq->irq_lock); spin_unlock(&vcpuB->arch.vgic_cpu.ap_list_lock); spin_unlock(&vcpuA->arch.vgic_cpu.ap_list_lock); goto retry; } spin_unlock(&vgic_cpu->ap_list_lock); } static inline void vgic_process_maintenance_interrupt(struct kvm_vcpu *vcpu) { if (kvm_vgic_global_state.type == VGIC_V2) vgic_v2_process_maintenance(vcpu); else vgic_v3_process_maintenance(vcpu); } static inline void vgic_fold_lr_state(struct kvm_vcpu *vcpu) { if (kvm_vgic_global_state.type == VGIC_V2) vgic_v2_fold_lr_state(vcpu); else vgic_v3_fold_lr_state(vcpu); } /* Requires the irq_lock to be held. */ static inline void vgic_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr) { DEBUG_SPINLOCK_BUG_ON(!spin_is_locked(&irq->irq_lock)); if (kvm_vgic_global_state.type == VGIC_V2) vgic_v2_populate_lr(vcpu, irq, lr); else vgic_v3_populate_lr(vcpu, irq, lr); } static inline void vgic_clear_lr(struct kvm_vcpu *vcpu, int lr) { if (kvm_vgic_global_state.type == VGIC_V2) vgic_v2_clear_lr(vcpu, lr); else vgic_v3_clear_lr(vcpu, lr); } static inline void vgic_set_underflow(struct kvm_vcpu *vcpu) { if (kvm_vgic_global_state.type == VGIC_V2) vgic_v2_set_underflow(vcpu); else vgic_v3_set_underflow(vcpu); } /* Requires the ap_list_lock to be held. */ static int compute_ap_list_depth(struct kvm_vcpu *vcpu) { struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; struct vgic_irq *irq; int count = 0; DEBUG_SPINLOCK_BUG_ON(!spin_is_locked(&vgic_cpu->ap_list_lock)); list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) { spin_lock(&irq->irq_lock); /* GICv2 SGIs can count for more than one... */ if (vgic_irq_is_sgi(irq->intid) && irq->source) count += hweight8(irq->source); else count++; spin_unlock(&irq->irq_lock); } return count; } /* Requires the VCPU's ap_list_lock to be held. */ static void vgic_flush_lr_state(struct kvm_vcpu *vcpu) { struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; struct vgic_irq *irq; int count = 0; DEBUG_SPINLOCK_BUG_ON(!spin_is_locked(&vgic_cpu->ap_list_lock)); if (compute_ap_list_depth(vcpu) > kvm_vgic_global_state.nr_lr) { vgic_set_underflow(vcpu); vgic_sort_ap_list(vcpu); } list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) { spin_lock(&irq->irq_lock); if (unlikely(vgic_target_oracle(irq) != vcpu)) goto next; /* * If we get an SGI with multiple sources, try to get * them in all at once. */ do { vgic_populate_lr(vcpu, irq, count++); } while (irq->source && count < kvm_vgic_global_state.nr_lr); next: spin_unlock(&irq->irq_lock); if (count == kvm_vgic_global_state.nr_lr) break; } vcpu->arch.vgic_cpu.used_lrs = count; /* Nuke remaining LRs */ for ( ; count < kvm_vgic_global_state.nr_lr; count++) vgic_clear_lr(vcpu, count); } /* Sync back the hardware VGIC state into our emulation after a guest's run. */ void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu) { vgic_process_maintenance_interrupt(vcpu); vgic_fold_lr_state(vcpu); vgic_prune_ap_list(vcpu); } /* Flush our emulation state into the GIC hardware before entering the guest. */ void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu) { spin_lock(&vcpu->arch.vgic_cpu.ap_list_lock); vgic_flush_lr_state(vcpu); spin_unlock(&vcpu->arch.vgic_cpu.ap_list_lock); }