/* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module * * This driver supports the memory controllers found on the Intel * processor family Sandy Bridge. * * This file may be distributed under the terms of the * GNU General Public License version 2 only. * * Copyright (c) 2011 by: * Mauro Carvalho Chehab */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "edac_module.h" /* Static vars */ static LIST_HEAD(sbridge_edac_list); /* * Alter this version for the module when modifications are made */ #define SBRIDGE_REVISION " Ver: 1.1.2 " #define EDAC_MOD_STR "sb_edac" /* * Debug macros */ #define sbridge_printk(level, fmt, arg...) \ edac_printk(level, "sbridge", fmt, ##arg) #define sbridge_mc_printk(mci, level, fmt, arg...) \ edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg) /* * Get a bit field at register value , from bit to bit */ #define GET_BITFIELD(v, lo, hi) \ (((v) & GENMASK_ULL(hi, lo)) >> (lo)) /* Devices 12 Function 6, Offsets 0x80 to 0xcc */ static const u32 sbridge_dram_rule[] = { 0x80, 0x88, 0x90, 0x98, 0xa0, 0xa8, 0xb0, 0xb8, 0xc0, 0xc8, }; static const u32 ibridge_dram_rule[] = { 0x60, 0x68, 0x70, 0x78, 0x80, 0x88, 0x90, 0x98, 0xa0, 0xa8, 0xb0, 0xb8, 0xc0, 0xc8, 0xd0, 0xd8, 0xe0, 0xe8, 0xf0, 0xf8, }; static const u32 knl_dram_rule[] = { 0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */ 0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */ 0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */ 0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */ 0x100, 0x108, 0x110, 0x118, /* 20-23 */ }; #define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0) #define A7MODE(reg) GET_BITFIELD(reg, 26, 26) static char *show_dram_attr(u32 attr) { switch (attr) { case 0: return "DRAM"; case 1: return "MMCFG"; case 2: return "NXM"; default: return "unknown"; } } static const u32 sbridge_interleave_list[] = { 0x84, 0x8c, 0x94, 0x9c, 0xa4, 0xac, 0xb4, 0xbc, 0xc4, 0xcc, }; static const u32 ibridge_interleave_list[] = { 0x64, 0x6c, 0x74, 0x7c, 0x84, 0x8c, 0x94, 0x9c, 0xa4, 0xac, 0xb4, 0xbc, 0xc4, 0xcc, 0xd4, 0xdc, 0xe4, 0xec, 0xf4, 0xfc, }; static const u32 knl_interleave_list[] = { 0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */ 0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */ 0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */ 0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */ 0x104, 0x10c, 0x114, 0x11c, /* 20-23 */ }; #define MAX_INTERLEAVE \ (max_t(unsigned int, ARRAY_SIZE(sbridge_interleave_list), \ max_t(unsigned int, ARRAY_SIZE(ibridge_interleave_list), \ ARRAY_SIZE(knl_interleave_list)))) struct interleave_pkg { unsigned char start; unsigned char end; }; static const struct interleave_pkg sbridge_interleave_pkg[] = { { 0, 2 }, { 3, 5 }, { 8, 10 }, { 11, 13 }, { 16, 18 }, { 19, 21 }, { 24, 26 }, { 27, 29 }, }; static const struct interleave_pkg ibridge_interleave_pkg[] = { { 0, 3 }, { 4, 7 }, { 8, 11 }, { 12, 15 }, { 16, 19 }, { 20, 23 }, { 24, 27 }, { 28, 31 }, }; static inline int sad_pkg(const struct interleave_pkg *table, u32 reg, int interleave) { return GET_BITFIELD(reg, table[interleave].start, table[interleave].end); } /* Devices 12 Function 7 */ #define TOLM 0x80 #define TOHM 0x84 #define HASWELL_TOLM 0xd0 #define HASWELL_TOHM_0 0xd4 #define HASWELL_TOHM_1 0xd8 #define KNL_TOLM 0xd0 #define KNL_TOHM_0 0xd4 #define KNL_TOHM_1 0xd8 #define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff) #define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff) /* Device 13 Function 6 */ #define SAD_TARGET 0xf0 #define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11) #define SOURCE_ID_KNL(reg) GET_BITFIELD(reg, 12, 14) #define SAD_CONTROL 0xf4 /* Device 14 function 0 */ static const u32 tad_dram_rule[] = { 0x40, 0x44, 0x48, 0x4c, 0x50, 0x54, 0x58, 0x5c, 0x60, 0x64, 0x68, 0x6c, }; #define MAX_TAD ARRAY_SIZE(tad_dram_rule) #define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff) #define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11) #define TAD_CH(reg) GET_BITFIELD(reg, 8, 9) #define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7) #define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5) #define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3) #define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1) /* Device 15, function 0 */ #define MCMTR 0x7c #define KNL_MCMTR 0x624 #define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2) #define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1) #define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0) /* Device 15, function 1 */ #define RASENABLES 0xac #define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0) /* Device 15, functions 2-5 */ static const int mtr_regs[] = { 0x80, 0x84, 0x88, }; static const int knl_mtr_reg = 0xb60; #define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19) #define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14) #define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13) #define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4) #define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1) static const u32 tad_ch_nilv_offset[] = { 0x90, 0x94, 0x98, 0x9c, 0xa0, 0xa4, 0xa8, 0xac, 0xb0, 0xb4, 0xb8, 0xbc, }; #define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29) #define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26) static const u32 rir_way_limit[] = { 0x108, 0x10c, 0x110, 0x114, 0x118, }; #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit) #define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31) #define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29) #define MAX_RIR_WAY 8 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = { { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c }, { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c }, { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c }, { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c }, { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc }, }; #define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \ GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19)) #define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \ GET_BITFIELD(reg, 2, 15) : GET_BITFIELD(reg, 2, 14)) /* Device 16, functions 2-7 */ /* * FIXME: Implement the error count reads directly */ static const u32 correrrcnt[] = { 0x104, 0x108, 0x10c, 0x110, }; #define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31) #define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30) #define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15) #define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14) static const u32 correrrthrsld[] = { 0x11c, 0x120, 0x124, 0x128, }; #define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30) #define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14) /* Device 17, function 0 */ #define SB_RANK_CFG_A 0x0328 #define IB_RANK_CFG_A 0x0320 /* * sbridge structs */ #define NUM_CHANNELS 6 /* Max channels per MC */ #define MAX_DIMMS 3 /* Max DIMMS per channel */ #define KNL_MAX_CHAS 38 /* KNL max num. of Cache Home Agents */ #define KNL_MAX_CHANNELS 6 /* KNL max num. of PCI channels */ #define KNL_MAX_EDCS 8 /* Embedded DRAM controllers */ #define CHANNEL_UNSPECIFIED 0xf /* Intel IA32 SDM 15-14 */ enum type { SANDY_BRIDGE, IVY_BRIDGE, HASWELL, BROADWELL, KNIGHTS_LANDING, }; enum domain { IMC0 = 0, IMC1, SOCK, }; enum mirroring_mode { NON_MIRRORING, ADDR_RANGE_MIRRORING, FULL_MIRRORING, }; struct sbridge_pvt; struct sbridge_info { enum type type; u32 mcmtr; u32 rankcfgr; u64 (*get_tolm)(struct sbridge_pvt *pvt); u64 (*get_tohm)(struct sbridge_pvt *pvt); u64 (*rir_limit)(u32 reg); u64 (*sad_limit)(u32 reg); u32 (*interleave_mode)(u32 reg); u32 (*dram_attr)(u32 reg); const u32 *dram_rule; const u32 *interleave_list; const struct interleave_pkg *interleave_pkg; u8 max_sad; u8 (*get_node_id)(struct sbridge_pvt *pvt); enum mem_type (*get_memory_type)(struct sbridge_pvt *pvt); enum dev_type (*get_width)(struct sbridge_pvt *pvt, u32 mtr); struct pci_dev *pci_vtd; }; struct sbridge_channel { u32 ranks; u32 dimms; }; struct pci_id_descr { int dev_id; int optional; enum domain dom; }; struct pci_id_table { const struct pci_id_descr *descr; int n_devs_per_imc; int n_devs_per_sock; int n_imcs_per_sock; enum type type; }; struct sbridge_dev { struct list_head list; int seg; u8 bus, mc; u8 node_id, source_id; struct pci_dev **pdev; enum domain dom; int n_devs; int i_devs; struct mem_ctl_info *mci; }; struct knl_pvt { struct pci_dev *pci_cha[KNL_MAX_CHAS]; struct pci_dev *pci_channel[KNL_MAX_CHANNELS]; struct pci_dev *pci_mc0; struct pci_dev *pci_mc1; struct pci_dev *pci_mc0_misc; struct pci_dev *pci_mc1_misc; struct pci_dev *pci_mc_info; /* tolm, tohm */ }; struct sbridge_pvt { /* Devices per socket */ struct pci_dev *pci_ddrio; struct pci_dev *pci_sad0, *pci_sad1; struct pci_dev *pci_br0, *pci_br1; /* Devices per memory controller */ struct pci_dev *pci_ha, *pci_ta, *pci_ras; struct pci_dev *pci_tad[NUM_CHANNELS]; struct sbridge_dev *sbridge_dev; struct sbridge_info info; struct sbridge_channel channel[NUM_CHANNELS]; /* Memory type detection */ bool is_cur_addr_mirrored, is_lockstep, is_close_pg; bool is_chan_hash; enum mirroring_mode mirror_mode; /* Memory description */ u64 tolm, tohm; struct knl_pvt knl; }; #define PCI_DESCR(device_id, opt, domain) \ .dev_id = (device_id), \ .optional = opt, \ .dom = domain static const struct pci_id_descr pci_dev_descr_sbridge[] = { /* Processor Home Agent */ { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0, IMC0) }, /* Memory controller */ { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0, IMC0) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0, IMC0) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0, IMC0) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0, IMC0) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0, IMC0) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0, IMC0) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1, SOCK) }, /* System Address Decoder */ { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0, SOCK) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0, SOCK) }, /* Broadcast Registers */ { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0, SOCK) }, }; #define PCI_ID_TABLE_ENTRY(A, N, M, T) { \ .descr = A, \ .n_devs_per_imc = N, \ .n_devs_per_sock = ARRAY_SIZE(A), \ .n_imcs_per_sock = M, \ .type = T \ } static const struct pci_id_table pci_dev_descr_sbridge_table[] = { PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge, ARRAY_SIZE(pci_dev_descr_sbridge), 1, SANDY_BRIDGE), {0,} /* 0 terminated list. */ }; /* This changes depending if 1HA or 2HA: * 1HA: * 0x0eb8 (17.0) is DDRIO0 * 2HA: * 0x0ebc (17.4) is DDRIO0 */ #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0 0x0eb8 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0 0x0ebc /* pci ids */ #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0 0x0ea0 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA 0x0ea8 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS 0x0e71 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0 0x0eaa #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1 0x0eab #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2 0x0eac #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3 0x0ead #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD 0x0ec8 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0 0x0ec9 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1 0x0eca #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1 0x0e60 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA 0x0e68 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS 0x0e79 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 0x0e6a #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1 0x0e6b #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2 0x0e6c #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3 0x0e6d static const struct pci_id_descr pci_dev_descr_ibridge[] = { /* Processor Home Agent */ { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0, 0, IMC0) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, 1, IMC1) }, /* Memory controller */ { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA, 0, IMC0) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS, 0, IMC0) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0, 0, IMC0) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1, 0, IMC0) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2, 0, IMC0) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3, 0, IMC0) }, /* Optional, mode 2HA */ { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA, 1, IMC1) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS, 1, IMC1) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0, 1, IMC1) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1, 1, IMC1) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2, 1, IMC1) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3, 1, IMC1) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1, SOCK) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1, SOCK) }, /* System Address Decoder */ { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD, 0, SOCK) }, /* Broadcast Registers */ { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0, 1, SOCK) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1, 0, SOCK) }, }; static const struct pci_id_table pci_dev_descr_ibridge_table[] = { PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge, 12, 2, IVY_BRIDGE), {0,} /* 0 terminated list. */ }; /* Haswell support */ /* EN processor: * - 1 IMC * - 3 DDR3 channels, 2 DPC per channel * EP processor: * - 1 or 2 IMC * - 4 DDR4 channels, 3 DPC per channel * EP 4S processor: * - 2 IMC * - 4 DDR4 channels, 3 DPC per channel * EX processor: * - 2 IMC * - each IMC interfaces with a SMI 2 channel * - each SMI channel interfaces with a scalable memory buffer * - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC */ #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */ #define HASWELL_HASYSDEFEATURE2 0x84 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0 0x2fa0 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1 0x2f60 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA 0x2fa8 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM 0x2f71 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA 0x2f68 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM 0x2f79 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb static const struct pci_id_descr pci_dev_descr_haswell[] = { /* first item must be the HA */ { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0, 0, IMC0) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, 1, IMC1) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA, 0, IMC0) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM, 0, IMC0) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0, IMC0) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0, IMC0) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1, IMC0) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1, IMC0) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA, 1, IMC1) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM, 1, IMC1) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1, IMC1) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1, IMC1) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1, IMC1) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1, IMC1) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0, SOCK) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0, SOCK) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0, 1, SOCK) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1, 1, SOCK) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2, 1, SOCK) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3, 1, SOCK) }, }; static const struct pci_id_table pci_dev_descr_haswell_table[] = { PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell, 13, 2, HASWELL), {0,} /* 0 terminated list. */ }; /* Knight's Landing Support */ /* * KNL's memory channels are swizzled between memory controllers. * MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2 */ #define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3) /* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */ #define PCI_DEVICE_ID_INTEL_KNL_IMC_MC 0x7840 /* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */ #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN 0x7843 /* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */ #define PCI_DEVICE_ID_INTEL_KNL_IMC_TA 0x7844 /* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */ #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0 0x782a /* SAD target - 1-29-1 (1 of these) */ #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1 0x782b /* Caching / Home Agent */ #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA 0x782c /* Device with TOLM and TOHM, 0-5-0 (1 of these) */ #define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM 0x7810 /* * KNL differs from SB, IB, and Haswell in that it has multiple * instances of the same device with the same device ID, so we handle that * by creating as many copies in the table as we expect to find. * (Like device ID must be grouped together.) */ static const struct pci_id_descr pci_dev_descr_knl[] = { [0 ... 1] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC, 0, IMC0)}, [2 ... 7] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN, 0, IMC0) }, [8] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA, 0, IMC0) }, [9] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0, IMC0) }, [10] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0, 0, SOCK) }, [11] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1, 0, SOCK) }, [12 ... 49] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA, 0, SOCK) }, }; static const struct pci_id_table pci_dev_descr_knl_table[] = { PCI_ID_TABLE_ENTRY(pci_dev_descr_knl, ARRAY_SIZE(pci_dev_descr_knl), 1, KNIGHTS_LANDING), {0,} }; /* * Broadwell support * * DE processor: * - 1 IMC * - 2 DDR3 channels, 2 DPC per channel * EP processor: * - 1 or 2 IMC * - 4 DDR4 channels, 3 DPC per channel * EP 4S processor: * - 2 IMC * - 4 DDR4 channels, 3 DPC per channel * EX processor: * - 2 IMC * - each IMC interfaces with a SMI 2 channel * - each SMI channel interfaces with a scalable memory buffer * - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC */ #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0 0x6fa0 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1 0x6f60 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA 0x6fa8 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM 0x6f71 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA 0x6f68 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM 0x6f79 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf static const struct pci_id_descr pci_dev_descr_broadwell[] = { /* first item must be the HA */ { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0, 0, IMC0) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1, 1, IMC1) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA, 0, IMC0) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM, 0, IMC0) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0, IMC0) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0, IMC0) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1, IMC0) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1, IMC0) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA, 1, IMC1) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM, 1, IMC1) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1, IMC1) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1, IMC1) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1, IMC1) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1, IMC1) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0, SOCK) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0, SOCK) }, { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0, 1, SOCK) }, }; static const struct pci_id_table pci_dev_descr_broadwell_table[] = { PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell, 10, 2, BROADWELL), {0,} /* 0 terminated list. */ }; /**************************************************************************** Ancillary status routines ****************************************************************************/ static inline int numrank(enum type type, u32 mtr) { int ranks = (1 << RANK_CNT_BITS(mtr)); int max = 4; if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING) max = 8; if (ranks > max) { edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n", ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr); return -EINVAL; } return ranks; } static inline int numrow(u32 mtr) { int rows = (RANK_WIDTH_BITS(mtr) + 12); if (rows < 13 || rows > 18) { edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n", rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr); return -EINVAL; } return 1 << rows; } static inline int numcol(u32 mtr) { int cols = (COL_WIDTH_BITS(mtr) + 10); if (cols > 12) { edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n", cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr); return -EINVAL; } return 1 << cols; } static struct sbridge_dev *get_sbridge_dev(int seg, u8 bus, enum domain dom, int multi_bus, struct sbridge_dev *prev) { struct sbridge_dev *sbridge_dev; /* * If we have devices scattered across several busses that pertain * to the same memory controller, we'll lump them all together. */ if (multi_bus) { return list_first_entry_or_null(&sbridge_edac_list, struct sbridge_dev, list); } sbridge_dev = list_entry(prev ? prev->list.next : sbridge_edac_list.next, struct sbridge_dev, list); list_for_each_entry_from(sbridge_dev, &sbridge_edac_list, list) { if ((sbridge_dev->seg == seg) && (sbridge_dev->bus == bus) && (dom == SOCK || dom == sbridge_dev->dom)) return sbridge_dev; } return NULL; } static struct sbridge_dev *alloc_sbridge_dev(int seg, u8 bus, enum domain dom, const struct pci_id_table *table) { struct sbridge_dev *sbridge_dev; sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL); if (!sbridge_dev) return NULL; sbridge_dev->pdev = kcalloc(table->n_devs_per_imc, sizeof(*sbridge_dev->pdev), GFP_KERNEL); if (!sbridge_dev->pdev) { kfree(sbridge_dev); return NULL; } sbridge_dev->seg = seg; sbridge_dev->bus = bus; sbridge_dev->dom = dom; sbridge_dev->n_devs = table->n_devs_per_imc; list_add_tail(&sbridge_dev->list, &sbridge_edac_list); return sbridge_dev; } static void free_sbridge_dev(struct sbridge_dev *sbridge_dev) { list_del(&sbridge_dev->list); kfree(sbridge_dev->pdev); kfree(sbridge_dev); } static u64 sbridge_get_tolm(struct sbridge_pvt *pvt) { u32 reg; /* Address range is 32:28 */ pci_read_config_dword(pvt->pci_sad1, TOLM, ®); return GET_TOLM(reg); } static u64 sbridge_get_tohm(struct sbridge_pvt *pvt) { u32 reg; pci_read_config_dword(pvt->pci_sad1, TOHM, ®); return GET_TOHM(reg); } static u64 ibridge_get_tolm(struct sbridge_pvt *pvt) { u32 reg; pci_read_config_dword(pvt->pci_br1, TOLM, ®); return GET_TOLM(reg); } static u64 ibridge_get_tohm(struct sbridge_pvt *pvt) { u32 reg; pci_read_config_dword(pvt->pci_br1, TOHM, ®); return GET_TOHM(reg); } static u64 rir_limit(u32 reg) { return ((u64)GET_BITFIELD(reg, 1, 10) << 29) | 0x1fffffff; } static u64 sad_limit(u32 reg) { return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff; } static u32 interleave_mode(u32 reg) { return GET_BITFIELD(reg, 1, 1); } static u32 dram_attr(u32 reg) { return GET_BITFIELD(reg, 2, 3); } static u64 knl_sad_limit(u32 reg) { return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff; } static u32 knl_interleave_mode(u32 reg) { return GET_BITFIELD(reg, 1, 2); } static const char * const knl_intlv_mode[] = { "[8:6]", "[10:8]", "[14:12]", "[32:30]" }; static const char *get_intlv_mode_str(u32 reg, enum type t) { if (t == KNIGHTS_LANDING) return knl_intlv_mode[knl_interleave_mode(reg)]; else return interleave_mode(reg) ? "[8:6]" : "[8:6]XOR[18:16]"; } static u32 dram_attr_knl(u32 reg) { return GET_BITFIELD(reg, 3, 4); } static enum mem_type get_memory_type(struct sbridge_pvt *pvt) { u32 reg; enum mem_type mtype; if (pvt->pci_ddrio) { pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr, ®); if (GET_BITFIELD(reg, 11, 11)) /* FIXME: Can also be LRDIMM */ mtype = MEM_RDDR3; else mtype = MEM_DDR3; } else mtype = MEM_UNKNOWN; return mtype; } static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt) { u32 reg; bool registered = false; enum mem_type mtype = MEM_UNKNOWN; if (!pvt->pci_ddrio) goto out; pci_read_config_dword(pvt->pci_ddrio, HASWELL_DDRCRCLKCONTROLS, ®); /* Is_Rdimm */ if (GET_BITFIELD(reg, 16, 16)) registered = true; pci_read_config_dword(pvt->pci_ta, MCMTR, ®); if (GET_BITFIELD(reg, 14, 14)) { if (registered) mtype = MEM_RDDR4; else mtype = MEM_DDR4; } else { if (registered) mtype = MEM_RDDR3; else mtype = MEM_DDR3; } out: return mtype; } static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr) { /* for KNL value is fixed */ return DEV_X16; } static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr) { /* there's no way to figure out */ return DEV_UNKNOWN; } static enum dev_type __ibridge_get_width(u32 mtr) { enum dev_type type; switch (mtr) { case 3: type = DEV_UNKNOWN; break; case 2: type = DEV_X16; break; case 1: type = DEV_X8; break; case 0: type = DEV_X4; break; } return type; } static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr) { /* * ddr3_width on the documentation but also valid for DDR4 on * Haswell */ return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8)); } static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr) { /* ddr3_width on the documentation but also valid for DDR4 */ return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9)); } static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt) { /* DDR4 RDIMMS and LRDIMMS are supported */ return MEM_RDDR4; } static u8 get_node_id(struct sbridge_pvt *pvt) { u32 reg; pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, ®); return GET_BITFIELD(reg, 0, 2); } static u8 haswell_get_node_id(struct sbridge_pvt *pvt) { u32 reg; pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, ®); return GET_BITFIELD(reg, 0, 3); } static u8 knl_get_node_id(struct sbridge_pvt *pvt) { u32 reg; pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, ®); return GET_BITFIELD(reg, 0, 2); } static u64 haswell_get_tolm(struct sbridge_pvt *pvt) { u32 reg; pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, ®); return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff; } static u64 haswell_get_tohm(struct sbridge_pvt *pvt) { u64 rc; u32 reg; pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, ®); rc = GET_BITFIELD(reg, 26, 31); pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, ®); rc = ((reg << 6) | rc) << 26; return rc | 0x1ffffff; } static u64 knl_get_tolm(struct sbridge_pvt *pvt) { u32 reg; pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, ®); return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff; } static u64 knl_get_tohm(struct sbridge_pvt *pvt) { u64 rc; u32 reg_lo, reg_hi; pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, ®_lo); pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, ®_hi); rc = ((u64)reg_hi << 32) | reg_lo; return rc | 0x3ffffff; } static u64 haswell_rir_limit(u32 reg) { return (((u64)GET_BITFIELD(reg, 1, 11) + 1) << 29) - 1; } static inline u8 sad_pkg_socket(u8 pkg) { /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */ return ((pkg >> 3) << 2) | (pkg & 0x3); } static inline u8 sad_pkg_ha(u8 pkg) { return (pkg >> 2) & 0x1; } static int haswell_chan_hash(int idx, u64 addr) { int i; /* * XOR even bits from 12:26 to bit0 of idx, * odd bits from 13:27 to bit1 */ for (i = 12; i < 28; i += 2) idx ^= (addr >> i) & 3; return idx; } /* Low bits of TAD limit, and some metadata. */ static const u32 knl_tad_dram_limit_lo[] = { 0x400, 0x500, 0x600, 0x700, 0x800, 0x900, 0xa00, 0xb00, }; /* Low bits of TAD offset. */ static const u32 knl_tad_dram_offset_lo[] = { 0x404, 0x504, 0x604, 0x704, 0x804, 0x904, 0xa04, 0xb04, }; /* High 16 bits of TAD limit and offset. */ static const u32 knl_tad_dram_hi[] = { 0x408, 0x508, 0x608, 0x708, 0x808, 0x908, 0xa08, 0xb08, }; /* Number of ways a tad entry is interleaved. */ static const u32 knl_tad_ways[] = { 8, 6, 4, 3, 2, 1, }; /* * Retrieve the n'th Target Address Decode table entry * from the memory controller's TAD table. * * @pvt: driver private data * @entry: which entry you want to retrieve * @mc: which memory controller (0 or 1) * @offset: output tad range offset * @limit: output address of first byte above tad range * @ways: output number of interleave ways * * The offset value has curious semantics. It's a sort of running total * of the sizes of all the memory regions that aren't mapped in this * tad table. */ static int knl_get_tad(const struct sbridge_pvt *pvt, const int entry, const int mc, u64 *offset, u64 *limit, int *ways) { u32 reg_limit_lo, reg_offset_lo, reg_hi; struct pci_dev *pci_mc; int way_id; switch (mc) { case 0: pci_mc = pvt->knl.pci_mc0; break; case 1: pci_mc = pvt->knl.pci_mc1; break; default: WARN_ON(1); return -EINVAL; } pci_read_config_dword(pci_mc, knl_tad_dram_limit_lo[entry], ®_limit_lo); pci_read_config_dword(pci_mc, knl_tad_dram_offset_lo[entry], ®_offset_lo); pci_read_config_dword(pci_mc, knl_tad_dram_hi[entry], ®_hi); /* Is this TAD entry enabled? */ if (!GET_BITFIELD(reg_limit_lo, 0, 0)) return -ENODEV; way_id = GET_BITFIELD(reg_limit_lo, 3, 5); if (way_id < ARRAY_SIZE(knl_tad_ways)) { *ways = knl_tad_ways[way_id]; } else { *ways = 0; sbridge_printk(KERN_ERR, "Unexpected value %d in mc_tad_limit_lo wayness field\n", way_id); return -ENODEV; } /* * The least significant 6 bits of base and limit are truncated. * For limit, we fill the missing bits with 1s. */ *offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) | ((u64) GET_BITFIELD(reg_hi, 0, 15) << 32); *limit = ((u64) GET_BITFIELD(reg_limit_lo, 6, 31) << 6) | 63 | ((u64) GET_BITFIELD(reg_hi, 16, 31) << 32); return 0; } /* Determine which memory controller is responsible for a given channel. */ static int knl_channel_mc(int channel) { WARN_ON(channel < 0 || channel >= 6); return channel < 3 ? 1 : 0; } /* * Get the Nth entry from EDC_ROUTE_TABLE register. * (This is the per-tile mapping of logical interleave targets to * physical EDC modules.) * * entry 0: 0:2 * 1: 3:5 * 2: 6:8 * 3: 9:11 * 4: 12:14 * 5: 15:17 * 6: 18:20 * 7: 21:23 * reserved: 24:31 */ static u32 knl_get_edc_route(int entry, u32 reg) { WARN_ON(entry >= KNL_MAX_EDCS); return GET_BITFIELD(reg, entry*3, (entry*3)+2); } /* * Get the Nth entry from MC_ROUTE_TABLE register. * (This is the per-tile mapping of logical interleave targets to * physical DRAM channels modules.) * * entry 0: mc 0:2 channel 18:19 * 1: mc 3:5 channel 20:21 * 2: mc 6:8 channel 22:23 * 3: mc 9:11 channel 24:25 * 4: mc 12:14 channel 26:27 * 5: mc 15:17 channel 28:29 * reserved: 30:31 * * Though we have 3 bits to identify the MC, we should only see * the values 0 or 1. */ static u32 knl_get_mc_route(int entry, u32 reg) { int mc, chan; WARN_ON(entry >= KNL_MAX_CHANNELS); mc = GET_BITFIELD(reg, entry*3, (entry*3)+2); chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1); return knl_channel_remap(mc, chan); } /* * Render the EDC_ROUTE register in human-readable form. * Output string s should be at least KNL_MAX_EDCS*2 bytes. */ static void knl_show_edc_route(u32 reg, char *s) { int i; for (i = 0; i < KNL_MAX_EDCS; i++) { s[i*2] = knl_get_edc_route(i, reg) + '0'; s[i*2+1] = '-'; } s[KNL_MAX_EDCS*2 - 1] = '\0'; } /* * Render the MC_ROUTE register in human-readable form. * Output string s should be at least KNL_MAX_CHANNELS*2 bytes. */ static void knl_show_mc_route(u32 reg, char *s) { int i; for (i = 0; i < KNL_MAX_CHANNELS; i++) { s[i*2] = knl_get_mc_route(i, reg) + '0'; s[i*2+1] = '-'; } s[KNL_MAX_CHANNELS*2 - 1] = '\0'; } #define KNL_EDC_ROUTE 0xb8 #define KNL_MC_ROUTE 0xb4 /* Is this dram rule backed by regular DRAM in flat mode? */ #define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29) /* Is this dram rule cached? */ #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28) /* Is this rule backed by edc ? */ #define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29) /* Is this rule backed by DRAM, cacheable in EDRAM? */ #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28) /* Is this rule mod3? */ #define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27) /* * Figure out how big our RAM modules are. * * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we * have to figure this out from the SAD rules, interleave lists, route tables, * and TAD rules. * * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to * inspect the TAD rules to figure out how large the SAD regions really are. * * When we know the real size of a SAD region and how many ways it's * interleaved, we know the individual contribution of each channel to * TAD is size/ways. * * Finally, we have to check whether each channel participates in each SAD * region. * * Fortunately, KNL only supports one DIMM per channel, so once we know how * much memory the channel uses, we know the DIMM is at least that large. * (The BIOS might possibly choose not to map all available memory, in which * case we will underreport the size of the DIMM.) * * In theory, we could try to determine the EDC sizes as well, but that would * only work in flat mode, not in cache mode. * * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS * elements) */ static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes) { u64 sad_base, sad_size, sad_limit = 0; u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace; int sad_rule = 0; int tad_rule = 0; int intrlv_ways, tad_ways; u32 first_pkg, pkg; int i; u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */ u32 dram_rule, interleave_reg; u32 mc_route_reg[KNL_MAX_CHAS]; u32 edc_route_reg[KNL_MAX_CHAS]; int edram_only; char edc_route_string[KNL_MAX_EDCS*2]; char mc_route_string[KNL_MAX_CHANNELS*2]; int cur_reg_start; int mc; int channel; int participants[KNL_MAX_CHANNELS]; for (i = 0; i < KNL_MAX_CHANNELS; i++) mc_sizes[i] = 0; /* Read the EDC route table in each CHA. */ cur_reg_start = 0; for (i = 0; i < KNL_MAX_CHAS; i++) { pci_read_config_dword(pvt->knl.pci_cha[i], KNL_EDC_ROUTE, &edc_route_reg[i]); if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) { knl_show_edc_route(edc_route_reg[i-1], edc_route_string); if (cur_reg_start == i-1) edac_dbg(0, "edc route table for CHA %d: %s\n", cur_reg_start, edc_route_string); else edac_dbg(0, "edc route table for CHA %d-%d: %s\n", cur_reg_start, i-1, edc_route_string); cur_reg_start = i; } } knl_show_edc_route(edc_route_reg[i-1], edc_route_string); if (cur_reg_start == i-1) edac_dbg(0, "edc route table for CHA %d: %s\n", cur_reg_start, edc_route_string); else edac_dbg(0, "edc route table for CHA %d-%d: %s\n", cur_reg_start, i-1, edc_route_string); /* Read the MC route table in each CHA. */ cur_reg_start = 0; for (i = 0; i < KNL_MAX_CHAS; i++) { pci_read_config_dword(pvt->knl.pci_cha[i], KNL_MC_ROUTE, &mc_route_reg[i]); if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) { knl_show_mc_route(mc_route_reg[i-1], mc_route_string); if (cur_reg_start == i-1) edac_dbg(0, "mc route table for CHA %d: %s\n", cur_reg_start, mc_route_string); else edac_dbg(0, "mc route table for CHA %d-%d: %s\n", cur_reg_start, i-1, mc_route_string); cur_reg_start = i; } } knl_show_mc_route(mc_route_reg[i-1], mc_route_string); if (cur_reg_start == i-1) edac_dbg(0, "mc route table for CHA %d: %s\n", cur_reg_start, mc_route_string); else edac_dbg(0, "mc route table for CHA %d-%d: %s\n", cur_reg_start, i-1, mc_route_string); /* Process DRAM rules */ for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) { /* previous limit becomes the new base */ sad_base = sad_limit; pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[sad_rule], &dram_rule); if (!DRAM_RULE_ENABLE(dram_rule)) break; edram_only = KNL_EDRAM_ONLY(dram_rule); sad_limit = pvt->info.sad_limit(dram_rule)+1; sad_size = sad_limit - sad_base; pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[sad_rule], &interleave_reg); /* * Find out how many ways this dram rule is interleaved. * We stop when we see the first channel again. */ first_pkg = sad_pkg(pvt->info.interleave_pkg, interleave_reg, 0); for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) { pkg = sad_pkg(pvt->info.interleave_pkg, interleave_reg, intrlv_ways); if ((pkg & 0x8) == 0) { /* * 0 bit means memory is non-local, * which KNL doesn't support */ edac_dbg(0, "Unexpected interleave target %d\n", pkg); return -1; } if (pkg == first_pkg) break; } if (KNL_MOD3(dram_rule)) intrlv_ways *= 3; edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n", sad_rule, sad_base, sad_limit, intrlv_ways, edram_only ? ", EDRAM" : ""); /* * Find out how big the SAD region really is by iterating * over TAD tables (SAD regions may contain holes). * Each memory controller might have a different TAD table, so * we have to look at both. * * Livespace is the memory that's mapped in this TAD table, * deadspace is the holes (this could be the MMIO hole, or it * could be memory that's mapped by the other TAD table but * not this one). */ for (mc = 0; mc < 2; mc++) { sad_actual_size[mc] = 0; tad_livespace = 0; for (tad_rule = 0; tad_rule < ARRAY_SIZE( knl_tad_dram_limit_lo); tad_rule++) { if (knl_get_tad(pvt, tad_rule, mc, &tad_deadspace, &tad_limit, &tad_ways)) break; tad_size = (tad_limit+1) - (tad_livespace + tad_deadspace); tad_livespace += tad_size; tad_base = (tad_limit+1) - tad_size; if (tad_base < sad_base) { if (tad_limit > sad_base) edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n"); } else if (tad_base < sad_limit) { if (tad_limit+1 > sad_limit) { edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n"); } else { /* TAD region is completely inside SAD region */ edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n", tad_rule, tad_base, tad_limit, tad_size, mc); sad_actual_size[mc] += tad_size; } } tad_base = tad_limit+1; } } for (mc = 0; mc < 2; mc++) { edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n", mc, sad_actual_size[mc], sad_actual_size[mc]); } /* Ignore EDRAM rule */ if (edram_only) continue; /* Figure out which channels participate in interleave. */ for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) participants[channel] = 0; /* For each channel, does at least one CHA have * this channel mapped to the given target? */ for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) { int target; int cha; for (target = 0; target < KNL_MAX_CHANNELS; target++) { for (cha = 0; cha < KNL_MAX_CHAS; cha++) { if (knl_get_mc_route(target, mc_route_reg[cha]) == channel && !participants[channel]) { participants[channel] = 1; break; } } } } for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) { mc = knl_channel_mc(channel); if (participants[channel]) { edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n", channel, sad_actual_size[mc]/intrlv_ways, sad_rule); mc_sizes[channel] += sad_actual_size[mc]/intrlv_ways; } } } return 0; } static void get_source_id(struct mem_ctl_info *mci) { struct sbridge_pvt *pvt = mci->pvt_info; u32 reg; if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL || pvt->info.type == KNIGHTS_LANDING) pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, ®); else pci_read_config_dword(pvt->pci_br0, SAD_TARGET, ®); if (pvt->info.type == KNIGHTS_LANDING) pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg); else pvt->sbridge_dev->source_id = SOURCE_ID(reg); } static int __populate_dimms(struct mem_ctl_info *mci, u64 knl_mc_sizes[KNL_MAX_CHANNELS], enum edac_type mode) { struct sbridge_pvt *pvt = mci->pvt_info; int channels = pvt->info.type == KNIGHTS_LANDING ? KNL_MAX_CHANNELS : NUM_CHANNELS; unsigned int i, j, banks, ranks, rows, cols, npages; struct dimm_info *dimm; enum mem_type mtype; u64 size; mtype = pvt->info.get_memory_type(pvt); if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4) edac_dbg(0, "Memory is registered\n"); else if (mtype == MEM_UNKNOWN) edac_dbg(0, "Cannot determine memory type\n"); else edac_dbg(0, "Memory is unregistered\n"); if (mtype == MEM_DDR4 || mtype == MEM_RDDR4) banks = 16; else banks = 8; for (i = 0; i < channels; i++) { u32 mtr; int max_dimms_per_channel; if (pvt->info.type == KNIGHTS_LANDING) { max_dimms_per_channel = 1; if (!pvt->knl.pci_channel[i]) continue; } else { max_dimms_per_channel = ARRAY_SIZE(mtr_regs); if (!pvt->pci_tad[i]) continue; } for (j = 0; j < max_dimms_per_channel; j++) { dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, i, j, 0); if (pvt->info.type == KNIGHTS_LANDING) { pci_read_config_dword(pvt->knl.pci_channel[i], knl_mtr_reg, &mtr); } else { pci_read_config_dword(pvt->pci_tad[i], mtr_regs[j], &mtr); } edac_dbg(4, "Channel #%d MTR%d = %x\n", i, j, mtr); if (IS_DIMM_PRESENT(mtr)) { if (!IS_ECC_ENABLED(pvt->info.mcmtr)) { sbridge_printk(KERN_ERR, "CPU SrcID #%d, Ha #%d, Channel #%d has DIMMs, but ECC is disabled\n", pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom, i); return -ENODEV; } pvt->channel[i].dimms++; ranks = numrank(pvt->info.type, mtr); if (pvt->info.type == KNIGHTS_LANDING) { /* For DDR4, this is fixed. */ cols = 1 << 10; rows = knl_mc_sizes[i] / ((u64) cols * ranks * banks * 8); } else { rows = numrow(mtr); cols = numcol(mtr); } size = ((u64)rows * cols * banks * ranks) >> (20 - 3); npages = MiB_TO_PAGES(size); edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n", pvt->sbridge_dev->mc, pvt->sbridge_dev->dom, i, j, size, npages, banks, ranks, rows, cols); dimm->nr_pages = npages; dimm->grain = 32; dimm->dtype = pvt->info.get_width(pvt, mtr); dimm->mtype = mtype; dimm->edac_mode = mode; snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u", pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom, i, j); } } } return 0; } static int get_dimm_config(struct mem_ctl_info *mci) { struct sbridge_pvt *pvt = mci->pvt_info; u64 knl_mc_sizes[KNL_MAX_CHANNELS]; enum edac_type mode; u32 reg; pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt); edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n", pvt->sbridge_dev->mc, pvt->sbridge_dev->node_id, pvt->sbridge_dev->source_id); /* KNL doesn't support mirroring or lockstep, * and is always closed page */ if (pvt->info.type == KNIGHTS_LANDING) { mode = EDAC_S4ECD4ED; pvt->mirror_mode = NON_MIRRORING; pvt->is_cur_addr_mirrored = false; if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0) return -1; if (pci_read_config_dword(pvt->pci_ta, KNL_MCMTR, &pvt->info.mcmtr)) { edac_dbg(0, "Failed to read KNL_MCMTR register\n"); return -ENODEV; } } else { if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) { if (pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, ®)) { edac_dbg(0, "Failed to read HASWELL_HASYSDEFEATURE2 register\n"); return -ENODEV; } pvt->is_chan_hash = GET_BITFIELD(reg, 21, 21); if (GET_BITFIELD(reg, 28, 28)) { pvt->mirror_mode = ADDR_RANGE_MIRRORING; edac_dbg(0, "Address range partial memory mirroring is enabled\n"); goto next; } } if (pci_read_config_dword(pvt->pci_ras, RASENABLES, ®)) { edac_dbg(0, "Failed to read RASENABLES register\n"); return -ENODEV; } if (IS_MIRROR_ENABLED(reg)) { pvt->mirror_mode = FULL_MIRRORING; edac_dbg(0, "Full memory mirroring is enabled\n"); } else { pvt->mirror_mode = NON_MIRRORING; edac_dbg(0, "Memory mirroring is disabled\n"); } next: if (pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr)) { edac_dbg(0, "Failed to read MCMTR register\n"); return -ENODEV; } if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) { edac_dbg(0, "Lockstep is enabled\n"); mode = EDAC_S8ECD8ED; pvt->is_lockstep = true; } else { edac_dbg(0, "Lockstep is disabled\n"); mode = EDAC_S4ECD4ED; pvt->is_lockstep = false; } if (IS_CLOSE_PG(pvt->info.mcmtr)) { edac_dbg(0, "address map is on closed page mode\n"); pvt->is_close_pg = true; } else { edac_dbg(0, "address map is on open page mode\n"); pvt->is_close_pg = false; } } return __populate_dimms(mci, knl_mc_sizes, mode); } static void get_memory_layout(const struct mem_ctl_info *mci) { struct sbridge_pvt *pvt = mci->pvt_info; int i, j, k, n_sads, n_tads, sad_interl; u32 reg; u64 limit, prv = 0; u64 tmp_mb; u32 gb, mb; u32 rir_way; /* * Step 1) Get TOLM/TOHM ranges */ pvt->tolm = pvt->info.get_tolm(pvt); tmp_mb = (1 + pvt->tolm) >> 20; gb = div_u64_rem(tmp_mb, 1024, &mb); edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n", gb, (mb*1000)/1024, (u64)pvt->tolm); /* Address range is already 45:25 */ pvt->tohm = pvt->info.get_tohm(pvt); tmp_mb = (1 + pvt->tohm) >> 20; gb = div_u64_rem(tmp_mb, 1024, &mb); edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n", gb, (mb*1000)/1024, (u64)pvt->tohm); /* * Step 2) Get SAD range and SAD Interleave list * TAD registers contain the interleave wayness. However, it * seems simpler to just discover it indirectly, with the * algorithm bellow. */ prv = 0; for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) { /* SAD_LIMIT Address range is 45:26 */ pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads], ®); limit = pvt->info.sad_limit(reg); if (!DRAM_RULE_ENABLE(reg)) continue; if (limit <= prv) break; tmp_mb = (limit + 1) >> 20; gb = div_u64_rem(tmp_mb, 1024, &mb); edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n", n_sads, show_dram_attr(pvt->info.dram_attr(reg)), gb, (mb*1000)/1024, ((u64)tmp_mb) << 20L, get_intlv_mode_str(reg, pvt->info.type), reg); prv = limit; pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads], ®); sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0); for (j = 0; j < 8; j++) { u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j); if (j > 0 && sad_interl == pkg) break; edac_dbg(0, "SAD#%d, interleave #%d: %d\n", n_sads, j, pkg); } } if (pvt->info.type == KNIGHTS_LANDING) return; /* * Step 3) Get TAD range */ prv = 0; for (n_tads = 0; n_tads < MAX_TAD; n_tads++) { pci_read_config_dword(pvt->pci_ha, tad_dram_rule[n_tads], ®); limit = TAD_LIMIT(reg); if (limit <= prv) break; tmp_mb = (limit + 1) >> 20; gb = div_u64_rem(tmp_mb, 1024, &mb); edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n", n_tads, gb, (mb*1000)/1024, ((u64)tmp_mb) << 20L, (u32)(1 << TAD_SOCK(reg)), (u32)TAD_CH(reg) + 1, (u32)TAD_TGT0(reg), (u32)TAD_TGT1(reg), (u32)TAD_TGT2(reg), (u32)TAD_TGT3(reg), reg); prv = limit; } /* * Step 4) Get TAD offsets, per each channel */ for (i = 0; i < NUM_CHANNELS; i++) { if (!pvt->channel[i].dimms) continue; for (j = 0; j < n_tads; j++) { pci_read_config_dword(pvt->pci_tad[i], tad_ch_nilv_offset[j], ®); tmp_mb = TAD_OFFSET(reg) >> 20; gb = div_u64_rem(tmp_mb, 1024, &mb); edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n", i, j, gb, (mb*1000)/1024, ((u64)tmp_mb) << 20L, reg); } } /* * Step 6) Get RIR Wayness/Limit, per each channel */ for (i = 0; i < NUM_CHANNELS; i++) { if (!pvt->channel[i].dimms) continue; for (j = 0; j < MAX_RIR_RANGES; j++) { pci_read_config_dword(pvt->pci_tad[i], rir_way_limit[j], ®); if (!IS_RIR_VALID(reg)) continue; tmp_mb = pvt->info.rir_limit(reg) >> 20; rir_way = 1 << RIR_WAY(reg); gb = div_u64_rem(tmp_mb, 1024, &mb); edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n", i, j, gb, (mb*1000)/1024, ((u64)tmp_mb) << 20L, rir_way, reg); for (k = 0; k < rir_way; k++) { pci_read_config_dword(pvt->pci_tad[i], rir_offset[j][k], ®); tmp_mb = RIR_OFFSET(pvt->info.type, reg) << 6; gb = div_u64_rem(tmp_mb, 1024, &mb); edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n", i, j, k, gb, (mb*1000)/1024, ((u64)tmp_mb) << 20L, (u32)RIR_RNK_TGT(pvt->info.type, reg), reg); } } } } static struct mem_ctl_info *get_mci_for_node_id(u8 node_id, u8 ha) { struct sbridge_dev *sbridge_dev; list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) { if (sbridge_dev->node_id == node_id && sbridge_dev->dom == ha) return sbridge_dev->mci; } return NULL; } static int get_memory_error_data(struct mem_ctl_info *mci, u64 addr, u8 *socket, u8 *ha, long *channel_mask, u8 *rank, char **area_type, char *msg) { struct mem_ctl_info *new_mci; struct sbridge_pvt *pvt = mci->pvt_info; struct pci_dev *pci_ha; int n_rir, n_sads, n_tads, sad_way, sck_xch; int sad_interl, idx, base_ch; int interleave_mode, shiftup = 0; unsigned int sad_interleave[MAX_INTERLEAVE]; u32 reg, dram_rule; u8 ch_way, sck_way, pkg, sad_ha = 0; u32 tad_offset; u32 rir_way; u32 mb, gb; u64 ch_addr, offset, limit = 0, prv = 0; /* * Step 0) Check if the address is at special memory ranges * The check bellow is probably enough to fill all cases where * the error is not inside a memory, except for the legacy * range (e. g. VGA addresses). It is unlikely, however, that the * memory controller would generate an error on that range. */ if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) { sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr); return -EINVAL; } if (addr >= (u64)pvt->tohm) { sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr); return -EINVAL; } /* * Step 1) Get socket */ for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) { pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads], ®); if (!DRAM_RULE_ENABLE(reg)) continue; limit = pvt->info.sad_limit(reg); if (limit <= prv) { sprintf(msg, "Can't discover the memory socket"); return -EINVAL; } if (addr <= limit) break; prv = limit; } if (n_sads == pvt->info.max_sad) { sprintf(msg, "Can't discover the memory socket"); return -EINVAL; } dram_rule = reg; *area_type = show_dram_attr(pvt->info.dram_attr(dram_rule)); interleave_mode = pvt->info.interleave_mode(dram_rule); pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads], ®); if (pvt->info.type == SANDY_BRIDGE) { sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0); for (sad_way = 0; sad_way < 8; sad_way++) { u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way); if (sad_way > 0 && sad_interl == pkg) break; sad_interleave[sad_way] = pkg; edac_dbg(0, "SAD interleave #%d: %d\n", sad_way, sad_interleave[sad_way]); } edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n", pvt->sbridge_dev->mc, n_sads, addr, limit, sad_way + 7, !interleave_mode ? "" : "XOR[18:16]"); if (interleave_mode) idx = ((addr >> 6) ^ (addr >> 16)) & 7; else idx = (addr >> 6) & 7; switch (sad_way) { case 1: idx = 0; break; case 2: idx = idx & 1; break; case 4: idx = idx & 3; break; case 8: break; default: sprintf(msg, "Can't discover socket interleave"); return -EINVAL; } *socket = sad_interleave[idx]; edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n", idx, sad_way, *socket); } else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) { int bits, a7mode = A7MODE(dram_rule); if (a7mode) { /* A7 mode swaps P9 with P6 */ bits = GET_BITFIELD(addr, 7, 8) << 1; bits |= GET_BITFIELD(addr, 9, 9); } else bits = GET_BITFIELD(addr, 6, 8); if (interleave_mode == 0) { /* interleave mode will XOR {8,7,6} with {18,17,16} */ idx = GET_BITFIELD(addr, 16, 18); idx ^= bits; } else idx = bits; pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx); *socket = sad_pkg_socket(pkg); sad_ha = sad_pkg_ha(pkg); if (a7mode) { /* MCChanShiftUpEnable */ pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, ®); shiftup = GET_BITFIELD(reg, 22, 22); } edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n", idx, *socket, sad_ha, shiftup); } else { /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */ idx = (addr >> 6) & 7; pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx); *socket = sad_pkg_socket(pkg); sad_ha = sad_pkg_ha(pkg); edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n", idx, *socket, sad_ha); } *ha = sad_ha; /* * Move to the proper node structure, in order to access the * right PCI registers */ new_mci = get_mci_for_node_id(*socket, sad_ha); if (!new_mci) { sprintf(msg, "Struct for socket #%u wasn't initialized", *socket); return -EINVAL; } mci = new_mci; pvt = mci->pvt_info; /* * Step 2) Get memory channel */ prv = 0; pci_ha = pvt->pci_ha; for (n_tads = 0; n_tads < MAX_TAD; n_tads++) { pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], ®); limit = TAD_LIMIT(reg); if (limit <= prv) { sprintf(msg, "Can't discover the memory channel"); return -EINVAL; } if (addr <= limit) break; prv = limit; } if (n_tads == MAX_TAD) { sprintf(msg, "Can't discover the memory channel"); return -EINVAL; } ch_way = TAD_CH(reg) + 1; sck_way = TAD_SOCK(reg); if (ch_way == 3) idx = addr >> 6; else { idx = (addr >> (6 + sck_way + shiftup)) & 0x3; if (pvt->is_chan_hash) idx = haswell_chan_hash(idx, addr); } idx = idx % ch_way; /* * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ??? */ switch (idx) { case 0: base_ch = TAD_TGT0(reg); break; case 1: base_ch = TAD_TGT1(reg); break; case 2: base_ch = TAD_TGT2(reg); break; case 3: base_ch = TAD_TGT3(reg); break; default: sprintf(msg, "Can't discover the TAD target"); return -EINVAL; } *channel_mask = 1 << base_ch; pci_read_config_dword(pvt->pci_tad[base_ch], tad_ch_nilv_offset[n_tads], &tad_offset); if (pvt->mirror_mode == FULL_MIRRORING || (pvt->mirror_mode == ADDR_RANGE_MIRRORING && n_tads == 0)) { *channel_mask |= 1 << ((base_ch + 2) % 4); switch(ch_way) { case 2: case 4: sck_xch = (1 << sck_way) * (ch_way >> 1); break; default: sprintf(msg, "Invalid mirror set. Can't decode addr"); return -EINVAL; } pvt->is_cur_addr_mirrored = true; } else { sck_xch = (1 << sck_way) * ch_way; pvt->is_cur_addr_mirrored = false; } if (pvt->is_lockstep) *channel_mask |= 1 << ((base_ch + 1) % 4); offset = TAD_OFFSET(tad_offset); edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n", n_tads, addr, limit, sck_way, ch_way, offset, idx, base_ch, *channel_mask); /* Calculate channel address */ /* Remove the TAD offset */ if (offset > addr) { sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!", offset, addr); return -EINVAL; } ch_addr = addr - offset; ch_addr >>= (6 + shiftup); ch_addr /= sck_xch; ch_addr <<= (6 + shiftup); ch_addr |= addr & ((1 << (6 + shiftup)) - 1); /* * Step 3) Decode rank */ for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) { pci_read_config_dword(pvt->pci_tad[base_ch], rir_way_limit[n_rir], ®); if (!IS_RIR_VALID(reg)) continue; limit = pvt->info.rir_limit(reg); gb = div_u64_rem(limit >> 20, 1024, &mb); edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n", n_rir, gb, (mb*1000)/1024, limit, 1 << RIR_WAY(reg)); if (ch_addr <= limit) break; } if (n_rir == MAX_RIR_RANGES) { sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx", ch_addr); return -EINVAL; } rir_way = RIR_WAY(reg); if (pvt->is_close_pg) idx = (ch_addr >> 6); else idx = (ch_addr >> 13); /* FIXME: Datasheet says to shift by 15 */ idx %= 1 << rir_way; pci_read_config_dword(pvt->pci_tad[base_ch], rir_offset[n_rir][idx], ®); *rank = RIR_RNK_TGT(pvt->info.type, reg); edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n", n_rir, ch_addr, limit, rir_way, idx); return 0; } /**************************************************************************** Device initialization routines: put/get, init/exit ****************************************************************************/ /* * sbridge_put_all_devices 'put' all the devices that we have * reserved via 'get' */ static void sbridge_put_devices(struct sbridge_dev *sbridge_dev) { int i; edac_dbg(0, "\n"); for (i = 0; i < sbridge_dev->n_devs; i++) { struct pci_dev *pdev = sbridge_dev->pdev[i]; if (!pdev) continue; edac_dbg(0, "Removing dev %02x:%02x.%d\n", pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); pci_dev_put(pdev); } } static void sbridge_put_all_devices(void) { struct sbridge_dev *sbridge_dev, *tmp; list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) { sbridge_put_devices(sbridge_dev); free_sbridge_dev(sbridge_dev); } } static int sbridge_get_onedevice(struct pci_dev **prev, u8 *num_mc, const struct pci_id_table *table, const unsigned devno, const int multi_bus) { struct sbridge_dev *sbridge_dev = NULL; const struct pci_id_descr *dev_descr = &table->descr[devno]; struct pci_dev *pdev = NULL; int seg = 0; u8 bus = 0; int i = 0; sbridge_printk(KERN_DEBUG, "Seeking for: PCI ID %04x:%04x\n", PCI_VENDOR_ID_INTEL, dev_descr->dev_id); pdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_descr->dev_id, *prev); if (!pdev) { if (*prev) { *prev = pdev; return 0; } if (dev_descr->optional) return 0; /* if the HA wasn't found */ if (devno == 0) return -ENODEV; sbridge_printk(KERN_INFO, "Device not found: %04x:%04x\n", PCI_VENDOR_ID_INTEL, dev_descr->dev_id); /* End of list, leave */ return -ENODEV; } seg = pci_domain_nr(pdev->bus); bus = pdev->bus->number; next_imc: sbridge_dev = get_sbridge_dev(seg, bus, dev_descr->dom, multi_bus, sbridge_dev); if (!sbridge_dev) { /* If the HA1 wasn't found, don't create EDAC second memory controller */ if (dev_descr->dom == IMC1 && devno != 1) { edac_dbg(0, "Skip IMC1: %04x:%04x (since HA1 was absent)\n", PCI_VENDOR_ID_INTEL, dev_descr->dev_id); pci_dev_put(pdev); return 0; } if (dev_descr->dom == SOCK) goto out_imc; sbridge_dev = alloc_sbridge_dev(seg, bus, dev_descr->dom, table); if (!sbridge_dev) { pci_dev_put(pdev); return -ENOMEM; } (*num_mc)++; } if (sbridge_dev->pdev[sbridge_dev->i_devs]) { sbridge_printk(KERN_ERR, "Duplicated device for %04x:%04x\n", PCI_VENDOR_ID_INTEL, dev_descr->dev_id); pci_dev_put(pdev); return -ENODEV; } sbridge_dev->pdev[sbridge_dev->i_devs++] = pdev; /* pdev belongs to more than one IMC, do extra gets */ if (++i > 1) pci_dev_get(pdev); if (dev_descr->dom == SOCK && i < table->n_imcs_per_sock) goto next_imc; out_imc: /* Be sure that the device is enabled */ if (unlikely(pci_enable_device(pdev) < 0)) { sbridge_printk(KERN_ERR, "Couldn't enable %04x:%04x\n", PCI_VENDOR_ID_INTEL, dev_descr->dev_id); return -ENODEV; } edac_dbg(0, "Detected %04x:%04x\n", PCI_VENDOR_ID_INTEL, dev_descr->dev_id); /* * As stated on drivers/pci/search.c, the reference count for * @from is always decremented if it is not %NULL. So, as we need * to get all devices up to null, we need to do a get for the device */ pci_dev_get(pdev); *prev = pdev; return 0; } /* * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's * devices we want to reference for this driver. * @num_mc: pointer to the memory controllers count, to be incremented in case * of success. * @table: model specific table * * returns 0 in case of success or error code */ static int sbridge_get_all_devices(u8 *num_mc, const struct pci_id_table *table) { int i, rc; struct pci_dev *pdev = NULL; int allow_dups = 0; int multi_bus = 0; if (table->type == KNIGHTS_LANDING) allow_dups = multi_bus = 1; while (table && table->descr) { for (i = 0; i < table->n_devs_per_sock; i++) { if (!allow_dups || i == 0 || table->descr[i].dev_id != table->descr[i-1].dev_id) { pdev = NULL; } do { rc = sbridge_get_onedevice(&pdev, num_mc, table, i, multi_bus); if (rc < 0) { if (i == 0) { i = table->n_devs_per_sock; break; } sbridge_put_all_devices(); return -ENODEV; } } while (pdev && !allow_dups); } table++; } return 0; } /* * Device IDs for {SBRIDGE,IBRIDGE,HASWELL,BROADWELL}_IMC_HA0_TAD0 are in * the format: XXXa. So we can convert from a device to the corresponding * channel like this */ #define TAD_DEV_TO_CHAN(dev) (((dev) & 0xf) - 0xa) static int sbridge_mci_bind_devs(struct mem_ctl_info *mci, struct sbridge_dev *sbridge_dev) { struct sbridge_pvt *pvt = mci->pvt_info; struct pci_dev *pdev; u8 saw_chan_mask = 0; int i; for (i = 0; i < sbridge_dev->n_devs; i++) { pdev = sbridge_dev->pdev[i]; if (!pdev) continue; switch (pdev->device) { case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0: pvt->pci_sad0 = pdev; break; case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1: pvt->pci_sad1 = pdev; break; case PCI_DEVICE_ID_INTEL_SBRIDGE_BR: pvt->pci_br0 = pdev; break; case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0: pvt->pci_ha = pdev; break; case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA: pvt->pci_ta = pdev; break; case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS: pvt->pci_ras = pdev; break; case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0: case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1: case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2: case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3: { int id = TAD_DEV_TO_CHAN(pdev->device); pvt->pci_tad[id] = pdev; saw_chan_mask |= 1 << id; } break; case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO: pvt->pci_ddrio = pdev; break; default: goto error; } edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n", pdev->vendor, pdev->device, sbridge_dev->bus, pdev); } /* Check if everything were registered */ if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha || !pvt->pci_ras || !pvt->pci_ta) goto enodev; if (saw_chan_mask != 0x0f) goto enodev; return 0; enodev: sbridge_printk(KERN_ERR, "Some needed devices are missing\n"); return -ENODEV; error: sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL, pdev->device); return -EINVAL; } static int ibridge_mci_bind_devs(struct mem_ctl_info *mci, struct sbridge_dev *sbridge_dev) { struct sbridge_pvt *pvt = mci->pvt_info; struct pci_dev *pdev; u8 saw_chan_mask = 0; int i; for (i = 0; i < sbridge_dev->n_devs; i++) { pdev = sbridge_dev->pdev[i]; if (!pdev) continue; switch (pdev->device) { case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0: case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1: pvt->pci_ha = pdev; break; case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA: case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA: pvt->pci_ta = pdev; break; case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS: case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS: pvt->pci_ras = pdev; break; case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0: case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1: case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2: case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3: case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0: case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1: case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2: case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3: { int id = TAD_DEV_TO_CHAN(pdev->device); pvt->pci_tad[id] = pdev; saw_chan_mask |= 1 << id; } break; case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0: pvt->pci_ddrio = pdev; break; case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0: pvt->pci_ddrio = pdev; break; case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD: pvt->pci_sad0 = pdev; break; case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0: pvt->pci_br0 = pdev; break; case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1: pvt->pci_br1 = pdev; break; default: goto error; } edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n", sbridge_dev->bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), pdev); } /* Check if everything were registered */ if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_br0 || !pvt->pci_br1 || !pvt->pci_ras || !pvt->pci_ta) goto enodev; if (saw_chan_mask != 0x0f && /* -EN/-EX */ saw_chan_mask != 0x03) /* -EP */ goto enodev; return 0; enodev: sbridge_printk(KERN_ERR, "Some needed devices are missing\n"); return -ENODEV; error: sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL, pdev->device); return -EINVAL; } static int haswell_mci_bind_devs(struct mem_ctl_info *mci, struct sbridge_dev *sbridge_dev) { struct sbridge_pvt *pvt = mci->pvt_info; struct pci_dev *pdev; u8 saw_chan_mask = 0; int i; /* there's only one device per system; not tied to any bus */ if (pvt->info.pci_vtd == NULL) /* result will be checked later */ pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC, NULL); for (i = 0; i < sbridge_dev->n_devs; i++) { pdev = sbridge_dev->pdev[i]; if (!pdev) continue; switch (pdev->device) { case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0: pvt->pci_sad0 = pdev; break; case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1: pvt->pci_sad1 = pdev; break; case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0: case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1: pvt->pci_ha = pdev; break; case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA: case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA: pvt->pci_ta = pdev; break; case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM: case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM: pvt->pci_ras = pdev; break; case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0: case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1: case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2: case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3: case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0: case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1: case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2: case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3: { int id = TAD_DEV_TO_CHAN(pdev->device); pvt->pci_tad[id] = pdev; saw_chan_mask |= 1 << id; } break; case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0: case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1: case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2: case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3: if (!pvt->pci_ddrio) pvt->pci_ddrio = pdev; break; default: break; } edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n", sbridge_dev->bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), pdev); } /* Check if everything were registered */ if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 || !pvt->pci_ras || !pvt->pci_ta || !pvt->info.pci_vtd) goto enodev; if (saw_chan_mask != 0x0f && /* -EN/-EX */ saw_chan_mask != 0x03) /* -EP */ goto enodev; return 0; enodev: sbridge_printk(KERN_ERR, "Some needed devices are missing\n"); return -ENODEV; } static int broadwell_mci_bind_devs(struct mem_ctl_info *mci, struct sbridge_dev *sbridge_dev) { struct sbridge_pvt *pvt = mci->pvt_info; struct pci_dev *pdev; u8 saw_chan_mask = 0; int i; /* there's only one device per system; not tied to any bus */ if (pvt->info.pci_vtd == NULL) /* result will be checked later */ pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC, NULL); for (i = 0; i < sbridge_dev->n_devs; i++) { pdev = sbridge_dev->pdev[i]; if (!pdev) continue; switch (pdev->device) { case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0: pvt->pci_sad0 = pdev; break; case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1: pvt->pci_sad1 = pdev; break; case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0: case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1: pvt->pci_ha = pdev; break; case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA: case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA: pvt->pci_ta = pdev; break; case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM: case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM: pvt->pci_ras = pdev; break; case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0: case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1: case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2: case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3: case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0: case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1: case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2: case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3: { int id = TAD_DEV_TO_CHAN(pdev->device); pvt->pci_tad[id] = pdev; saw_chan_mask |= 1 << id; } break; case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0: pvt->pci_ddrio = pdev; break; default: break; } edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n", sbridge_dev->bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), pdev); } /* Check if everything were registered */ if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 || !pvt->pci_ras || !pvt->pci_ta || !pvt->info.pci_vtd) goto enodev; if (saw_chan_mask != 0x0f && /* -EN/-EX */ saw_chan_mask != 0x03) /* -EP */ goto enodev; return 0; enodev: sbridge_printk(KERN_ERR, "Some needed devices are missing\n"); return -ENODEV; } static int knl_mci_bind_devs(struct mem_ctl_info *mci, struct sbridge_dev *sbridge_dev) { struct sbridge_pvt *pvt = mci->pvt_info; struct pci_dev *pdev; int dev, func; int i; int devidx; for (i = 0; i < sbridge_dev->n_devs; i++) { pdev = sbridge_dev->pdev[i]; if (!pdev) continue; /* Extract PCI device and function. */ dev = (pdev->devfn >> 3) & 0x1f; func = pdev->devfn & 0x7; switch (pdev->device) { case PCI_DEVICE_ID_INTEL_KNL_IMC_MC: if (dev == 8) pvt->knl.pci_mc0 = pdev; else if (dev == 9) pvt->knl.pci_mc1 = pdev; else { sbridge_printk(KERN_ERR, "Memory controller in unexpected place! (dev %d, fn %d)\n", dev, func); continue; } break; case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0: pvt->pci_sad0 = pdev; break; case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1: pvt->pci_sad1 = pdev; break; case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA: /* There are one of these per tile, and range from * 1.14.0 to 1.18.5. */ devidx = ((dev-14)*8)+func; if (devidx < 0 || devidx >= KNL_MAX_CHAS) { sbridge_printk(KERN_ERR, "Caching and Home Agent in unexpected place! (dev %d, fn %d)\n", dev, func); continue; } WARN_ON(pvt->knl.pci_cha[devidx] != NULL); pvt->knl.pci_cha[devidx] = pdev; break; case PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN: devidx = -1; /* * MC0 channels 0-2 are device 9 function 2-4, * MC1 channels 3-5 are device 8 function 2-4. */ if (dev == 9) devidx = func-2; else if (dev == 8) devidx = 3 + (func-2); if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) { sbridge_printk(KERN_ERR, "DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n", dev, func); continue; } WARN_ON(pvt->knl.pci_channel[devidx] != NULL); pvt->knl.pci_channel[devidx] = pdev; break; case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM: pvt->knl.pci_mc_info = pdev; break; case PCI_DEVICE_ID_INTEL_KNL_IMC_TA: pvt->pci_ta = pdev; break; default: sbridge_printk(KERN_ERR, "Unexpected device %d\n", pdev->device); break; } } if (!pvt->knl.pci_mc0 || !pvt->knl.pci_mc1 || !pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ta) { goto enodev; } for (i = 0; i < KNL_MAX_CHANNELS; i++) { if (!pvt->knl.pci_channel[i]) { sbridge_printk(KERN_ERR, "Missing channel %d\n", i); goto enodev; } } for (i = 0; i < KNL_MAX_CHAS; i++) { if (!pvt->knl.pci_cha[i]) { sbridge_printk(KERN_ERR, "Missing CHA %d\n", i); goto enodev; } } return 0; enodev: sbridge_printk(KERN_ERR, "Some needed devices are missing\n"); return -ENODEV; } /**************************************************************************** Error check routines ****************************************************************************/ /* * While Sandy Bridge has error count registers, SMI BIOS read values from * and resets the counters. So, they are not reliable for the OS to read * from them. So, we have no option but to just trust on whatever MCE is * telling us about the errors. */ static void sbridge_mce_output_error(struct mem_ctl_info *mci, const struct mce *m) { struct mem_ctl_info *new_mci; struct sbridge_pvt *pvt = mci->pvt_info; enum hw_event_mc_err_type tp_event; char *type, *optype, msg[256]; bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0); bool overflow = GET_BITFIELD(m->status, 62, 62); bool uncorrected_error = GET_BITFIELD(m->status, 61, 61); bool recoverable; u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52); u32 mscod = GET_BITFIELD(m->status, 16, 31); u32 errcode = GET_BITFIELD(m->status, 0, 15); u32 channel = GET_BITFIELD(m->status, 0, 3); u32 optypenum = GET_BITFIELD(m->status, 4, 6); long channel_mask, first_channel; u8 rank, socket, ha; int rc, dimm; char *area_type = NULL; if (pvt->info.type != SANDY_BRIDGE) recoverable = true; else recoverable = GET_BITFIELD(m->status, 56, 56); if (uncorrected_error) { core_err_cnt = 1; if (ripv) { type = "FATAL"; tp_event = HW_EVENT_ERR_FATAL; } else { type = "NON_FATAL"; tp_event = HW_EVENT_ERR_UNCORRECTED; } } else { type = "CORRECTED"; tp_event = HW_EVENT_ERR_CORRECTED; } /* * According with Table 15-9 of the Intel Architecture spec vol 3A, * memory errors should fit in this mask: * 000f 0000 1mmm cccc (binary) * where: * f = Correction Report Filtering Bit. If 1, subsequent errors * won't be shown * mmm = error type * cccc = channel * If the mask doesn't match, report an error to the parsing logic */ switch (optypenum) { case 0: optype = "generic undef request error"; break; case 1: optype = "memory read error"; break; case 2: optype = "memory write error"; break; case 3: optype = "addr/cmd error"; break; case 4: optype = "memory scrubbing error"; break; default: optype = "reserved"; break; } if (pvt->info.type == KNIGHTS_LANDING) { if (channel == 14) { edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n", overflow ? " OVERFLOW" : "", (uncorrected_error && recoverable) ? " recoverable" : "", mscod, errcode, m->bank); } else { char A = *("A"); /* * Reported channel is in range 0-2, so we can't map it * back to mc. To figure out mc we check machine check * bank register that reported this error. * bank15 means mc0 and bank16 means mc1. */ channel = knl_channel_remap(m->bank == 16, channel); channel_mask = 1 << channel; snprintf(msg, sizeof(msg), "%s%s err_code:%04x:%04x channel:%d (DIMM_%c)", overflow ? " OVERFLOW" : "", (uncorrected_error && recoverable) ? " recoverable" : " ", mscod, errcode, channel, A + channel); edac_mc_handle_error(tp_event, mci, core_err_cnt, m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0, channel, 0, -1, optype, msg); } return; } else { rc = get_memory_error_data(mci, m->addr, &socket, &ha, &channel_mask, &rank, &area_type, msg); } if (rc < 0) goto err_parsing; new_mci = get_mci_for_node_id(socket, ha); if (!new_mci) { strcpy(msg, "Error: socket got corrupted!"); goto err_parsing; } mci = new_mci; pvt = mci->pvt_info; first_channel = find_first_bit(&channel_mask, NUM_CHANNELS); if (rank < 4) dimm = 0; else if (rank < 8) dimm = 1; else dimm = 2; /* * FIXME: On some memory configurations (mirror, lockstep), the * Memory Controller can't point the error to a single DIMM. The * EDAC core should be handling the channel mask, in order to point * to the group of dimm's where the error may be happening. */ if (!pvt->is_lockstep && !pvt->is_cur_addr_mirrored && !pvt->is_close_pg) channel = first_channel; snprintf(msg, sizeof(msg), "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d", overflow ? " OVERFLOW" : "", (uncorrected_error && recoverable) ? " recoverable" : "", area_type, mscod, errcode, socket, ha, channel_mask, rank); edac_dbg(0, "%s\n", msg); /* FIXME: need support for channel mask */ if (channel == CHANNEL_UNSPECIFIED) channel = -1; /* Call the helper to output message */ edac_mc_handle_error(tp_event, mci, core_err_cnt, m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0, channel, dimm, -1, optype, msg); return; err_parsing: edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0, -1, -1, -1, msg, ""); } /* * Check that logging is enabled and that this is the right type * of error for us to handle. */ static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val, void *data) { struct mce *mce = (struct mce *)data; struct mem_ctl_info *mci; char *type; if (edac_get_report_status() == EDAC_REPORTING_DISABLED) return NOTIFY_DONE; if (mce->kflags & MCE_HANDLED_CEC) return NOTIFY_DONE; /* * Just let mcelog handle it if the error is * outside the memory controller. A memory error * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0. * bit 12 has an special meaning. */ if ((mce->status & 0xefff) >> 7 != 1) return NOTIFY_DONE; /* Check ADDRV bit in STATUS */ if (!GET_BITFIELD(mce->status, 58, 58)) return NOTIFY_DONE; /* Check MISCV bit in STATUS */ if (!GET_BITFIELD(mce->status, 59, 59)) return NOTIFY_DONE; /* Check address type in MISC (physical address only) */ if (GET_BITFIELD(mce->misc, 6, 8) != 2) return NOTIFY_DONE; mci = get_mci_for_node_id(mce->socketid, IMC0); if (!mci) return NOTIFY_DONE; if (mce->mcgstatus & MCG_STATUS_MCIP) type = "Exception"; else type = "Event"; sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n"); sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx " "Bank %d: %016Lx\n", mce->extcpu, type, mce->mcgstatus, mce->bank, mce->status); sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc); sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr); sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc); sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET " "%u APIC %x\n", mce->cpuvendor, mce->cpuid, mce->time, mce->socketid, mce->apicid); sbridge_mce_output_error(mci, mce); /* Advice mcelog that the error were handled */ mce->kflags |= MCE_HANDLED_EDAC; return NOTIFY_OK; } static struct notifier_block sbridge_mce_dec = { .notifier_call = sbridge_mce_check_error, .priority = MCE_PRIO_EDAC, }; /**************************************************************************** EDAC register/unregister logic ****************************************************************************/ static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev) { struct mem_ctl_info *mci = sbridge_dev->mci; struct sbridge_pvt *pvt; if (unlikely(!mci || !mci->pvt_info)) { edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev); sbridge_printk(KERN_ERR, "Couldn't find mci handler\n"); return; } pvt = mci->pvt_info; edac_dbg(0, "MC: mci = %p, dev = %p\n", mci, &sbridge_dev->pdev[0]->dev); /* Remove MC sysfs nodes */ edac_mc_del_mc(mci->pdev); edac_dbg(1, "%s: free mci struct\n", mci->ctl_name); kfree(mci->ctl_name); edac_mc_free(mci); sbridge_dev->mci = NULL; } static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type) { struct mem_ctl_info *mci; struct edac_mc_layer layers[2]; struct sbridge_pvt *pvt; struct pci_dev *pdev = sbridge_dev->pdev[0]; int rc; /* allocate a new MC control structure */ layers[0].type = EDAC_MC_LAYER_CHANNEL; layers[0].size = type == KNIGHTS_LANDING ? KNL_MAX_CHANNELS : NUM_CHANNELS; layers[0].is_virt_csrow = false; layers[1].type = EDAC_MC_LAYER_SLOT; layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS; layers[1].is_virt_csrow = true; mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers, sizeof(*pvt)); if (unlikely(!mci)) return -ENOMEM; edac_dbg(0, "MC: mci = %p, dev = %p\n", mci, &pdev->dev); pvt = mci->pvt_info; memset(pvt, 0, sizeof(*pvt)); /* Associate sbridge_dev and mci for future usage */ pvt->sbridge_dev = sbridge_dev; sbridge_dev->mci = mci; mci->mtype_cap = type == KNIGHTS_LANDING ? MEM_FLAG_DDR4 : MEM_FLAG_DDR3; mci->edac_ctl_cap = EDAC_FLAG_NONE; mci->edac_cap = EDAC_FLAG_NONE; mci->mod_name = EDAC_MOD_STR; mci->dev_name = pci_name(pdev); mci->ctl_page_to_phys = NULL; pvt->info.type = type; switch (type) { case IVY_BRIDGE: pvt->info.rankcfgr = IB_RANK_CFG_A; pvt->info.get_tolm = ibridge_get_tolm; pvt->info.get_tohm = ibridge_get_tohm; pvt->info.dram_rule = ibridge_dram_rule; pvt->info.get_memory_type = get_memory_type; pvt->info.get_node_id = get_node_id; pvt->info.rir_limit = rir_limit; pvt->info.sad_limit = sad_limit; pvt->info.interleave_mode = interleave_mode; pvt->info.dram_attr = dram_attr; pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule); pvt->info.interleave_list = ibridge_interleave_list; pvt->info.interleave_pkg = ibridge_interleave_pkg; pvt->info.get_width = ibridge_get_width; /* Store pci devices at mci for faster access */ rc = ibridge_mci_bind_devs(mci, sbridge_dev); if (unlikely(rc < 0)) goto fail0; get_source_id(mci); mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge SrcID#%d_Ha#%d", pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom); break; case SANDY_BRIDGE: pvt->info.rankcfgr = SB_RANK_CFG_A; pvt->info.get_tolm = sbridge_get_tolm; pvt->info.get_tohm = sbridge_get_tohm; pvt->info.dram_rule = sbridge_dram_rule; pvt->info.get_memory_type = get_memory_type; pvt->info.get_node_id = get_node_id; pvt->info.rir_limit = rir_limit; pvt->info.sad_limit = sad_limit; pvt->info.interleave_mode = interleave_mode; pvt->info.dram_attr = dram_attr; pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule); pvt->info.interleave_list = sbridge_interleave_list; pvt->info.interleave_pkg = sbridge_interleave_pkg; pvt->info.get_width = sbridge_get_width; /* Store pci devices at mci for faster access */ rc = sbridge_mci_bind_devs(mci, sbridge_dev); if (unlikely(rc < 0)) goto fail0; get_source_id(mci); mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge SrcID#%d_Ha#%d", pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom); break; case HASWELL: /* rankcfgr isn't used */ pvt->info.get_tolm = haswell_get_tolm; pvt->info.get_tohm = haswell_get_tohm; pvt->info.dram_rule = ibridge_dram_rule; pvt->info.get_memory_type = haswell_get_memory_type; pvt->info.get_node_id = haswell_get_node_id; pvt->info.rir_limit = haswell_rir_limit; pvt->info.sad_limit = sad_limit; pvt->info.interleave_mode = interleave_mode; pvt->info.dram_attr = dram_attr; pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule); pvt->info.interleave_list = ibridge_interleave_list; pvt->info.interleave_pkg = ibridge_interleave_pkg; pvt->info.get_width = ibridge_get_width; /* Store pci devices at mci for faster access */ rc = haswell_mci_bind_devs(mci, sbridge_dev); if (unlikely(rc < 0)) goto fail0; get_source_id(mci); mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell SrcID#%d_Ha#%d", pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom); break; case BROADWELL: /* rankcfgr isn't used */ pvt->info.get_tolm = haswell_get_tolm; pvt->info.get_tohm = haswell_get_tohm; pvt->info.dram_rule = ibridge_dram_rule; pvt->info.get_memory_type = haswell_get_memory_type; pvt->info.get_node_id = haswell_get_node_id; pvt->info.rir_limit = haswell_rir_limit; pvt->info.sad_limit = sad_limit; pvt->info.interleave_mode = interleave_mode; pvt->info.dram_attr = dram_attr; pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule); pvt->info.interleave_list = ibridge_interleave_list; pvt->info.interleave_pkg = ibridge_interleave_pkg; pvt->info.get_width = broadwell_get_width; /* Store pci devices at mci for faster access */ rc = broadwell_mci_bind_devs(mci, sbridge_dev); if (unlikely(rc < 0)) goto fail0; get_source_id(mci); mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell SrcID#%d_Ha#%d", pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom); break; case KNIGHTS_LANDING: /* pvt->info.rankcfgr == ??? */ pvt->info.get_tolm = knl_get_tolm; pvt->info.get_tohm = knl_get_tohm; pvt->info.dram_rule = knl_dram_rule; pvt->info.get_memory_type = knl_get_memory_type; pvt->info.get_node_id = knl_get_node_id; pvt->info.rir_limit = NULL; pvt->info.sad_limit = knl_sad_limit; pvt->info.interleave_mode = knl_interleave_mode; pvt->info.dram_attr = dram_attr_knl; pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule); pvt->info.interleave_list = knl_interleave_list; pvt->info.interleave_pkg = ibridge_interleave_pkg; pvt->info.get_width = knl_get_width; rc = knl_mci_bind_devs(mci, sbridge_dev); if (unlikely(rc < 0)) goto fail0; get_source_id(mci); mci->ctl_name = kasprintf(GFP_KERNEL, "Knights Landing SrcID#%d_Ha#%d", pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom); break; } if (!mci->ctl_name) { rc = -ENOMEM; goto fail0; } /* Get dimm basic config and the memory layout */ rc = get_dimm_config(mci); if (rc < 0) { edac_dbg(0, "MC: failed to get_dimm_config()\n"); goto fail; } get_memory_layout(mci); /* record ptr to the generic device */ mci->pdev = &pdev->dev; /* add this new MC control structure to EDAC's list of MCs */ if (unlikely(edac_mc_add_mc(mci))) { edac_dbg(0, "MC: failed edac_mc_add_mc()\n"); rc = -EINVAL; goto fail; } return 0; fail: kfree(mci->ctl_name); fail0: edac_mc_free(mci); sbridge_dev->mci = NULL; return rc; } #define ICPU(model, table) \ { X86_VENDOR_INTEL, 6, model, 0, (unsigned long)&table } static const struct x86_cpu_id sbridge_cpuids[] = { ICPU(INTEL_FAM6_SANDYBRIDGE_X, pci_dev_descr_sbridge_table), ICPU(INTEL_FAM6_IVYBRIDGE_X, pci_dev_descr_ibridge_table), ICPU(INTEL_FAM6_HASWELL_X, pci_dev_descr_haswell_table), ICPU(INTEL_FAM6_BROADWELL_X, pci_dev_descr_broadwell_table), ICPU(INTEL_FAM6_BROADWELL_XEON_D, pci_dev_descr_broadwell_table), ICPU(INTEL_FAM6_XEON_PHI_KNL, pci_dev_descr_knl_table), ICPU(INTEL_FAM6_XEON_PHI_KNM, pci_dev_descr_knl_table), { } }; MODULE_DEVICE_TABLE(x86cpu, sbridge_cpuids); /* * sbridge_probe Get all devices and register memory controllers * present. * return: * 0 for FOUND a device * < 0 for error code */ static int sbridge_probe(const struct x86_cpu_id *id) { int rc = -ENODEV; u8 mc, num_mc = 0; struct sbridge_dev *sbridge_dev; struct pci_id_table *ptable = (struct pci_id_table *)id->driver_data; /* get the pci devices we want to reserve for our use */ rc = sbridge_get_all_devices(&num_mc, ptable); if (unlikely(rc < 0)) { edac_dbg(0, "couldn't get all devices\n"); goto fail0; } mc = 0; list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) { edac_dbg(0, "Registering MC#%d (%d of %d)\n", mc, mc + 1, num_mc); sbridge_dev->mc = mc++; rc = sbridge_register_mci(sbridge_dev, ptable->type); if (unlikely(rc < 0)) goto fail1; } sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION); return 0; fail1: list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) sbridge_unregister_mci(sbridge_dev); sbridge_put_all_devices(); fail0: return rc; } /* * sbridge_remove cleanup * */ static void sbridge_remove(void) { struct sbridge_dev *sbridge_dev; edac_dbg(0, "\n"); list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) sbridge_unregister_mci(sbridge_dev); /* Release PCI resources */ sbridge_put_all_devices(); } /* * sbridge_init Module entry function * Try to initialize this module for its devices */ static int __init sbridge_init(void) { const struct x86_cpu_id *id; const char *owner; int rc; edac_dbg(2, "\n"); owner = edac_get_owner(); if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR))) return -EBUSY; id = x86_match_cpu(sbridge_cpuids); if (!id) return -ENODEV; /* Ensure that the OPSTATE is set correctly for POLL or NMI */ opstate_init(); rc = sbridge_probe(id); if (rc >= 0) { mce_register_decode_chain(&sbridge_mce_dec); if (edac_get_report_status() == EDAC_REPORTING_DISABLED) sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n"); return 0; } sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n", rc); return rc; } /* * sbridge_exit() Module exit function * Unregister the driver */ static void __exit sbridge_exit(void) { edac_dbg(2, "\n"); sbridge_remove(); mce_unregister_decode_chain(&sbridge_mce_dec); } module_init(sbridge_init); module_exit(sbridge_exit); module_param(edac_op_state, int, 0444); MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Mauro Carvalho Chehab"); MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)"); MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - " SBRIDGE_REVISION);