// SPDX-License-Identifier: GPL-2.0 /* * * Shared code by both skx_edac and i10nm_edac. Originally split out * from the skx_edac driver. * * This file is linked into both skx_edac and i10nm_edac drivers. In * order to avoid link errors, this file must be like a pure library * without including symbols and defines which would otherwise conflict, * when linked once into a module and into a built-in object, at the * same time. For example, __this_module symbol references when that * file is being linked into a built-in object. * * Copyright (c) 2018, Intel Corporation. */ #include #include #include #include #include #include "edac_module.h" #include "skx_common.h" static const char * const component_names[] = { [INDEX_SOCKET] = "ProcessorSocketId", [INDEX_MEMCTRL] = "MemoryControllerId", [INDEX_CHANNEL] = "ChannelId", [INDEX_DIMM] = "DimmSlotId", }; static int component_indices[ARRAY_SIZE(component_names)]; static int adxl_component_count; static const char * const *adxl_component_names; static u64 *adxl_values; static char *adxl_msg; static char skx_msg[MSG_SIZE]; static skx_decode_f skx_decode; static skx_show_retry_log_f skx_show_retry_rd_err_log; static u64 skx_tolm, skx_tohm; static LIST_HEAD(dev_edac_list); int __init skx_adxl_get(void) { const char * const *names; int i, j; names = adxl_get_component_names(); if (!names) { skx_printk(KERN_NOTICE, "No firmware support for address translation.\n"); return -ENODEV; } for (i = 0; i < INDEX_MAX; i++) { for (j = 0; names[j]; j++) { if (!strcmp(component_names[i], names[j])) { component_indices[i] = j; break; } } if (!names[j]) goto err; } adxl_component_names = names; while (*names++) adxl_component_count++; adxl_values = kcalloc(adxl_component_count, sizeof(*adxl_values), GFP_KERNEL); if (!adxl_values) { adxl_component_count = 0; return -ENOMEM; } adxl_msg = kzalloc(MSG_SIZE, GFP_KERNEL); if (!adxl_msg) { adxl_component_count = 0; kfree(adxl_values); return -ENOMEM; } return 0; err: skx_printk(KERN_ERR, "'%s' is not matched from DSM parameters: ", component_names[i]); for (j = 0; names[j]; j++) skx_printk(KERN_CONT, "%s ", names[j]); skx_printk(KERN_CONT, "\n"); return -ENODEV; } void __exit skx_adxl_put(void) { kfree(adxl_values); kfree(adxl_msg); } static bool skx_adxl_decode(struct decoded_addr *res) { int i, len = 0; if (res->addr >= skx_tohm || (res->addr >= skx_tolm && res->addr < BIT_ULL(32))) { edac_dbg(0, "Address 0x%llx out of range\n", res->addr); return false; } if (adxl_decode(res->addr, adxl_values)) { edac_dbg(0, "Failed to decode 0x%llx\n", res->addr); return false; } res->socket = (int)adxl_values[component_indices[INDEX_SOCKET]]; res->imc = (int)adxl_values[component_indices[INDEX_MEMCTRL]]; res->channel = (int)adxl_values[component_indices[INDEX_CHANNEL]]; res->dimm = (int)adxl_values[component_indices[INDEX_DIMM]]; for (i = 0; i < adxl_component_count; i++) { if (adxl_values[i] == ~0x0ull) continue; len += snprintf(adxl_msg + len, MSG_SIZE - len, " %s:0x%llx", adxl_component_names[i], adxl_values[i]); if (MSG_SIZE - len <= 0) break; } return true; } void skx_set_decode(skx_decode_f decode, skx_show_retry_log_f show_retry_log) { skx_decode = decode; skx_show_retry_rd_err_log = show_retry_log; } int skx_get_src_id(struct skx_dev *d, int off, u8 *id) { u32 reg; if (pci_read_config_dword(d->util_all, off, ®)) { skx_printk(KERN_ERR, "Failed to read src id\n"); return -ENODEV; } *id = GET_BITFIELD(reg, 12, 14); return 0; } int skx_get_node_id(struct skx_dev *d, u8 *id) { u32 reg; if (pci_read_config_dword(d->util_all, 0xf4, ®)) { skx_printk(KERN_ERR, "Failed to read node id\n"); return -ENODEV; } *id = GET_BITFIELD(reg, 0, 2); return 0; } static int get_width(u32 mtr) { switch (GET_BITFIELD(mtr, 8, 9)) { case 0: return DEV_X4; case 1: return DEV_X8; case 2: return DEV_X16; } return DEV_UNKNOWN; } /* * We use the per-socket device @did to count how many sockets are present, * and to detemine which PCI buses are associated with each socket. Allocate * and build the full list of all the skx_dev structures that we need here. */ int skx_get_all_bus_mappings(unsigned int did, int off, enum type type, struct list_head **list) { struct pci_dev *pdev, *prev; struct skx_dev *d; u32 reg; int ndev = 0; prev = NULL; for (;;) { pdev = pci_get_device(PCI_VENDOR_ID_INTEL, did, prev); if (!pdev) break; ndev++; d = kzalloc(sizeof(*d), GFP_KERNEL); if (!d) { pci_dev_put(pdev); return -ENOMEM; } if (pci_read_config_dword(pdev, off, ®)) { kfree(d); pci_dev_put(pdev); skx_printk(KERN_ERR, "Failed to read bus idx\n"); return -ENODEV; } d->bus[0] = GET_BITFIELD(reg, 0, 7); d->bus[1] = GET_BITFIELD(reg, 8, 15); if (type == SKX) { d->seg = pci_domain_nr(pdev->bus); d->bus[2] = GET_BITFIELD(reg, 16, 23); d->bus[3] = GET_BITFIELD(reg, 24, 31); } else { d->seg = GET_BITFIELD(reg, 16, 23); } edac_dbg(2, "busses: 0x%x, 0x%x, 0x%x, 0x%x\n", d->bus[0], d->bus[1], d->bus[2], d->bus[3]); list_add_tail(&d->list, &dev_edac_list); prev = pdev; } if (list) *list = &dev_edac_list; return ndev; } int skx_get_hi_lo(unsigned int did, int off[], u64 *tolm, u64 *tohm) { struct pci_dev *pdev; u32 reg; pdev = pci_get_device(PCI_VENDOR_ID_INTEL, did, NULL); if (!pdev) { edac_dbg(2, "Can't get tolm/tohm\n"); return -ENODEV; } if (pci_read_config_dword(pdev, off[0], ®)) { skx_printk(KERN_ERR, "Failed to read tolm\n"); goto fail; } skx_tolm = reg; if (pci_read_config_dword(pdev, off[1], ®)) { skx_printk(KERN_ERR, "Failed to read lower tohm\n"); goto fail; } skx_tohm = reg; if (pci_read_config_dword(pdev, off[2], ®)) { skx_printk(KERN_ERR, "Failed to read upper tohm\n"); goto fail; } skx_tohm |= (u64)reg << 32; pci_dev_put(pdev); *tolm = skx_tolm; *tohm = skx_tohm; edac_dbg(2, "tolm = 0x%llx tohm = 0x%llx\n", skx_tolm, skx_tohm); return 0; fail: pci_dev_put(pdev); return -ENODEV; } static int skx_get_dimm_attr(u32 reg, int lobit, int hibit, int add, int minval, int maxval, const char *name) { u32 val = GET_BITFIELD(reg, lobit, hibit); if (val < minval || val > maxval) { edac_dbg(2, "bad %s = %d (raw=0x%x)\n", name, val, reg); return -EINVAL; } return val + add; } #define numrank(reg) skx_get_dimm_attr(reg, 12, 13, 0, 0, 2, "ranks") #define numrow(reg) skx_get_dimm_attr(reg, 2, 4, 12, 1, 6, "rows") #define numcol(reg) skx_get_dimm_attr(reg, 0, 1, 10, 0, 2, "cols") int skx_get_dimm_info(u32 mtr, u32 amap, struct dimm_info *dimm, struct skx_imc *imc, int chan, int dimmno) { int banks = 16, ranks, rows, cols, npages; u64 size; ranks = numrank(mtr); rows = numrow(mtr); cols = numcol(mtr); /* * Compute size in 8-byte (2^3) words, then shift to MiB (2^20) */ size = ((1ull << (rows + cols + ranks)) * banks) >> (20 - 3); npages = MiB_TO_PAGES(size); edac_dbg(0, "mc#%d: channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: 0x%x, col: 0x%x\n", imc->mc, chan, dimmno, size, npages, banks, 1 << ranks, rows, cols); imc->chan[chan].dimms[dimmno].close_pg = GET_BITFIELD(mtr, 0, 0); imc->chan[chan].dimms[dimmno].bank_xor_enable = GET_BITFIELD(mtr, 9, 9); imc->chan[chan].dimms[dimmno].fine_grain_bank = GET_BITFIELD(amap, 0, 0); imc->chan[chan].dimms[dimmno].rowbits = rows; imc->chan[chan].dimms[dimmno].colbits = cols; dimm->nr_pages = npages; dimm->grain = 32; dimm->dtype = get_width(mtr); dimm->mtype = MEM_DDR4; dimm->edac_mode = EDAC_SECDED; /* likely better than this */ snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u", imc->src_id, imc->lmc, chan, dimmno); return 1; } int skx_get_nvdimm_info(struct dimm_info *dimm, struct skx_imc *imc, int chan, int dimmno, const char *mod_str) { int smbios_handle; u32 dev_handle; u16 flags; u64 size = 0; dev_handle = ACPI_NFIT_BUILD_DEVICE_HANDLE(dimmno, chan, imc->lmc, imc->src_id, 0); smbios_handle = nfit_get_smbios_id(dev_handle, &flags); if (smbios_handle == -EOPNOTSUPP) { pr_warn_once("%s: Can't find size of NVDIMM. Try enabling CONFIG_ACPI_NFIT\n", mod_str); goto unknown_size; } if (smbios_handle < 0) { skx_printk(KERN_ERR, "Can't find handle for NVDIMM ADR=0x%x\n", dev_handle); goto unknown_size; } if (flags & ACPI_NFIT_MEM_MAP_FAILED) { skx_printk(KERN_ERR, "NVDIMM ADR=0x%x is not mapped\n", dev_handle); goto unknown_size; } size = dmi_memdev_size(smbios_handle); if (size == ~0ull) skx_printk(KERN_ERR, "Can't find size for NVDIMM ADR=0x%x/SMBIOS=0x%x\n", dev_handle, smbios_handle); unknown_size: dimm->nr_pages = size >> PAGE_SHIFT; dimm->grain = 32; dimm->dtype = DEV_UNKNOWN; dimm->mtype = MEM_NVDIMM; dimm->edac_mode = EDAC_SECDED; /* likely better than this */ edac_dbg(0, "mc#%d: channel %d, dimm %d, %llu MiB (%u pages)\n", imc->mc, chan, dimmno, size >> 20, dimm->nr_pages); snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u", imc->src_id, imc->lmc, chan, dimmno); return (size == 0 || size == ~0ull) ? 0 : 1; } int skx_register_mci(struct skx_imc *imc, struct pci_dev *pdev, const char *ctl_name, const char *mod_str, get_dimm_config_f get_dimm_config) { struct mem_ctl_info *mci; struct edac_mc_layer layers[2]; struct skx_pvt *pvt; int rc; /* Allocate a new MC control structure */ layers[0].type = EDAC_MC_LAYER_CHANNEL; layers[0].size = NUM_CHANNELS; layers[0].is_virt_csrow = false; layers[1].type = EDAC_MC_LAYER_SLOT; layers[1].size = NUM_DIMMS; layers[1].is_virt_csrow = true; mci = edac_mc_alloc(imc->mc, ARRAY_SIZE(layers), layers, sizeof(struct skx_pvt)); if (unlikely(!mci)) return -ENOMEM; edac_dbg(0, "MC#%d: mci = %p\n", imc->mc, mci); /* Associate skx_dev and mci for future usage */ imc->mci = mci; pvt = mci->pvt_info; pvt->imc = imc; mci->ctl_name = kasprintf(GFP_KERNEL, "%s#%d IMC#%d", ctl_name, imc->node_id, imc->lmc); if (!mci->ctl_name) { rc = -ENOMEM; goto fail0; } mci->mtype_cap = MEM_FLAG_DDR4 | MEM_FLAG_NVDIMM; mci->edac_ctl_cap = EDAC_FLAG_NONE; mci->edac_cap = EDAC_FLAG_NONE; mci->mod_name = mod_str; mci->dev_name = pci_name(pdev); mci->ctl_page_to_phys = NULL; rc = get_dimm_config(mci); if (rc < 0) goto fail; /* Record ptr to the generic device */ mci->pdev = &pdev->dev; /* Add this new MC control structure to EDAC's list of MCs */ if (unlikely(edac_mc_add_mc(mci))) { edac_dbg(0, "MC: failed edac_mc_add_mc()\n"); rc = -EINVAL; goto fail; } return 0; fail: kfree(mci->ctl_name); fail0: edac_mc_free(mci); imc->mci = NULL; return rc; } static void skx_unregister_mci(struct skx_imc *imc) { struct mem_ctl_info *mci = imc->mci; if (!mci) return; edac_dbg(0, "MC%d: mci = %p\n", imc->mc, mci); /* Remove MC sysfs nodes */ edac_mc_del_mc(mci->pdev); edac_dbg(1, "%s: free mci struct\n", mci->ctl_name); kfree(mci->ctl_name); edac_mc_free(mci); } static struct mem_ctl_info *get_mci(int src_id, int lmc) { struct skx_dev *d; if (lmc > NUM_IMC - 1) { skx_printk(KERN_ERR, "Bad lmc %d\n", lmc); return NULL; } list_for_each_entry(d, &dev_edac_list, list) { if (d->imc[0].src_id == src_id) return d->imc[lmc].mci; } skx_printk(KERN_ERR, "No mci for src_id %d lmc %d\n", src_id, lmc); return NULL; } static void skx_mce_output_error(struct mem_ctl_info *mci, const struct mce *m, struct decoded_addr *res) { enum hw_event_mc_err_type tp_event; char *type, *optype; bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0); bool overflow = GET_BITFIELD(m->status, 62, 62); bool uncorrected_error = GET_BITFIELD(m->status, 61, 61); bool recoverable; int len; u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52); u32 mscod = GET_BITFIELD(m->status, 16, 31); u32 errcode = GET_BITFIELD(m->status, 0, 15); u32 optypenum = GET_BITFIELD(m->status, 4, 6); recoverable = GET_BITFIELD(m->status, 56, 56); if (uncorrected_error) { core_err_cnt = 1; if (ripv) { type = "FATAL"; tp_event = HW_EVENT_ERR_FATAL; } else { type = "NON_FATAL"; tp_event = HW_EVENT_ERR_UNCORRECTED; } } else { type = "CORRECTED"; tp_event = HW_EVENT_ERR_CORRECTED; } /* * According to Intel Architecture spec vol 3B, * Table 15-10 "IA32_MCi_Status [15:0] Compound Error Code Encoding" * memory errors should fit one of these masks: * 000f 0000 1mmm cccc (binary) * 000f 0010 1mmm cccc (binary) [RAM used as cache] * where: * f = Correction Report Filtering Bit. If 1, subsequent errors * won't be shown * mmm = error type * cccc = channel * If the mask doesn't match, report an error to the parsing logic */ if (!((errcode & 0xef80) == 0x80 || (errcode & 0xef80) == 0x280)) { optype = "Can't parse: it is not a mem"; } else { switch (optypenum) { case 0: optype = "generic undef request error"; break; case 1: optype = "memory read error"; break; case 2: optype = "memory write error"; break; case 3: optype = "addr/cmd error"; break; case 4: optype = "memory scrubbing error"; break; default: optype = "reserved"; break; } } if (adxl_component_count) { len = snprintf(skx_msg, MSG_SIZE, "%s%s err_code:0x%04x:0x%04x %s", overflow ? " OVERFLOW" : "", (uncorrected_error && recoverable) ? " recoverable" : "", mscod, errcode, adxl_msg); } else { len = snprintf(skx_msg, MSG_SIZE, "%s%s err_code:0x%04x:0x%04x socket:%d imc:%d rank:%d bg:%d ba:%d row:0x%x col:0x%x", overflow ? " OVERFLOW" : "", (uncorrected_error && recoverable) ? " recoverable" : "", mscod, errcode, res->socket, res->imc, res->rank, res->bank_group, res->bank_address, res->row, res->column); } if (skx_show_retry_rd_err_log) skx_show_retry_rd_err_log(res, skx_msg + len, MSG_SIZE - len); edac_dbg(0, "%s\n", skx_msg); /* Call the helper to output message */ edac_mc_handle_error(tp_event, mci, core_err_cnt, m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0, res->channel, res->dimm, -1, optype, skx_msg); } int skx_mce_check_error(struct notifier_block *nb, unsigned long val, void *data) { struct mce *mce = (struct mce *)data; struct decoded_addr res; struct mem_ctl_info *mci; char *type; if (edac_get_report_status() == EDAC_REPORTING_DISABLED) return NOTIFY_DONE; if (mce->kflags & MCE_HANDLED_CEC) return NOTIFY_DONE; /* ignore unless this is memory related with an address */ if ((mce->status & 0xefff) >> 7 != 1 || !(mce->status & MCI_STATUS_ADDRV)) return NOTIFY_DONE; memset(&res, 0, sizeof(res)); res.addr = mce->addr; if (adxl_component_count) { if (!skx_adxl_decode(&res)) return NOTIFY_DONE; mci = get_mci(res.socket, res.imc); } else { if (!skx_decode || !skx_decode(&res)) return NOTIFY_DONE; mci = res.dev->imc[res.imc].mci; } if (!mci) return NOTIFY_DONE; if (mce->mcgstatus & MCG_STATUS_MCIP) type = "Exception"; else type = "Event"; skx_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n"); skx_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: 0x%llx " "Bank %d: 0x%llx\n", mce->extcpu, type, mce->mcgstatus, mce->bank, mce->status); skx_mc_printk(mci, KERN_DEBUG, "TSC 0x%llx ", mce->tsc); skx_mc_printk(mci, KERN_DEBUG, "ADDR 0x%llx ", mce->addr); skx_mc_printk(mci, KERN_DEBUG, "MISC 0x%llx ", mce->misc); skx_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:0x%x TIME %llu SOCKET " "%u APIC 0x%x\n", mce->cpuvendor, mce->cpuid, mce->time, mce->socketid, mce->apicid); skx_mce_output_error(mci, mce, &res); mce->kflags |= MCE_HANDLED_EDAC; return NOTIFY_DONE; } void skx_remove(void) { int i, j; struct skx_dev *d, *tmp; edac_dbg(0, "\n"); list_for_each_entry_safe(d, tmp, &dev_edac_list, list) { list_del(&d->list); for (i = 0; i < NUM_IMC; i++) { if (d->imc[i].mci) skx_unregister_mci(&d->imc[i]); if (d->imc[i].mdev) pci_dev_put(d->imc[i].mdev); if (d->imc[i].mbase) iounmap(d->imc[i].mbase); for (j = 0; j < NUM_CHANNELS; j++) { if (d->imc[i].chan[j].cdev) pci_dev_put(d->imc[i].chan[j].cdev); } } if (d->util_all) pci_dev_put(d->util_all); if (d->sad_all) pci_dev_put(d->sad_all); if (d->uracu) pci_dev_put(d->uracu); kfree(d); } }