/******************************************************************************* * Filename: target_core_transport.c * * This file contains the Generic Target Engine Core. * * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc. * Copyright (c) 2005, 2006, 2007 SBE, Inc. * Copyright (c) 2007-2010 Rising Tide Systems * Copyright (c) 2008-2010 Linux-iSCSI.org * * Nicholas A. Bellinger * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ******************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* For TASK_ATTR_* */ #include #include #include #include #include #include #include #include "target_core_alua.h" #include "target_core_hba.h" #include "target_core_pr.h" #include "target_core_scdb.h" #include "target_core_ua.h" /* #define DEBUG_CDB_HANDLER */ #ifdef DEBUG_CDB_HANDLER #define DEBUG_CDB_H(x...) printk(KERN_INFO x) #else #define DEBUG_CDB_H(x...) #endif /* #define DEBUG_CMD_MAP */ #ifdef DEBUG_CMD_MAP #define DEBUG_CMD_M(x...) printk(KERN_INFO x) #else #define DEBUG_CMD_M(x...) #endif /* #define DEBUG_MEM_ALLOC */ #ifdef DEBUG_MEM_ALLOC #define DEBUG_MEM(x...) printk(KERN_INFO x) #else #define DEBUG_MEM(x...) #endif /* #define DEBUG_MEM2_ALLOC */ #ifdef DEBUG_MEM2_ALLOC #define DEBUG_MEM2(x...) printk(KERN_INFO x) #else #define DEBUG_MEM2(x...) #endif /* #define DEBUG_SG_CALC */ #ifdef DEBUG_SG_CALC #define DEBUG_SC(x...) printk(KERN_INFO x) #else #define DEBUG_SC(x...) #endif /* #define DEBUG_SE_OBJ */ #ifdef DEBUG_SE_OBJ #define DEBUG_SO(x...) printk(KERN_INFO x) #else #define DEBUG_SO(x...) #endif /* #define DEBUG_CMD_VOL */ #ifdef DEBUG_CMD_VOL #define DEBUG_VOL(x...) printk(KERN_INFO x) #else #define DEBUG_VOL(x...) #endif /* #define DEBUG_CMD_STOP */ #ifdef DEBUG_CMD_STOP #define DEBUG_CS(x...) printk(KERN_INFO x) #else #define DEBUG_CS(x...) #endif /* #define DEBUG_PASSTHROUGH */ #ifdef DEBUG_PASSTHROUGH #define DEBUG_PT(x...) printk(KERN_INFO x) #else #define DEBUG_PT(x...) #endif /* #define DEBUG_TASK_STOP */ #ifdef DEBUG_TASK_STOP #define DEBUG_TS(x...) printk(KERN_INFO x) #else #define DEBUG_TS(x...) #endif /* #define DEBUG_TRANSPORT_STOP */ #ifdef DEBUG_TRANSPORT_STOP #define DEBUG_TRANSPORT_S(x...) printk(KERN_INFO x) #else #define DEBUG_TRANSPORT_S(x...) #endif /* #define DEBUG_TASK_FAILURE */ #ifdef DEBUG_TASK_FAILURE #define DEBUG_TF(x...) printk(KERN_INFO x) #else #define DEBUG_TF(x...) #endif /* #define DEBUG_DEV_OFFLINE */ #ifdef DEBUG_DEV_OFFLINE #define DEBUG_DO(x...) printk(KERN_INFO x) #else #define DEBUG_DO(x...) #endif /* #define DEBUG_TASK_STATE */ #ifdef DEBUG_TASK_STATE #define DEBUG_TSTATE(x...) printk(KERN_INFO x) #else #define DEBUG_TSTATE(x...) #endif /* #define DEBUG_STATUS_THR */ #ifdef DEBUG_STATUS_THR #define DEBUG_ST(x...) printk(KERN_INFO x) #else #define DEBUG_ST(x...) #endif /* #define DEBUG_TASK_TIMEOUT */ #ifdef DEBUG_TASK_TIMEOUT #define DEBUG_TT(x...) printk(KERN_INFO x) #else #define DEBUG_TT(x...) #endif /* #define DEBUG_GENERIC_REQUEST_FAILURE */ #ifdef DEBUG_GENERIC_REQUEST_FAILURE #define DEBUG_GRF(x...) printk(KERN_INFO x) #else #define DEBUG_GRF(x...) #endif /* #define DEBUG_SAM_TASK_ATTRS */ #ifdef DEBUG_SAM_TASK_ATTRS #define DEBUG_STA(x...) printk(KERN_INFO x) #else #define DEBUG_STA(x...) #endif struct se_global *se_global; static struct kmem_cache *se_cmd_cache; static struct kmem_cache *se_sess_cache; struct kmem_cache *se_tmr_req_cache; struct kmem_cache *se_ua_cache; struct kmem_cache *se_mem_cache; struct kmem_cache *t10_pr_reg_cache; struct kmem_cache *t10_alua_lu_gp_cache; struct kmem_cache *t10_alua_lu_gp_mem_cache; struct kmem_cache *t10_alua_tg_pt_gp_cache; struct kmem_cache *t10_alua_tg_pt_gp_mem_cache; /* Used for transport_dev_get_map_*() */ typedef int (*map_func_t)(struct se_task *, u32); static int transport_generic_write_pending(struct se_cmd *); static int transport_processing_thread(void *); static int __transport_execute_tasks(struct se_device *dev); static void transport_complete_task_attr(struct se_cmd *cmd); static void transport_direct_request_timeout(struct se_cmd *cmd); static void transport_free_dev_tasks(struct se_cmd *cmd); static u32 transport_generic_get_cdb_count(struct se_cmd *cmd, unsigned long long starting_lba, u32 sectors, enum dma_data_direction data_direction, struct list_head *mem_list, int set_counts); static int transport_generic_get_mem(struct se_cmd *cmd, u32 length, u32 dma_size); static int transport_generic_remove(struct se_cmd *cmd, int release_to_pool, int session_reinstatement); static int transport_get_sectors(struct se_cmd *cmd); static struct list_head *transport_init_se_mem_list(void); static int transport_map_sg_to_mem(struct se_cmd *cmd, struct list_head *se_mem_list, void *in_mem, u32 *se_mem_cnt); static void transport_memcpy_se_mem_read_contig(struct se_cmd *cmd, unsigned char *dst, struct list_head *se_mem_list); static void transport_release_fe_cmd(struct se_cmd *cmd); static void transport_remove_cmd_from_queue(struct se_cmd *cmd, struct se_queue_obj *qobj); static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq); static void transport_stop_all_task_timers(struct se_cmd *cmd); int init_se_global(void) { struct se_global *global; global = kzalloc(sizeof(struct se_global), GFP_KERNEL); if (!(global)) { printk(KERN_ERR "Unable to allocate memory for struct se_global\n"); return -1; } INIT_LIST_HEAD(&global->g_lu_gps_list); INIT_LIST_HEAD(&global->g_se_tpg_list); INIT_LIST_HEAD(&global->g_hba_list); INIT_LIST_HEAD(&global->g_se_dev_list); spin_lock_init(&global->g_device_lock); spin_lock_init(&global->hba_lock); spin_lock_init(&global->se_tpg_lock); spin_lock_init(&global->lu_gps_lock); spin_lock_init(&global->plugin_class_lock); se_cmd_cache = kmem_cache_create("se_cmd_cache", sizeof(struct se_cmd), __alignof__(struct se_cmd), 0, NULL); if (!(se_cmd_cache)) { printk(KERN_ERR "kmem_cache_create for struct se_cmd failed\n"); goto out; } se_tmr_req_cache = kmem_cache_create("se_tmr_cache", sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req), 0, NULL); if (!(se_tmr_req_cache)) { printk(KERN_ERR "kmem_cache_create() for struct se_tmr_req" " failed\n"); goto out; } se_sess_cache = kmem_cache_create("se_sess_cache", sizeof(struct se_session), __alignof__(struct se_session), 0, NULL); if (!(se_sess_cache)) { printk(KERN_ERR "kmem_cache_create() for struct se_session" " failed\n"); goto out; } se_ua_cache = kmem_cache_create("se_ua_cache", sizeof(struct se_ua), __alignof__(struct se_ua), 0, NULL); if (!(se_ua_cache)) { printk(KERN_ERR "kmem_cache_create() for struct se_ua failed\n"); goto out; } se_mem_cache = kmem_cache_create("se_mem_cache", sizeof(struct se_mem), __alignof__(struct se_mem), 0, NULL); if (!(se_mem_cache)) { printk(KERN_ERR "kmem_cache_create() for struct se_mem failed\n"); goto out; } t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache", sizeof(struct t10_pr_registration), __alignof__(struct t10_pr_registration), 0, NULL); if (!(t10_pr_reg_cache)) { printk(KERN_ERR "kmem_cache_create() for struct t10_pr_registration" " failed\n"); goto out; } t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache", sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp), 0, NULL); if (!(t10_alua_lu_gp_cache)) { printk(KERN_ERR "kmem_cache_create() for t10_alua_lu_gp_cache" " failed\n"); goto out; } t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache", sizeof(struct t10_alua_lu_gp_member), __alignof__(struct t10_alua_lu_gp_member), 0, NULL); if (!(t10_alua_lu_gp_mem_cache)) { printk(KERN_ERR "kmem_cache_create() for t10_alua_lu_gp_mem_" "cache failed\n"); goto out; } t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache", sizeof(struct t10_alua_tg_pt_gp), __alignof__(struct t10_alua_tg_pt_gp), 0, NULL); if (!(t10_alua_tg_pt_gp_cache)) { printk(KERN_ERR "kmem_cache_create() for t10_alua_tg_pt_gp_" "cache failed\n"); goto out; } t10_alua_tg_pt_gp_mem_cache = kmem_cache_create( "t10_alua_tg_pt_gp_mem_cache", sizeof(struct t10_alua_tg_pt_gp_member), __alignof__(struct t10_alua_tg_pt_gp_member), 0, NULL); if (!(t10_alua_tg_pt_gp_mem_cache)) { printk(KERN_ERR "kmem_cache_create() for t10_alua_tg_pt_gp_" "mem_t failed\n"); goto out; } se_global = global; return 0; out: if (se_cmd_cache) kmem_cache_destroy(se_cmd_cache); if (se_tmr_req_cache) kmem_cache_destroy(se_tmr_req_cache); if (se_sess_cache) kmem_cache_destroy(se_sess_cache); if (se_ua_cache) kmem_cache_destroy(se_ua_cache); if (se_mem_cache) kmem_cache_destroy(se_mem_cache); if (t10_pr_reg_cache) kmem_cache_destroy(t10_pr_reg_cache); if (t10_alua_lu_gp_cache) kmem_cache_destroy(t10_alua_lu_gp_cache); if (t10_alua_lu_gp_mem_cache) kmem_cache_destroy(t10_alua_lu_gp_mem_cache); if (t10_alua_tg_pt_gp_cache) kmem_cache_destroy(t10_alua_tg_pt_gp_cache); if (t10_alua_tg_pt_gp_mem_cache) kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache); kfree(global); return -1; } void release_se_global(void) { struct se_global *global; global = se_global; if (!(global)) return; kmem_cache_destroy(se_cmd_cache); kmem_cache_destroy(se_tmr_req_cache); kmem_cache_destroy(se_sess_cache); kmem_cache_destroy(se_ua_cache); kmem_cache_destroy(se_mem_cache); kmem_cache_destroy(t10_pr_reg_cache); kmem_cache_destroy(t10_alua_lu_gp_cache); kmem_cache_destroy(t10_alua_lu_gp_mem_cache); kmem_cache_destroy(t10_alua_tg_pt_gp_cache); kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache); kfree(global); se_global = NULL; } /* SCSI statistics table index */ static struct scsi_index_table scsi_index_table; /* * Initialize the index table for allocating unique row indexes to various mib * tables. */ void init_scsi_index_table(void) { memset(&scsi_index_table, 0, sizeof(struct scsi_index_table)); spin_lock_init(&scsi_index_table.lock); } /* * Allocate a new row index for the entry type specified */ u32 scsi_get_new_index(scsi_index_t type) { u32 new_index; if ((type < 0) || (type >= SCSI_INDEX_TYPE_MAX)) { printk(KERN_ERR "Invalid index type %d\n", type); return -EINVAL; } spin_lock(&scsi_index_table.lock); new_index = ++scsi_index_table.scsi_mib_index[type]; if (new_index == 0) new_index = ++scsi_index_table.scsi_mib_index[type]; spin_unlock(&scsi_index_table.lock); return new_index; } void transport_init_queue_obj(struct se_queue_obj *qobj) { atomic_set(&qobj->queue_cnt, 0); INIT_LIST_HEAD(&qobj->qobj_list); init_waitqueue_head(&qobj->thread_wq); spin_lock_init(&qobj->cmd_queue_lock); } EXPORT_SYMBOL(transport_init_queue_obj); static int transport_subsystem_reqmods(void) { int ret; ret = request_module("target_core_iblock"); if (ret != 0) printk(KERN_ERR "Unable to load target_core_iblock\n"); ret = request_module("target_core_file"); if (ret != 0) printk(KERN_ERR "Unable to load target_core_file\n"); ret = request_module("target_core_pscsi"); if (ret != 0) printk(KERN_ERR "Unable to load target_core_pscsi\n"); ret = request_module("target_core_stgt"); if (ret != 0) printk(KERN_ERR "Unable to load target_core_stgt\n"); return 0; } int transport_subsystem_check_init(void) { if (se_global->g_sub_api_initialized) return 0; /* * Request the loading of known TCM subsystem plugins.. */ if (transport_subsystem_reqmods() < 0) return -1; se_global->g_sub_api_initialized = 1; return 0; } struct se_session *transport_init_session(void) { struct se_session *se_sess; se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL); if (!(se_sess)) { printk(KERN_ERR "Unable to allocate struct se_session from" " se_sess_cache\n"); return ERR_PTR(-ENOMEM); } INIT_LIST_HEAD(&se_sess->sess_list); INIT_LIST_HEAD(&se_sess->sess_acl_list); return se_sess; } EXPORT_SYMBOL(transport_init_session); /* * Called with spin_lock_bh(&struct se_portal_group->session_lock called. */ void __transport_register_session( struct se_portal_group *se_tpg, struct se_node_acl *se_nacl, struct se_session *se_sess, void *fabric_sess_ptr) { unsigned char buf[PR_REG_ISID_LEN]; se_sess->se_tpg = se_tpg; se_sess->fabric_sess_ptr = fabric_sess_ptr; /* * Used by struct se_node_acl's under ConfigFS to locate active se_session-t * * Only set for struct se_session's that will actually be moving I/O. * eg: *NOT* discovery sessions. */ if (se_nacl) { /* * If the fabric module supports an ISID based TransportID, * save this value in binary from the fabric I_T Nexus now. */ if (TPG_TFO(se_tpg)->sess_get_initiator_sid != NULL) { memset(&buf[0], 0, PR_REG_ISID_LEN); TPG_TFO(se_tpg)->sess_get_initiator_sid(se_sess, &buf[0], PR_REG_ISID_LEN); se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]); } spin_lock_irq(&se_nacl->nacl_sess_lock); /* * The se_nacl->nacl_sess pointer will be set to the * last active I_T Nexus for each struct se_node_acl. */ se_nacl->nacl_sess = se_sess; list_add_tail(&se_sess->sess_acl_list, &se_nacl->acl_sess_list); spin_unlock_irq(&se_nacl->nacl_sess_lock); } list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list); printk(KERN_INFO "TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n", TPG_TFO(se_tpg)->get_fabric_name(), se_sess->fabric_sess_ptr); } EXPORT_SYMBOL(__transport_register_session); void transport_register_session( struct se_portal_group *se_tpg, struct se_node_acl *se_nacl, struct se_session *se_sess, void *fabric_sess_ptr) { spin_lock_bh(&se_tpg->session_lock); __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr); spin_unlock_bh(&se_tpg->session_lock); } EXPORT_SYMBOL(transport_register_session); void transport_deregister_session_configfs(struct se_session *se_sess) { struct se_node_acl *se_nacl; /* * Used by struct se_node_acl's under ConfigFS to locate active struct se_session */ se_nacl = se_sess->se_node_acl; if ((se_nacl)) { spin_lock_irq(&se_nacl->nacl_sess_lock); list_del(&se_sess->sess_acl_list); /* * If the session list is empty, then clear the pointer. * Otherwise, set the struct se_session pointer from the tail * element of the per struct se_node_acl active session list. */ if (list_empty(&se_nacl->acl_sess_list)) se_nacl->nacl_sess = NULL; else { se_nacl->nacl_sess = container_of( se_nacl->acl_sess_list.prev, struct se_session, sess_acl_list); } spin_unlock_irq(&se_nacl->nacl_sess_lock); } } EXPORT_SYMBOL(transport_deregister_session_configfs); void transport_free_session(struct se_session *se_sess) { kmem_cache_free(se_sess_cache, se_sess); } EXPORT_SYMBOL(transport_free_session); void transport_deregister_session(struct se_session *se_sess) { struct se_portal_group *se_tpg = se_sess->se_tpg; struct se_node_acl *se_nacl; if (!(se_tpg)) { transport_free_session(se_sess); return; } spin_lock_bh(&se_tpg->session_lock); list_del(&se_sess->sess_list); se_sess->se_tpg = NULL; se_sess->fabric_sess_ptr = NULL; spin_unlock_bh(&se_tpg->session_lock); /* * Determine if we need to do extra work for this initiator node's * struct se_node_acl if it had been previously dynamically generated. */ se_nacl = se_sess->se_node_acl; if ((se_nacl)) { spin_lock_bh(&se_tpg->acl_node_lock); if (se_nacl->dynamic_node_acl) { if (!(TPG_TFO(se_tpg)->tpg_check_demo_mode_cache( se_tpg))) { list_del(&se_nacl->acl_list); se_tpg->num_node_acls--; spin_unlock_bh(&se_tpg->acl_node_lock); core_tpg_wait_for_nacl_pr_ref(se_nacl); core_free_device_list_for_node(se_nacl, se_tpg); TPG_TFO(se_tpg)->tpg_release_fabric_acl(se_tpg, se_nacl); spin_lock_bh(&se_tpg->acl_node_lock); } } spin_unlock_bh(&se_tpg->acl_node_lock); } transport_free_session(se_sess); printk(KERN_INFO "TARGET_CORE[%s]: Deregistered fabric_sess\n", TPG_TFO(se_tpg)->get_fabric_name()); } EXPORT_SYMBOL(transport_deregister_session); /* * Called with T_TASK(cmd)->t_state_lock held. */ static void transport_all_task_dev_remove_state(struct se_cmd *cmd) { struct se_device *dev; struct se_task *task; unsigned long flags; if (!T_TASK(cmd)) return; list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) { dev = task->se_dev; if (!(dev)) continue; if (atomic_read(&task->task_active)) continue; if (!(atomic_read(&task->task_state_active))) continue; spin_lock_irqsave(&dev->execute_task_lock, flags); list_del(&task->t_state_list); DEBUG_TSTATE("Removed ITT: 0x%08x dev: %p task[%p]\n", CMD_TFO(cmd)->tfo_get_task_tag(cmd), dev, task); spin_unlock_irqrestore(&dev->execute_task_lock, flags); atomic_set(&task->task_state_active, 0); atomic_dec(&T_TASK(cmd)->t_task_cdbs_ex_left); } } /* transport_cmd_check_stop(): * * 'transport_off = 1' determines if t_transport_active should be cleared. * 'transport_off = 2' determines if task_dev_state should be removed. * * A non-zero u8 t_state sets cmd->t_state. * Returns 1 when command is stopped, else 0. */ static int transport_cmd_check_stop( struct se_cmd *cmd, int transport_off, u8 t_state) { unsigned long flags; spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); /* * Determine if IOCTL context caller in requesting the stopping of this * command for LUN shutdown purposes. */ if (atomic_read(&T_TASK(cmd)->transport_lun_stop)) { DEBUG_CS("%s:%d atomic_read(&T_TASK(cmd)->transport_lun_stop)" " == TRUE for ITT: 0x%08x\n", __func__, __LINE__, CMD_TFO(cmd)->get_task_tag(cmd)); cmd->deferred_t_state = cmd->t_state; cmd->t_state = TRANSPORT_DEFERRED_CMD; atomic_set(&T_TASK(cmd)->t_transport_active, 0); if (transport_off == 2) transport_all_task_dev_remove_state(cmd); spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); complete(&T_TASK(cmd)->transport_lun_stop_comp); return 1; } /* * Determine if frontend context caller is requesting the stopping of * this command for frontend excpections. */ if (atomic_read(&T_TASK(cmd)->t_transport_stop)) { DEBUG_CS("%s:%d atomic_read(&T_TASK(cmd)->t_transport_stop) ==" " TRUE for ITT: 0x%08x\n", __func__, __LINE__, CMD_TFO(cmd)->get_task_tag(cmd)); cmd->deferred_t_state = cmd->t_state; cmd->t_state = TRANSPORT_DEFERRED_CMD; if (transport_off == 2) transport_all_task_dev_remove_state(cmd); /* * Clear struct se_cmd->se_lun before the transport_off == 2 handoff * to FE. */ if (transport_off == 2) cmd->se_lun = NULL; spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); complete(&T_TASK(cmd)->t_transport_stop_comp); return 1; } if (transport_off) { atomic_set(&T_TASK(cmd)->t_transport_active, 0); if (transport_off == 2) { transport_all_task_dev_remove_state(cmd); /* * Clear struct se_cmd->se_lun before the transport_off == 2 * handoff to fabric module. */ cmd->se_lun = NULL; /* * Some fabric modules like tcm_loop can release * their internally allocated I/O reference now and * struct se_cmd now. */ if (CMD_TFO(cmd)->check_stop_free != NULL) { spin_unlock_irqrestore( &T_TASK(cmd)->t_state_lock, flags); CMD_TFO(cmd)->check_stop_free(cmd); return 1; } } spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); return 0; } else if (t_state) cmd->t_state = t_state; spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); return 0; } static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd) { return transport_cmd_check_stop(cmd, 2, 0); } static void transport_lun_remove_cmd(struct se_cmd *cmd) { struct se_lun *lun = SE_LUN(cmd); unsigned long flags; if (!lun) return; spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); if (!(atomic_read(&T_TASK(cmd)->transport_dev_active))) { spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); goto check_lun; } atomic_set(&T_TASK(cmd)->transport_dev_active, 0); transport_all_task_dev_remove_state(cmd); spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); transport_free_dev_tasks(cmd); check_lun: spin_lock_irqsave(&lun->lun_cmd_lock, flags); if (atomic_read(&T_TASK(cmd)->transport_lun_active)) { list_del(&cmd->se_lun_list); atomic_set(&T_TASK(cmd)->transport_lun_active, 0); #if 0 printk(KERN_INFO "Removed ITT: 0x%08x from LUN LIST[%d]\n" CMD_TFO(cmd)->get_task_tag(cmd), lun->unpacked_lun); #endif } spin_unlock_irqrestore(&lun->lun_cmd_lock, flags); } void transport_cmd_finish_abort(struct se_cmd *cmd, int remove) { transport_remove_cmd_from_queue(cmd, SE_DEV(cmd)->dev_queue_obj); transport_lun_remove_cmd(cmd); if (transport_cmd_check_stop_to_fabric(cmd)) return; if (remove) transport_generic_remove(cmd, 0, 0); } void transport_cmd_finish_abort_tmr(struct se_cmd *cmd) { transport_remove_cmd_from_queue(cmd, SE_DEV(cmd)->dev_queue_obj); if (transport_cmd_check_stop_to_fabric(cmd)) return; transport_generic_remove(cmd, 0, 0); } static int transport_add_cmd_to_queue( struct se_cmd *cmd, int t_state) { struct se_device *dev = cmd->se_dev; struct se_queue_obj *qobj = dev->dev_queue_obj; struct se_queue_req *qr; unsigned long flags; qr = kzalloc(sizeof(struct se_queue_req), GFP_ATOMIC); if (!(qr)) { printk(KERN_ERR "Unable to allocate memory for" " struct se_queue_req\n"); return -1; } INIT_LIST_HEAD(&qr->qr_list); qr->cmd = (void *)cmd; qr->state = t_state; if (t_state) { spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); cmd->t_state = t_state; atomic_set(&T_TASK(cmd)->t_transport_active, 1); spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); } spin_lock_irqsave(&qobj->cmd_queue_lock, flags); list_add_tail(&qr->qr_list, &qobj->qobj_list); atomic_inc(&T_TASK(cmd)->t_transport_queue_active); spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags); atomic_inc(&qobj->queue_cnt); wake_up_interruptible(&qobj->thread_wq); return 0; } /* * Called with struct se_queue_obj->cmd_queue_lock held. */ static struct se_queue_req * __transport_get_qr_from_queue(struct se_queue_obj *qobj) { struct se_cmd *cmd; struct se_queue_req *qr = NULL; if (list_empty(&qobj->qobj_list)) return NULL; list_for_each_entry(qr, &qobj->qobj_list, qr_list) break; if (qr->cmd) { cmd = (struct se_cmd *)qr->cmd; atomic_dec(&T_TASK(cmd)->t_transport_queue_active); } list_del(&qr->qr_list); atomic_dec(&qobj->queue_cnt); return qr; } static struct se_queue_req * transport_get_qr_from_queue(struct se_queue_obj *qobj) { struct se_cmd *cmd; struct se_queue_req *qr; unsigned long flags; spin_lock_irqsave(&qobj->cmd_queue_lock, flags); if (list_empty(&qobj->qobj_list)) { spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags); return NULL; } list_for_each_entry(qr, &qobj->qobj_list, qr_list) break; if (qr->cmd) { cmd = (struct se_cmd *)qr->cmd; atomic_dec(&T_TASK(cmd)->t_transport_queue_active); } list_del(&qr->qr_list); atomic_dec(&qobj->queue_cnt); spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags); return qr; } static void transport_remove_cmd_from_queue(struct se_cmd *cmd, struct se_queue_obj *qobj) { struct se_cmd *q_cmd; struct se_queue_req *qr = NULL, *qr_p = NULL; unsigned long flags; spin_lock_irqsave(&qobj->cmd_queue_lock, flags); if (!(atomic_read(&T_TASK(cmd)->t_transport_queue_active))) { spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags); return; } list_for_each_entry_safe(qr, qr_p, &qobj->qobj_list, qr_list) { q_cmd = (struct se_cmd *)qr->cmd; if (q_cmd != cmd) continue; atomic_dec(&T_TASK(q_cmd)->t_transport_queue_active); atomic_dec(&qobj->queue_cnt); list_del(&qr->qr_list); kfree(qr); } spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags); if (atomic_read(&T_TASK(cmd)->t_transport_queue_active)) { printk(KERN_ERR "ITT: 0x%08x t_transport_queue_active: %d\n", CMD_TFO(cmd)->get_task_tag(cmd), atomic_read(&T_TASK(cmd)->t_transport_queue_active)); } } /* * Completion function used by TCM subsystem plugins (such as FILEIO) * for queueing up response from struct se_subsystem_api->do_task() */ void transport_complete_sync_cache(struct se_cmd *cmd, int good) { struct se_task *task = list_entry(T_TASK(cmd)->t_task_list.next, struct se_task, t_list); if (good) { cmd->scsi_status = SAM_STAT_GOOD; task->task_scsi_status = GOOD; } else { task->task_scsi_status = SAM_STAT_CHECK_CONDITION; task->task_error_status = PYX_TRANSPORT_ILLEGAL_REQUEST; TASK_CMD(task)->transport_error_status = PYX_TRANSPORT_ILLEGAL_REQUEST; } transport_complete_task(task, good); } EXPORT_SYMBOL(transport_complete_sync_cache); /* transport_complete_task(): * * Called from interrupt and non interrupt context depending * on the transport plugin. */ void transport_complete_task(struct se_task *task, int success) { struct se_cmd *cmd = TASK_CMD(task); struct se_device *dev = task->se_dev; int t_state; unsigned long flags; #if 0 printk(KERN_INFO "task: %p CDB: 0x%02x obj_ptr: %p\n", task, T_TASK(cmd)->t_task_cdb[0], dev); #endif if (dev) { spin_lock_irqsave(&SE_HBA(dev)->hba_queue_lock, flags); atomic_inc(&dev->depth_left); atomic_inc(&SE_HBA(dev)->left_queue_depth); spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags); } spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); atomic_set(&task->task_active, 0); /* * See if any sense data exists, if so set the TASK_SENSE flag. * Also check for any other post completion work that needs to be * done by the plugins. */ if (dev && dev->transport->transport_complete) { if (dev->transport->transport_complete(task) != 0) { cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE; task->task_sense = 1; success = 1; } } /* * See if we are waiting for outstanding struct se_task * to complete for an exception condition */ if (atomic_read(&task->task_stop)) { /* * Decrement T_TASK(cmd)->t_se_count if this task had * previously thrown its timeout exception handler. */ if (atomic_read(&task->task_timeout)) { atomic_dec(&T_TASK(cmd)->t_se_count); atomic_set(&task->task_timeout, 0); } spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); complete(&task->task_stop_comp); return; } /* * If the task's timeout handler has fired, use the t_task_cdbs_timeout * left counter to determine when the struct se_cmd is ready to be queued to * the processing thread. */ if (atomic_read(&task->task_timeout)) { if (!(atomic_dec_and_test( &T_TASK(cmd)->t_task_cdbs_timeout_left))) { spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); return; } t_state = TRANSPORT_COMPLETE_TIMEOUT; spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); transport_add_cmd_to_queue(cmd, t_state); return; } atomic_dec(&T_TASK(cmd)->t_task_cdbs_timeout_left); /* * Decrement the outstanding t_task_cdbs_left count. The last * struct se_task from struct se_cmd will complete itself into the * device queue depending upon int success. */ if (!(atomic_dec_and_test(&T_TASK(cmd)->t_task_cdbs_left))) { if (!success) T_TASK(cmd)->t_tasks_failed = 1; spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); return; } if (!success || T_TASK(cmd)->t_tasks_failed) { t_state = TRANSPORT_COMPLETE_FAILURE; if (!task->task_error_status) { task->task_error_status = PYX_TRANSPORT_UNKNOWN_SAM_OPCODE; cmd->transport_error_status = PYX_TRANSPORT_UNKNOWN_SAM_OPCODE; } } else { atomic_set(&T_TASK(cmd)->t_transport_complete, 1); t_state = TRANSPORT_COMPLETE_OK; } spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); transport_add_cmd_to_queue(cmd, t_state); } EXPORT_SYMBOL(transport_complete_task); /* * Called by transport_add_tasks_from_cmd() once a struct se_cmd's * struct se_task list are ready to be added to the active execution list * struct se_device * Called with se_dev_t->execute_task_lock called. */ static inline int transport_add_task_check_sam_attr( struct se_task *task, struct se_task *task_prev, struct se_device *dev) { /* * No SAM Task attribute emulation enabled, add to tail of * execution queue */ if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) { list_add_tail(&task->t_execute_list, &dev->execute_task_list); return 0; } /* * HEAD_OF_QUEUE attribute for received CDB, which means * the first task that is associated with a struct se_cmd goes to * head of the struct se_device->execute_task_list, and task_prev * after that for each subsequent task */ if (task->task_se_cmd->sam_task_attr == TASK_ATTR_HOQ) { list_add(&task->t_execute_list, (task_prev != NULL) ? &task_prev->t_execute_list : &dev->execute_task_list); DEBUG_STA("Set HEAD_OF_QUEUE for task CDB: 0x%02x" " in execution queue\n", T_TASK(task->task_se_cmd)->t_task_cdb[0]); return 1; } /* * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been * transitioned from Dermant -> Active state, and are added to the end * of the struct se_device->execute_task_list */ list_add_tail(&task->t_execute_list, &dev->execute_task_list); return 0; } /* __transport_add_task_to_execute_queue(): * * Called with se_dev_t->execute_task_lock called. */ static void __transport_add_task_to_execute_queue( struct se_task *task, struct se_task *task_prev, struct se_device *dev) { int head_of_queue; head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev); atomic_inc(&dev->execute_tasks); if (atomic_read(&task->task_state_active)) return; /* * Determine if this task needs to go to HEAD_OF_QUEUE for the * state list as well. Running with SAM Task Attribute emulation * will always return head_of_queue == 0 here */ if (head_of_queue) list_add(&task->t_state_list, (task_prev) ? &task_prev->t_state_list : &dev->state_task_list); else list_add_tail(&task->t_state_list, &dev->state_task_list); atomic_set(&task->task_state_active, 1); DEBUG_TSTATE("Added ITT: 0x%08x task[%p] to dev: %p\n", CMD_TFO(task->task_se_cmd)->get_task_tag(task->task_se_cmd), task, dev); } static void transport_add_tasks_to_state_queue(struct se_cmd *cmd) { struct se_device *dev; struct se_task *task; unsigned long flags; spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) { dev = task->se_dev; if (atomic_read(&task->task_state_active)) continue; spin_lock(&dev->execute_task_lock); list_add_tail(&task->t_state_list, &dev->state_task_list); atomic_set(&task->task_state_active, 1); DEBUG_TSTATE("Added ITT: 0x%08x task[%p] to dev: %p\n", CMD_TFO(task->task_se_cmd)->get_task_tag( task->task_se_cmd), task, dev); spin_unlock(&dev->execute_task_lock); } spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); } static void transport_add_tasks_from_cmd(struct se_cmd *cmd) { struct se_device *dev = SE_DEV(cmd); struct se_task *task, *task_prev = NULL; unsigned long flags; spin_lock_irqsave(&dev->execute_task_lock, flags); list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) { if (atomic_read(&task->task_execute_queue)) continue; /* * __transport_add_task_to_execute_queue() handles the * SAM Task Attribute emulation if enabled */ __transport_add_task_to_execute_queue(task, task_prev, dev); atomic_set(&task->task_execute_queue, 1); task_prev = task; } spin_unlock_irqrestore(&dev->execute_task_lock, flags); return; } /* transport_get_task_from_execute_queue(): * * Called with dev->execute_task_lock held. */ static struct se_task * transport_get_task_from_execute_queue(struct se_device *dev) { struct se_task *task; if (list_empty(&dev->execute_task_list)) return NULL; list_for_each_entry(task, &dev->execute_task_list, t_execute_list) break; list_del(&task->t_execute_list); atomic_dec(&dev->execute_tasks); return task; } /* transport_remove_task_from_execute_queue(): * * */ void transport_remove_task_from_execute_queue( struct se_task *task, struct se_device *dev) { unsigned long flags; spin_lock_irqsave(&dev->execute_task_lock, flags); list_del(&task->t_execute_list); atomic_dec(&dev->execute_tasks); spin_unlock_irqrestore(&dev->execute_task_lock, flags); } unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd) { switch (cmd->data_direction) { case DMA_NONE: return "NONE"; case DMA_FROM_DEVICE: return "READ"; case DMA_TO_DEVICE: return "WRITE"; case DMA_BIDIRECTIONAL: return "BIDI"; default: break; } return "UNKNOWN"; } void transport_dump_dev_state( struct se_device *dev, char *b, int *bl) { *bl += sprintf(b + *bl, "Status: "); switch (dev->dev_status) { case TRANSPORT_DEVICE_ACTIVATED: *bl += sprintf(b + *bl, "ACTIVATED"); break; case TRANSPORT_DEVICE_DEACTIVATED: *bl += sprintf(b + *bl, "DEACTIVATED"); break; case TRANSPORT_DEVICE_SHUTDOWN: *bl += sprintf(b + *bl, "SHUTDOWN"); break; case TRANSPORT_DEVICE_OFFLINE_ACTIVATED: case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED: *bl += sprintf(b + *bl, "OFFLINE"); break; default: *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status); break; } *bl += sprintf(b + *bl, " Execute/Left/Max Queue Depth: %d/%d/%d", atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left), dev->queue_depth); *bl += sprintf(b + *bl, " SectorSize: %u MaxSectors: %u\n", DEV_ATTRIB(dev)->block_size, DEV_ATTRIB(dev)->max_sectors); *bl += sprintf(b + *bl, " "); } /* transport_release_all_cmds(): * * */ static void transport_release_all_cmds(struct se_device *dev) { struct se_cmd *cmd = NULL; struct se_queue_req *qr = NULL, *qr_p = NULL; int bug_out = 0, t_state; unsigned long flags; spin_lock_irqsave(&dev->dev_queue_obj->cmd_queue_lock, flags); list_for_each_entry_safe(qr, qr_p, &dev->dev_queue_obj->qobj_list, qr_list) { cmd = (struct se_cmd *)qr->cmd; t_state = qr->state; list_del(&qr->qr_list); kfree(qr); spin_unlock_irqrestore(&dev->dev_queue_obj->cmd_queue_lock, flags); printk(KERN_ERR "Releasing ITT: 0x%08x, i_state: %u," " t_state: %u directly\n", CMD_TFO(cmd)->get_task_tag(cmd), CMD_TFO(cmd)->get_cmd_state(cmd), t_state); transport_release_fe_cmd(cmd); bug_out = 1; spin_lock_irqsave(&dev->dev_queue_obj->cmd_queue_lock, flags); } spin_unlock_irqrestore(&dev->dev_queue_obj->cmd_queue_lock, flags); #if 0 if (bug_out) BUG(); #endif } void transport_dump_vpd_proto_id( struct t10_vpd *vpd, unsigned char *p_buf, int p_buf_len) { unsigned char buf[VPD_TMP_BUF_SIZE]; int len; memset(buf, 0, VPD_TMP_BUF_SIZE); len = sprintf(buf, "T10 VPD Protocol Identifier: "); switch (vpd->protocol_identifier) { case 0x00: sprintf(buf+len, "Fibre Channel\n"); break; case 0x10: sprintf(buf+len, "Parallel SCSI\n"); break; case 0x20: sprintf(buf+len, "SSA\n"); break; case 0x30: sprintf(buf+len, "IEEE 1394\n"); break; case 0x40: sprintf(buf+len, "SCSI Remote Direct Memory Access" " Protocol\n"); break; case 0x50: sprintf(buf+len, "Internet SCSI (iSCSI)\n"); break; case 0x60: sprintf(buf+len, "SAS Serial SCSI Protocol\n"); break; case 0x70: sprintf(buf+len, "Automation/Drive Interface Transport" " Protocol\n"); break; case 0x80: sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n"); break; default: sprintf(buf+len, "Unknown 0x%02x\n", vpd->protocol_identifier); break; } if (p_buf) strncpy(p_buf, buf, p_buf_len); else printk(KERN_INFO "%s", buf); } void transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83) { /* * Check if the Protocol Identifier Valid (PIV) bit is set.. * * from spc3r23.pdf section 7.5.1 */ if (page_83[1] & 0x80) { vpd->protocol_identifier = (page_83[0] & 0xf0); vpd->protocol_identifier_set = 1; transport_dump_vpd_proto_id(vpd, NULL, 0); } } EXPORT_SYMBOL(transport_set_vpd_proto_id); int transport_dump_vpd_assoc( struct t10_vpd *vpd, unsigned char *p_buf, int p_buf_len) { unsigned char buf[VPD_TMP_BUF_SIZE]; int ret = 0, len; memset(buf, 0, VPD_TMP_BUF_SIZE); len = sprintf(buf, "T10 VPD Identifier Association: "); switch (vpd->association) { case 0x00: sprintf(buf+len, "addressed logical unit\n"); break; case 0x10: sprintf(buf+len, "target port\n"); break; case 0x20: sprintf(buf+len, "SCSI target device\n"); break; default: sprintf(buf+len, "Unknown 0x%02x\n", vpd->association); ret = -1; break; } if (p_buf) strncpy(p_buf, buf, p_buf_len); else printk("%s", buf); return ret; } int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83) { /* * The VPD identification association.. * * from spc3r23.pdf Section 7.6.3.1 Table 297 */ vpd->association = (page_83[1] & 0x30); return transport_dump_vpd_assoc(vpd, NULL, 0); } EXPORT_SYMBOL(transport_set_vpd_assoc); int transport_dump_vpd_ident_type( struct t10_vpd *vpd, unsigned char *p_buf, int p_buf_len) { unsigned char buf[VPD_TMP_BUF_SIZE]; int ret = 0, len; memset(buf, 0, VPD_TMP_BUF_SIZE); len = sprintf(buf, "T10 VPD Identifier Type: "); switch (vpd->device_identifier_type) { case 0x00: sprintf(buf+len, "Vendor specific\n"); break; case 0x01: sprintf(buf+len, "T10 Vendor ID based\n"); break; case 0x02: sprintf(buf+len, "EUI-64 based\n"); break; case 0x03: sprintf(buf+len, "NAA\n"); break; case 0x04: sprintf(buf+len, "Relative target port identifier\n"); break; case 0x08: sprintf(buf+len, "SCSI name string\n"); break; default: sprintf(buf+len, "Unsupported: 0x%02x\n", vpd->device_identifier_type); ret = -1; break; } if (p_buf) strncpy(p_buf, buf, p_buf_len); else printk("%s", buf); return ret; } int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83) { /* * The VPD identifier type.. * * from spc3r23.pdf Section 7.6.3.1 Table 298 */ vpd->device_identifier_type = (page_83[1] & 0x0f); return transport_dump_vpd_ident_type(vpd, NULL, 0); } EXPORT_SYMBOL(transport_set_vpd_ident_type); int transport_dump_vpd_ident( struct t10_vpd *vpd, unsigned char *p_buf, int p_buf_len) { unsigned char buf[VPD_TMP_BUF_SIZE]; int ret = 0; memset(buf, 0, VPD_TMP_BUF_SIZE); switch (vpd->device_identifier_code_set) { case 0x01: /* Binary */ sprintf(buf, "T10 VPD Binary Device Identifier: %s\n", &vpd->device_identifier[0]); break; case 0x02: /* ASCII */ sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n", &vpd->device_identifier[0]); break; case 0x03: /* UTF-8 */ sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n", &vpd->device_identifier[0]); break; default: sprintf(buf, "T10 VPD Device Identifier encoding unsupported:" " 0x%02x", vpd->device_identifier_code_set); ret = -1; break; } if (p_buf) strncpy(p_buf, buf, p_buf_len); else printk("%s", buf); return ret; } int transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83) { static const char hex_str[] = "0123456789abcdef"; int j = 0, i = 4; /* offset to start of the identifer */ /* * The VPD Code Set (encoding) * * from spc3r23.pdf Section 7.6.3.1 Table 296 */ vpd->device_identifier_code_set = (page_83[0] & 0x0f); switch (vpd->device_identifier_code_set) { case 0x01: /* Binary */ vpd->device_identifier[j++] = hex_str[vpd->device_identifier_type]; while (i < (4 + page_83[3])) { vpd->device_identifier[j++] = hex_str[(page_83[i] & 0xf0) >> 4]; vpd->device_identifier[j++] = hex_str[page_83[i] & 0x0f]; i++; } break; case 0x02: /* ASCII */ case 0x03: /* UTF-8 */ while (i < (4 + page_83[3])) vpd->device_identifier[j++] = page_83[i++]; break; default: break; } return transport_dump_vpd_ident(vpd, NULL, 0); } EXPORT_SYMBOL(transport_set_vpd_ident); static void core_setup_task_attr_emulation(struct se_device *dev) { /* * If this device is from Target_Core_Mod/pSCSI, disable the * SAM Task Attribute emulation. * * This is currently not available in upsream Linux/SCSI Target * mode code, and is assumed to be disabled while using TCM/pSCSI. */ if (TRANSPORT(dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) { dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH; return; } dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED; DEBUG_STA("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x" " device\n", TRANSPORT(dev)->name, TRANSPORT(dev)->get_device_rev(dev)); } static void scsi_dump_inquiry(struct se_device *dev) { struct t10_wwn *wwn = DEV_T10_WWN(dev); int i, device_type; /* * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer */ printk(" Vendor: "); for (i = 0; i < 8; i++) if (wwn->vendor[i] >= 0x20) printk("%c", wwn->vendor[i]); else printk(" "); printk(" Model: "); for (i = 0; i < 16; i++) if (wwn->model[i] >= 0x20) printk("%c", wwn->model[i]); else printk(" "); printk(" Revision: "); for (i = 0; i < 4; i++) if (wwn->revision[i] >= 0x20) printk("%c", wwn->revision[i]); else printk(" "); printk("\n"); device_type = TRANSPORT(dev)->get_device_type(dev); printk(" Type: %s ", scsi_device_type(device_type)); printk(" ANSI SCSI revision: %02x\n", TRANSPORT(dev)->get_device_rev(dev)); } struct se_device *transport_add_device_to_core_hba( struct se_hba *hba, struct se_subsystem_api *transport, struct se_subsystem_dev *se_dev, u32 device_flags, void *transport_dev, struct se_dev_limits *dev_limits, const char *inquiry_prod, const char *inquiry_rev) { int force_pt; struct se_device *dev; dev = kzalloc(sizeof(struct se_device), GFP_KERNEL); if (!(dev)) { printk(KERN_ERR "Unable to allocate memory for se_dev_t\n"); return NULL; } dev->dev_queue_obj = kzalloc(sizeof(struct se_queue_obj), GFP_KERNEL); if (!(dev->dev_queue_obj)) { printk(KERN_ERR "Unable to allocate memory for" " dev->dev_queue_obj\n"); kfree(dev); return NULL; } transport_init_queue_obj(dev->dev_queue_obj); dev->dev_status_queue_obj = kzalloc(sizeof(struct se_queue_obj), GFP_KERNEL); if (!(dev->dev_status_queue_obj)) { printk(KERN_ERR "Unable to allocate memory for" " dev->dev_status_queue_obj\n"); kfree(dev->dev_queue_obj); kfree(dev); return NULL; } transport_init_queue_obj(dev->dev_status_queue_obj); dev->dev_flags = device_flags; dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED; dev->dev_ptr = (void *) transport_dev; dev->se_hba = hba; dev->se_sub_dev = se_dev; dev->transport = transport; atomic_set(&dev->active_cmds, 0); INIT_LIST_HEAD(&dev->dev_list); INIT_LIST_HEAD(&dev->dev_sep_list); INIT_LIST_HEAD(&dev->dev_tmr_list); INIT_LIST_HEAD(&dev->execute_task_list); INIT_LIST_HEAD(&dev->delayed_cmd_list); INIT_LIST_HEAD(&dev->ordered_cmd_list); INIT_LIST_HEAD(&dev->state_task_list); spin_lock_init(&dev->execute_task_lock); spin_lock_init(&dev->delayed_cmd_lock); spin_lock_init(&dev->ordered_cmd_lock); spin_lock_init(&dev->state_task_lock); spin_lock_init(&dev->dev_alua_lock); spin_lock_init(&dev->dev_reservation_lock); spin_lock_init(&dev->dev_status_lock); spin_lock_init(&dev->dev_status_thr_lock); spin_lock_init(&dev->se_port_lock); spin_lock_init(&dev->se_tmr_lock); dev->queue_depth = dev_limits->queue_depth; atomic_set(&dev->depth_left, dev->queue_depth); atomic_set(&dev->dev_ordered_id, 0); se_dev_set_default_attribs(dev, dev_limits); dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX); dev->creation_time = get_jiffies_64(); spin_lock_init(&dev->stats_lock); spin_lock(&hba->device_lock); list_add_tail(&dev->dev_list, &hba->hba_dev_list); hba->dev_count++; spin_unlock(&hba->device_lock); /* * Setup the SAM Task Attribute emulation for struct se_device */ core_setup_task_attr_emulation(dev); /* * Force PR and ALUA passthrough emulation with internal object use. */ force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE); /* * Setup the Reservations infrastructure for struct se_device */ core_setup_reservations(dev, force_pt); /* * Setup the Asymmetric Logical Unit Assignment for struct se_device */ if (core_setup_alua(dev, force_pt) < 0) goto out; /* * Startup the struct se_device processing thread */ dev->process_thread = kthread_run(transport_processing_thread, dev, "LIO_%s", TRANSPORT(dev)->name); if (IS_ERR(dev->process_thread)) { printk(KERN_ERR "Unable to create kthread: LIO_%s\n", TRANSPORT(dev)->name); goto out; } /* * Preload the initial INQUIRY const values if we are doing * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI * passthrough because this is being provided by the backend LLD. * This is required so that transport_get_inquiry() copies these * originals once back into DEV_T10_WWN(dev) for the virtual device * setup. */ if (TRANSPORT(dev)->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) { if (!(inquiry_prod) || !(inquiry_prod)) { printk(KERN_ERR "All non TCM/pSCSI plugins require" " INQUIRY consts\n"); goto out; } strncpy(&DEV_T10_WWN(dev)->vendor[0], "LIO-ORG", 8); strncpy(&DEV_T10_WWN(dev)->model[0], inquiry_prod, 16); strncpy(&DEV_T10_WWN(dev)->revision[0], inquiry_rev, 4); } scsi_dump_inquiry(dev); return dev; out: kthread_stop(dev->process_thread); spin_lock(&hba->device_lock); list_del(&dev->dev_list); hba->dev_count--; spin_unlock(&hba->device_lock); se_release_vpd_for_dev(dev); kfree(dev->dev_status_queue_obj); kfree(dev->dev_queue_obj); kfree(dev); return NULL; } EXPORT_SYMBOL(transport_add_device_to_core_hba); /* transport_generic_prepare_cdb(): * * Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will * contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2. * The point of this is since we are mapping iSCSI LUNs to * SCSI Target IDs having a non-zero LUN in the CDB will throw the * devices and HBAs for a loop. */ static inline void transport_generic_prepare_cdb( unsigned char *cdb) { switch (cdb[0]) { case READ_10: /* SBC - RDProtect */ case READ_12: /* SBC - RDProtect */ case READ_16: /* SBC - RDProtect */ case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */ case VERIFY: /* SBC - VRProtect */ case VERIFY_16: /* SBC - VRProtect */ case WRITE_VERIFY: /* SBC - VRProtect */ case WRITE_VERIFY_12: /* SBC - VRProtect */ break; default: cdb[1] &= 0x1f; /* clear logical unit number */ break; } } static struct se_task * transport_generic_get_task(struct se_cmd *cmd, enum dma_data_direction data_direction) { struct se_task *task; struct se_device *dev = SE_DEV(cmd); unsigned long flags; task = dev->transport->alloc_task(cmd); if (!task) { printk(KERN_ERR "Unable to allocate struct se_task\n"); return NULL; } INIT_LIST_HEAD(&task->t_list); INIT_LIST_HEAD(&task->t_execute_list); INIT_LIST_HEAD(&task->t_state_list); init_completion(&task->task_stop_comp); task->task_no = T_TASK(cmd)->t_tasks_no++; task->task_se_cmd = cmd; task->se_dev = dev; task->task_data_direction = data_direction; spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); list_add_tail(&task->t_list, &T_TASK(cmd)->t_task_list); spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); return task; } static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *); void transport_device_setup_cmd(struct se_cmd *cmd) { cmd->se_dev = SE_LUN(cmd)->lun_se_dev; } EXPORT_SYMBOL(transport_device_setup_cmd); /* * Used by fabric modules containing a local struct se_cmd within their * fabric dependent per I/O descriptor. */ void transport_init_se_cmd( struct se_cmd *cmd, struct target_core_fabric_ops *tfo, struct se_session *se_sess, u32 data_length, int data_direction, int task_attr, unsigned char *sense_buffer) { INIT_LIST_HEAD(&cmd->se_lun_list); INIT_LIST_HEAD(&cmd->se_delayed_list); INIT_LIST_HEAD(&cmd->se_ordered_list); /* * Setup t_task pointer to t_task_backstore */ cmd->t_task = &cmd->t_task_backstore; INIT_LIST_HEAD(&T_TASK(cmd)->t_task_list); init_completion(&T_TASK(cmd)->transport_lun_fe_stop_comp); init_completion(&T_TASK(cmd)->transport_lun_stop_comp); init_completion(&T_TASK(cmd)->t_transport_stop_comp); spin_lock_init(&T_TASK(cmd)->t_state_lock); atomic_set(&T_TASK(cmd)->transport_dev_active, 1); cmd->se_tfo = tfo; cmd->se_sess = se_sess; cmd->data_length = data_length; cmd->data_direction = data_direction; cmd->sam_task_attr = task_attr; cmd->sense_buffer = sense_buffer; } EXPORT_SYMBOL(transport_init_se_cmd); static int transport_check_alloc_task_attr(struct se_cmd *cmd) { /* * Check if SAM Task Attribute emulation is enabled for this * struct se_device storage object */ if (SE_DEV(cmd)->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) return 0; if (cmd->sam_task_attr == TASK_ATTR_ACA) { DEBUG_STA("SAM Task Attribute ACA" " emulation is not supported\n"); return -1; } /* * Used to determine when ORDERED commands should go from * Dormant to Active status. */ cmd->se_ordered_id = atomic_inc_return(&SE_DEV(cmd)->dev_ordered_id); smp_mb__after_atomic_inc(); DEBUG_STA("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n", cmd->se_ordered_id, cmd->sam_task_attr, TRANSPORT(cmd->se_dev)->name); return 0; } void transport_free_se_cmd( struct se_cmd *se_cmd) { if (se_cmd->se_tmr_req) core_tmr_release_req(se_cmd->se_tmr_req); /* * Check and free any extended CDB buffer that was allocated */ if (T_TASK(se_cmd)->t_task_cdb != T_TASK(se_cmd)->__t_task_cdb) kfree(T_TASK(se_cmd)->t_task_cdb); } EXPORT_SYMBOL(transport_free_se_cmd); static void transport_generic_wait_for_tasks(struct se_cmd *, int, int); /* transport_generic_allocate_tasks(): * * Called from fabric RX Thread. */ int transport_generic_allocate_tasks( struct se_cmd *cmd, unsigned char *cdb) { int ret; transport_generic_prepare_cdb(cdb); /* * This is needed for early exceptions. */ cmd->transport_wait_for_tasks = &transport_generic_wait_for_tasks; transport_device_setup_cmd(cmd); /* * Ensure that the received CDB is less than the max (252 + 8) bytes * for VARIABLE_LENGTH_CMD */ if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) { printk(KERN_ERR "Received SCSI CDB with command_size: %d that" " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n", scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE); return -1; } /* * If the received CDB is larger than TCM_MAX_COMMAND_SIZE, * allocate the additional extended CDB buffer now.. Otherwise * setup the pointer from __t_task_cdb to t_task_cdb. */ if (scsi_command_size(cdb) > sizeof(T_TASK(cmd)->__t_task_cdb)) { T_TASK(cmd)->t_task_cdb = kzalloc(scsi_command_size(cdb), GFP_KERNEL); if (!(T_TASK(cmd)->t_task_cdb)) { printk(KERN_ERR "Unable to allocate T_TASK(cmd)->t_task_cdb" " %u > sizeof(T_TASK(cmd)->__t_task_cdb): %lu ops\n", scsi_command_size(cdb), (unsigned long)sizeof(T_TASK(cmd)->__t_task_cdb)); return -1; } } else T_TASK(cmd)->t_task_cdb = &T_TASK(cmd)->__t_task_cdb[0]; /* * Copy the original CDB into T_TASK(cmd). */ memcpy(T_TASK(cmd)->t_task_cdb, cdb, scsi_command_size(cdb)); /* * Setup the received CDB based on SCSI defined opcodes and * perform unit attention, persistent reservations and ALUA * checks for virtual device backends. The T_TASK(cmd)->t_task_cdb * pointer is expected to be setup before we reach this point. */ ret = transport_generic_cmd_sequencer(cmd, cdb); if (ret < 0) return ret; /* * Check for SAM Task Attribute Emulation */ if (transport_check_alloc_task_attr(cmd) < 0) { cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD; return -2; } spin_lock(&cmd->se_lun->lun_sep_lock); if (cmd->se_lun->lun_sep) cmd->se_lun->lun_sep->sep_stats.cmd_pdus++; spin_unlock(&cmd->se_lun->lun_sep_lock); return 0; } EXPORT_SYMBOL(transport_generic_allocate_tasks); /* * Used by fabric module frontends not defining a TFO->new_cmd_map() * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD statis */ int transport_generic_handle_cdb( struct se_cmd *cmd) { if (!SE_LUN(cmd)) { dump_stack(); printk(KERN_ERR "SE_LUN(cmd) is NULL\n"); return -1; } transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD); return 0; } EXPORT_SYMBOL(transport_generic_handle_cdb); /* * Used by fabric module frontends defining a TFO->new_cmd_map() caller * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to * complete setup in TCM process context w/ TFO->new_cmd_map(). */ int transport_generic_handle_cdb_map( struct se_cmd *cmd) { if (!SE_LUN(cmd)) { dump_stack(); printk(KERN_ERR "SE_LUN(cmd) is NULL\n"); return -1; } transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP); return 0; } EXPORT_SYMBOL(transport_generic_handle_cdb_map); /* transport_generic_handle_data(): * * */ int transport_generic_handle_data( struct se_cmd *cmd) { /* * For the software fabric case, then we assume the nexus is being * failed/shutdown when signals are pending from the kthread context * caller, so we return a failure. For the HW target mode case running * in interrupt code, the signal_pending() check is skipped. */ if (!in_interrupt() && signal_pending(current)) return -1; /* * If the received CDB has aleady been ABORTED by the generic * target engine, we now call transport_check_aborted_status() * to queue any delated TASK_ABORTED status for the received CDB to the * fabric module as we are expecting no further incoming DATA OUT * sequences at this point. */ if (transport_check_aborted_status(cmd, 1) != 0) return 0; transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE); return 0; } EXPORT_SYMBOL(transport_generic_handle_data); /* transport_generic_handle_tmr(): * * */ int transport_generic_handle_tmr( struct se_cmd *cmd) { /* * This is needed for early exceptions. */ cmd->transport_wait_for_tasks = &transport_generic_wait_for_tasks; transport_device_setup_cmd(cmd); transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR); return 0; } EXPORT_SYMBOL(transport_generic_handle_tmr); static int transport_stop_tasks_for_cmd(struct se_cmd *cmd) { struct se_task *task, *task_tmp; unsigned long flags; int ret = 0; DEBUG_TS("ITT[0x%08x] - Stopping tasks\n", CMD_TFO(cmd)->get_task_tag(cmd)); /* * No tasks remain in the execution queue */ spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); list_for_each_entry_safe(task, task_tmp, &T_TASK(cmd)->t_task_list, t_list) { DEBUG_TS("task_no[%d] - Processing task %p\n", task->task_no, task); /* * If the struct se_task has not been sent and is not active, * remove the struct se_task from the execution queue. */ if (!atomic_read(&task->task_sent) && !atomic_read(&task->task_active)) { spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); transport_remove_task_from_execute_queue(task, task->se_dev); DEBUG_TS("task_no[%d] - Removed from execute queue\n", task->task_no); spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); continue; } /* * If the struct se_task is active, sleep until it is returned * from the plugin. */ if (atomic_read(&task->task_active)) { atomic_set(&task->task_stop, 1); spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); DEBUG_TS("task_no[%d] - Waiting to complete\n", task->task_no); wait_for_completion(&task->task_stop_comp); DEBUG_TS("task_no[%d] - Stopped successfully\n", task->task_no); spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); atomic_dec(&T_TASK(cmd)->t_task_cdbs_left); atomic_set(&task->task_active, 0); atomic_set(&task->task_stop, 0); } else { DEBUG_TS("task_no[%d] - Did nothing\n", task->task_no); ret++; } __transport_stop_task_timer(task, &flags); } spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); return ret; } static void transport_failure_reset_queue_depth(struct se_device *dev) { unsigned long flags; spin_lock_irqsave(&SE_HBA(dev)->hba_queue_lock, flags); atomic_inc(&dev->depth_left); atomic_inc(&SE_HBA(dev)->left_queue_depth); spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags); } /* * Handle SAM-esque emulation for generic transport request failures. */ static void transport_generic_request_failure( struct se_cmd *cmd, struct se_device *dev, int complete, int sc) { DEBUG_GRF("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x" " CDB: 0x%02x\n", cmd, CMD_TFO(cmd)->get_task_tag(cmd), T_TASK(cmd)->t_task_cdb[0]); DEBUG_GRF("-----[ i_state: %d t_state/def_t_state:" " %d/%d transport_error_status: %d\n", CMD_TFO(cmd)->get_cmd_state(cmd), cmd->t_state, cmd->deferred_t_state, cmd->transport_error_status); DEBUG_GRF("-----[ t_task_cdbs: %d t_task_cdbs_left: %d" " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --" " t_transport_active: %d t_transport_stop: %d" " t_transport_sent: %d\n", T_TASK(cmd)->t_task_cdbs, atomic_read(&T_TASK(cmd)->t_task_cdbs_left), atomic_read(&T_TASK(cmd)->t_task_cdbs_sent), atomic_read(&T_TASK(cmd)->t_task_cdbs_ex_left), atomic_read(&T_TASK(cmd)->t_transport_active), atomic_read(&T_TASK(cmd)->t_transport_stop), atomic_read(&T_TASK(cmd)->t_transport_sent)); transport_stop_all_task_timers(cmd); if (dev) transport_failure_reset_queue_depth(dev); /* * For SAM Task Attribute emulation for failed struct se_cmd */ if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED) transport_complete_task_attr(cmd); if (complete) { transport_direct_request_timeout(cmd); cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE; } switch (cmd->transport_error_status) { case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE: cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE; break; case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS: cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY; break; case PYX_TRANSPORT_INVALID_CDB_FIELD: cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD; break; case PYX_TRANSPORT_INVALID_PARAMETER_LIST: cmd->scsi_sense_reason = TCM_INVALID_PARAMETER_LIST; break; case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES: if (!sc) transport_new_cmd_failure(cmd); /* * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES, * we force this session to fall back to session * recovery. */ CMD_TFO(cmd)->fall_back_to_erl0(cmd->se_sess); CMD_TFO(cmd)->stop_session(cmd->se_sess, 0, 0); goto check_stop; case PYX_TRANSPORT_LU_COMM_FAILURE: case PYX_TRANSPORT_ILLEGAL_REQUEST: cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; break; case PYX_TRANSPORT_UNKNOWN_MODE_PAGE: cmd->scsi_sense_reason = TCM_UNKNOWN_MODE_PAGE; break; case PYX_TRANSPORT_WRITE_PROTECTED: cmd->scsi_sense_reason = TCM_WRITE_PROTECTED; break; case PYX_TRANSPORT_RESERVATION_CONFLICT: /* * No SENSE Data payload for this case, set SCSI Status * and queue the response to $FABRIC_MOD. * * Uses linux/include/scsi/scsi.h SAM status codes defs */ cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; /* * For UA Interlock Code 11b, a RESERVATION CONFLICT will * establish a UNIT ATTENTION with PREVIOUS RESERVATION * CONFLICT STATUS. * * See spc4r17, section 7.4.6 Control Mode Page, Table 349 */ if (SE_SESS(cmd) && DEV_ATTRIB(cmd->se_dev)->emulate_ua_intlck_ctrl == 2) core_scsi3_ua_allocate(SE_SESS(cmd)->se_node_acl, cmd->orig_fe_lun, 0x2C, ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS); CMD_TFO(cmd)->queue_status(cmd); goto check_stop; case PYX_TRANSPORT_USE_SENSE_REASON: /* * struct se_cmd->scsi_sense_reason already set */ break; default: printk(KERN_ERR "Unknown transport error for CDB 0x%02x: %d\n", T_TASK(cmd)->t_task_cdb[0], cmd->transport_error_status); cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE; break; } if (!sc) transport_new_cmd_failure(cmd); else transport_send_check_condition_and_sense(cmd, cmd->scsi_sense_reason, 0); check_stop: transport_lun_remove_cmd(cmd); if (!(transport_cmd_check_stop_to_fabric(cmd))) ; } static void transport_direct_request_timeout(struct se_cmd *cmd) { unsigned long flags; spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); if (!(atomic_read(&T_TASK(cmd)->t_transport_timeout))) { spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); return; } if (atomic_read(&T_TASK(cmd)->t_task_cdbs_timeout_left)) { spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); return; } atomic_sub(atomic_read(&T_TASK(cmd)->t_transport_timeout), &T_TASK(cmd)->t_se_count); spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); } static void transport_generic_request_timeout(struct se_cmd *cmd) { unsigned long flags; /* * Reset T_TASK(cmd)->t_se_count to allow transport_generic_remove() * to allow last call to free memory resources. */ spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); if (atomic_read(&T_TASK(cmd)->t_transport_timeout) > 1) { int tmp = (atomic_read(&T_TASK(cmd)->t_transport_timeout) - 1); atomic_sub(tmp, &T_TASK(cmd)->t_se_count); } spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); transport_generic_remove(cmd, 0, 0); } static int transport_generic_allocate_buf(struct se_cmd *cmd, u32 data_length) { unsigned char *buf; buf = kzalloc(data_length, GFP_KERNEL); if (!(buf)) { printk(KERN_ERR "Unable to allocate memory for buffer\n"); return -1; } T_TASK(cmd)->t_tasks_se_num = 0; T_TASK(cmd)->t_task_buf = buf; return 0; } static inline u32 transport_lba_21(unsigned char *cdb) { return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3]; } static inline u32 transport_lba_32(unsigned char *cdb) { return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5]; } static inline unsigned long long transport_lba_64(unsigned char *cdb) { unsigned int __v1, __v2; __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5]; __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9]; return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32; } /* * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs */ static inline unsigned long long transport_lba_64_ext(unsigned char *cdb) { unsigned int __v1, __v2; __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15]; __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19]; return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32; } static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd) { unsigned long flags; spin_lock_irqsave(&T_TASK(se_cmd)->t_state_lock, flags); se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE; spin_unlock_irqrestore(&T_TASK(se_cmd)->t_state_lock, flags); } /* * Called from interrupt context. */ static void transport_task_timeout_handler(unsigned long data) { struct se_task *task = (struct se_task *)data; struct se_cmd *cmd = TASK_CMD(task); unsigned long flags; DEBUG_TT("transport task timeout fired! task: %p cmd: %p\n", task, cmd); spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); if (task->task_flags & TF_STOP) { spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); return; } task->task_flags &= ~TF_RUNNING; /* * Determine if transport_complete_task() has already been called. */ if (!(atomic_read(&task->task_active))) { DEBUG_TT("transport task: %p cmd: %p timeout task_active" " == 0\n", task, cmd); spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); return; } atomic_inc(&T_TASK(cmd)->t_se_count); atomic_inc(&T_TASK(cmd)->t_transport_timeout); T_TASK(cmd)->t_tasks_failed = 1; atomic_set(&task->task_timeout, 1); task->task_error_status = PYX_TRANSPORT_TASK_TIMEOUT; task->task_scsi_status = 1; if (atomic_read(&task->task_stop)) { DEBUG_TT("transport task: %p cmd: %p timeout task_stop" " == 1\n", task, cmd); spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); complete(&task->task_stop_comp); return; } if (!(atomic_dec_and_test(&T_TASK(cmd)->t_task_cdbs_left))) { DEBUG_TT("transport task: %p cmd: %p timeout non zero" " t_task_cdbs_left\n", task, cmd); spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); return; } DEBUG_TT("transport task: %p cmd: %p timeout ZERO t_task_cdbs_left\n", task, cmd); cmd->t_state = TRANSPORT_COMPLETE_FAILURE; spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); transport_add_cmd_to_queue(cmd, TRANSPORT_COMPLETE_FAILURE); } /* * Called with T_TASK(cmd)->t_state_lock held. */ static void transport_start_task_timer(struct se_task *task) { struct se_device *dev = task->se_dev; int timeout; if (task->task_flags & TF_RUNNING) return; /* * If the task_timeout is disabled, exit now. */ timeout = DEV_ATTRIB(dev)->task_timeout; if (!(timeout)) return; init_timer(&task->task_timer); task->task_timer.expires = (get_jiffies_64() + timeout * HZ); task->task_timer.data = (unsigned long) task; task->task_timer.function = transport_task_timeout_handler; task->task_flags |= TF_RUNNING; add_timer(&task->task_timer); #if 0 printk(KERN_INFO "Starting task timer for cmd: %p task: %p seconds:" " %d\n", task->task_se_cmd, task, timeout); #endif } /* * Called with spin_lock_irq(&T_TASK(cmd)->t_state_lock) held. */ void __transport_stop_task_timer(struct se_task *task, unsigned long *flags) { struct se_cmd *cmd = TASK_CMD(task); if (!(task->task_flags & TF_RUNNING)) return; task->task_flags |= TF_STOP; spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, *flags); del_timer_sync(&task->task_timer); spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, *flags); task->task_flags &= ~TF_RUNNING; task->task_flags &= ~TF_STOP; } static void transport_stop_all_task_timers(struct se_cmd *cmd) { struct se_task *task = NULL, *task_tmp; unsigned long flags; spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); list_for_each_entry_safe(task, task_tmp, &T_TASK(cmd)->t_task_list, t_list) __transport_stop_task_timer(task, &flags); spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); } static inline int transport_tcq_window_closed(struct se_device *dev) { if (dev->dev_tcq_window_closed++ < PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) { msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT); } else msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG); wake_up_interruptible(&dev->dev_queue_obj->thread_wq); return 0; } /* * Called from Fabric Module context from transport_execute_tasks() * * The return of this function determins if the tasks from struct se_cmd * get added to the execution queue in transport_execute_tasks(), * or are added to the delayed or ordered lists here. */ static inline int transport_execute_task_attr(struct se_cmd *cmd) { if (SE_DEV(cmd)->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) return 1; /* * Check for the existence of HEAD_OF_QUEUE, and if true return 1 * to allow the passed struct se_cmd list of tasks to the front of the list. */ if (cmd->sam_task_attr == TASK_ATTR_HOQ) { atomic_inc(&SE_DEV(cmd)->dev_hoq_count); smp_mb__after_atomic_inc(); DEBUG_STA("Added HEAD_OF_QUEUE for CDB:" " 0x%02x, se_ordered_id: %u\n", T_TASK(cmd)->t_task_cdb[0], cmd->se_ordered_id); return 1; } else if (cmd->sam_task_attr == TASK_ATTR_ORDERED) { spin_lock(&SE_DEV(cmd)->ordered_cmd_lock); list_add_tail(&cmd->se_ordered_list, &SE_DEV(cmd)->ordered_cmd_list); spin_unlock(&SE_DEV(cmd)->ordered_cmd_lock); atomic_inc(&SE_DEV(cmd)->dev_ordered_sync); smp_mb__after_atomic_inc(); DEBUG_STA("Added ORDERED for CDB: 0x%02x to ordered" " list, se_ordered_id: %u\n", T_TASK(cmd)->t_task_cdb[0], cmd->se_ordered_id); /* * Add ORDERED command to tail of execution queue if * no other older commands exist that need to be * completed first. */ if (!(atomic_read(&SE_DEV(cmd)->simple_cmds))) return 1; } else { /* * For SIMPLE and UNTAGGED Task Attribute commands */ atomic_inc(&SE_DEV(cmd)->simple_cmds); smp_mb__after_atomic_inc(); } /* * Otherwise if one or more outstanding ORDERED task attribute exist, * add the dormant task(s) built for the passed struct se_cmd to the * execution queue and become in Active state for this struct se_device. */ if (atomic_read(&SE_DEV(cmd)->dev_ordered_sync) != 0) { /* * Otherwise, add cmd w/ tasks to delayed cmd queue that * will be drained upon completion of HEAD_OF_QUEUE task. */ spin_lock(&SE_DEV(cmd)->delayed_cmd_lock); cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR; list_add_tail(&cmd->se_delayed_list, &SE_DEV(cmd)->delayed_cmd_list); spin_unlock(&SE_DEV(cmd)->delayed_cmd_lock); DEBUG_STA("Added CDB: 0x%02x Task Attr: 0x%02x to" " delayed CMD list, se_ordered_id: %u\n", T_TASK(cmd)->t_task_cdb[0], cmd->sam_task_attr, cmd->se_ordered_id); /* * Return zero to let transport_execute_tasks() know * not to add the delayed tasks to the execution list. */ return 0; } /* * Otherwise, no ORDERED task attributes exist.. */ return 1; } /* * Called from fabric module context in transport_generic_new_cmd() and * transport_generic_process_write() */ static int transport_execute_tasks(struct se_cmd *cmd) { int add_tasks; if (!(cmd->se_cmd_flags & SCF_SE_DISABLE_ONLINE_CHECK)) { if (se_dev_check_online(cmd->se_orig_obj_ptr) != 0) { cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE; transport_generic_request_failure(cmd, NULL, 0, 1); return 0; } } /* * Call transport_cmd_check_stop() to see if a fabric exception * has occurred that prevents execution. */ if (!(transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING))) { /* * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE * attribute for the tasks of the received struct se_cmd CDB */ add_tasks = transport_execute_task_attr(cmd); if (add_tasks == 0) goto execute_tasks; /* * This calls transport_add_tasks_from_cmd() to handle * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation * (if enabled) in __transport_add_task_to_execute_queue() and * transport_add_task_check_sam_attr(). */ transport_add_tasks_from_cmd(cmd); } /* * Kick the execution queue for the cmd associated struct se_device * storage object. */ execute_tasks: __transport_execute_tasks(SE_DEV(cmd)); return 0; } /* * Called to check struct se_device tcq depth window, and once open pull struct se_task * from struct se_device->execute_task_list and * * Called from transport_processing_thread() */ static int __transport_execute_tasks(struct se_device *dev) { int error; struct se_cmd *cmd = NULL; struct se_task *task; unsigned long flags; /* * Check if there is enough room in the device and HBA queue to send * struct se_transport_task's to the selected transport. */ check_depth: spin_lock_irqsave(&SE_HBA(dev)->hba_queue_lock, flags); if (!(atomic_read(&dev->depth_left)) || !(atomic_read(&SE_HBA(dev)->left_queue_depth))) { spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags); return transport_tcq_window_closed(dev); } dev->dev_tcq_window_closed = 0; spin_lock(&dev->execute_task_lock); task = transport_get_task_from_execute_queue(dev); spin_unlock(&dev->execute_task_lock); if (!task) { spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags); return 0; } atomic_dec(&dev->depth_left); atomic_dec(&SE_HBA(dev)->left_queue_depth); spin_unlock_irqrestore(&SE_HBA(dev)->hba_queue_lock, flags); cmd = TASK_CMD(task); spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); atomic_set(&task->task_active, 1); atomic_set(&task->task_sent, 1); atomic_inc(&T_TASK(cmd)->t_task_cdbs_sent); if (atomic_read(&T_TASK(cmd)->t_task_cdbs_sent) == T_TASK(cmd)->t_task_cdbs) atomic_set(&cmd->transport_sent, 1); transport_start_task_timer(task); spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); /* * The struct se_cmd->transport_emulate_cdb() function pointer is used * to grab REPORT_LUNS CDBs before they hit the * struct se_subsystem_api->do_task() caller below. */ if (cmd->transport_emulate_cdb) { error = cmd->transport_emulate_cdb(cmd); if (error != 0) { cmd->transport_error_status = error; atomic_set(&task->task_active, 0); atomic_set(&cmd->transport_sent, 0); transport_stop_tasks_for_cmd(cmd); transport_generic_request_failure(cmd, dev, 0, 1); goto check_depth; } /* * Handle the successful completion for transport_emulate_cdb() * for synchronous operation, following SCF_EMULATE_CDB_ASYNC * Otherwise the caller is expected to complete the task with * proper status. */ if (!(cmd->se_cmd_flags & SCF_EMULATE_CDB_ASYNC)) { cmd->scsi_status = SAM_STAT_GOOD; task->task_scsi_status = GOOD; transport_complete_task(task, 1); } } else { /* * Currently for all virtual TCM plugins including IBLOCK, FILEIO and * RAMDISK we use the internal transport_emulate_control_cdb() logic * with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK * LUN emulation code. * * For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we * call ->do_task() directly and let the underlying TCM subsystem plugin * code handle the CDB emulation. */ if ((TRANSPORT(dev)->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) && (!(TASK_CMD(task)->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB))) error = transport_emulate_control_cdb(task); else error = TRANSPORT(dev)->do_task(task); if (error != 0) { cmd->transport_error_status = error; atomic_set(&task->task_active, 0); atomic_set(&cmd->transport_sent, 0); transport_stop_tasks_for_cmd(cmd); transport_generic_request_failure(cmd, dev, 0, 1); } } goto check_depth; return 0; } void transport_new_cmd_failure(struct se_cmd *se_cmd) { unsigned long flags; /* * Any unsolicited data will get dumped for failed command inside of * the fabric plugin */ spin_lock_irqsave(&T_TASK(se_cmd)->t_state_lock, flags); se_cmd->se_cmd_flags |= SCF_SE_CMD_FAILED; se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; spin_unlock_irqrestore(&T_TASK(se_cmd)->t_state_lock, flags); CMD_TFO(se_cmd)->new_cmd_failure(se_cmd); } static void transport_nop_wait_for_tasks(struct se_cmd *, int, int); static inline u32 transport_get_sectors_6( unsigned char *cdb, struct se_cmd *cmd, int *ret) { struct se_device *dev = SE_LUN(cmd)->lun_se_dev; /* * Assume TYPE_DISK for non struct se_device objects. * Use 8-bit sector value. */ if (!dev) goto type_disk; /* * Use 24-bit allocation length for TYPE_TAPE. */ if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE) return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4]; /* * Everything else assume TYPE_DISK Sector CDB location. * Use 8-bit sector value. */ type_disk: return (u32)cdb[4]; } static inline u32 transport_get_sectors_10( unsigned char *cdb, struct se_cmd *cmd, int *ret) { struct se_device *dev = SE_LUN(cmd)->lun_se_dev; /* * Assume TYPE_DISK for non struct se_device objects. * Use 16-bit sector value. */ if (!dev) goto type_disk; /* * XXX_10 is not defined in SSC, throw an exception */ if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE) { *ret = -1; return 0; } /* * Everything else assume TYPE_DISK Sector CDB location. * Use 16-bit sector value. */ type_disk: return (u32)(cdb[7] << 8) + cdb[8]; } static inline u32 transport_get_sectors_12( unsigned char *cdb, struct se_cmd *cmd, int *ret) { struct se_device *dev = SE_LUN(cmd)->lun_se_dev; /* * Assume TYPE_DISK for non struct se_device objects. * Use 32-bit sector value. */ if (!dev) goto type_disk; /* * XXX_12 is not defined in SSC, throw an exception */ if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE) { *ret = -1; return 0; } /* * Everything else assume TYPE_DISK Sector CDB location. * Use 32-bit sector value. */ type_disk: return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9]; } static inline u32 transport_get_sectors_16( unsigned char *cdb, struct se_cmd *cmd, int *ret) { struct se_device *dev = SE_LUN(cmd)->lun_se_dev; /* * Assume TYPE_DISK for non struct se_device objects. * Use 32-bit sector value. */ if (!dev) goto type_disk; /* * Use 24-bit allocation length for TYPE_TAPE. */ if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE) return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14]; type_disk: return (u32)(cdb[10] << 24) + (cdb[11] << 16) + (cdb[12] << 8) + cdb[13]; } /* * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants */ static inline u32 transport_get_sectors_32( unsigned char *cdb, struct se_cmd *cmd, int *ret) { /* * Assume TYPE_DISK for non struct se_device objects. * Use 32-bit sector value. */ return (u32)(cdb[28] << 24) + (cdb[29] << 16) + (cdb[30] << 8) + cdb[31]; } static inline u32 transport_get_size( u32 sectors, unsigned char *cdb, struct se_cmd *cmd) { struct se_device *dev = SE_DEV(cmd); if (TRANSPORT(dev)->get_device_type(dev) == TYPE_TAPE) { if (cdb[1] & 1) { /* sectors */ return DEV_ATTRIB(dev)->block_size * sectors; } else /* bytes */ return sectors; } #if 0 printk(KERN_INFO "Returning block_size: %u, sectors: %u == %u for" " %s object\n", DEV_ATTRIB(dev)->block_size, sectors, DEV_ATTRIB(dev)->block_size * sectors, TRANSPORT(dev)->name); #endif return DEV_ATTRIB(dev)->block_size * sectors; } unsigned char transport_asciihex_to_binaryhex(unsigned char val[2]) { unsigned char result = 0; /* * MSB */ if ((val[0] >= 'a') && (val[0] <= 'f')) result = ((val[0] - 'a' + 10) & 0xf) << 4; else if ((val[0] >= 'A') && (val[0] <= 'F')) result = ((val[0] - 'A' + 10) & 0xf) << 4; else /* digit */ result = ((val[0] - '0') & 0xf) << 4; /* * LSB */ if ((val[1] >= 'a') && (val[1] <= 'f')) result |= ((val[1] - 'a' + 10) & 0xf); else if ((val[1] >= 'A') && (val[1] <= 'F')) result |= ((val[1] - 'A' + 10) & 0xf); else /* digit */ result |= ((val[1] - '0') & 0xf); return result; } EXPORT_SYMBOL(transport_asciihex_to_binaryhex); static void transport_xor_callback(struct se_cmd *cmd) { unsigned char *buf, *addr; struct se_mem *se_mem; unsigned int offset; int i; /* * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command * * 1) read the specified logical block(s); * 2) transfer logical blocks from the data-out buffer; * 3) XOR the logical blocks transferred from the data-out buffer with * the logical blocks read, storing the resulting XOR data in a buffer; * 4) if the DISABLE WRITE bit is set to zero, then write the logical * blocks transferred from the data-out buffer; and * 5) transfer the resulting XOR data to the data-in buffer. */ buf = kmalloc(cmd->data_length, GFP_KERNEL); if (!(buf)) { printk(KERN_ERR "Unable to allocate xor_callback buf\n"); return; } /* * Copy the scatterlist WRITE buffer located at T_TASK(cmd)->t_mem_list * into the locally allocated *buf */ transport_memcpy_se_mem_read_contig(cmd, buf, T_TASK(cmd)->t_mem_list); /* * Now perform the XOR against the BIDI read memory located at * T_TASK(cmd)->t_mem_bidi_list */ offset = 0; list_for_each_entry(se_mem, T_TASK(cmd)->t_mem_bidi_list, se_list) { addr = (unsigned char *)kmap_atomic(se_mem->se_page, KM_USER0); if (!(addr)) goto out; for (i = 0; i < se_mem->se_len; i++) *(addr + se_mem->se_off + i) ^= *(buf + offset + i); offset += se_mem->se_len; kunmap_atomic(addr, KM_USER0); } out: kfree(buf); } /* * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd */ static int transport_get_sense_data(struct se_cmd *cmd) { unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL; struct se_device *dev; struct se_task *task = NULL, *task_tmp; unsigned long flags; u32 offset = 0; if (!SE_LUN(cmd)) { printk(KERN_ERR "SE_LUN(cmd) is NULL\n"); return -1; } spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) { spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); return 0; } list_for_each_entry_safe(task, task_tmp, &T_TASK(cmd)->t_task_list, t_list) { if (!task->task_sense) continue; dev = task->se_dev; if (!(dev)) continue; if (!TRANSPORT(dev)->get_sense_buffer) { printk(KERN_ERR "TRANSPORT(dev)->get_sense_buffer" " is NULL\n"); continue; } sense_buffer = TRANSPORT(dev)->get_sense_buffer(task); if (!(sense_buffer)) { printk(KERN_ERR "ITT[0x%08x]_TASK[%d]: Unable to locate" " sense buffer for task with sense\n", CMD_TFO(cmd)->get_task_tag(cmd), task->task_no); continue; } spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); offset = CMD_TFO(cmd)->set_fabric_sense_len(cmd, TRANSPORT_SENSE_BUFFER); memcpy((void *)&buffer[offset], (void *)sense_buffer, TRANSPORT_SENSE_BUFFER); cmd->scsi_status = task->task_scsi_status; /* Automatically padded */ cmd->scsi_sense_length = (TRANSPORT_SENSE_BUFFER + offset); printk(KERN_INFO "HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x" " and sense\n", dev->se_hba->hba_id, TRANSPORT(dev)->name, cmd->scsi_status); return 0; } spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); return -1; } static int transport_allocate_resources(struct se_cmd *cmd) { u32 length = cmd->data_length; if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) || (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) return transport_generic_get_mem(cmd, length, PAGE_SIZE); else if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_NONSG_IO_CDB) return transport_generic_allocate_buf(cmd, length); else return 0; } static int transport_handle_reservation_conflict(struct se_cmd *cmd) { cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks; cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT; cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT; /* * For UA Interlock Code 11b, a RESERVATION CONFLICT will * establish a UNIT ATTENTION with PREVIOUS RESERVATION * CONFLICT STATUS. * * See spc4r17, section 7.4.6 Control Mode Page, Table 349 */ if (SE_SESS(cmd) && DEV_ATTRIB(cmd->se_dev)->emulate_ua_intlck_ctrl == 2) core_scsi3_ua_allocate(SE_SESS(cmd)->se_node_acl, cmd->orig_fe_lun, 0x2C, ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS); return -2; } /* transport_generic_cmd_sequencer(): * * Generic Command Sequencer that should work for most DAS transport * drivers. * * Called from transport_generic_allocate_tasks() in the $FABRIC_MOD * RX Thread. * * FIXME: Need to support other SCSI OPCODES where as well. */ static int transport_generic_cmd_sequencer( struct se_cmd *cmd, unsigned char *cdb) { struct se_device *dev = SE_DEV(cmd); struct se_subsystem_dev *su_dev = dev->se_sub_dev; int ret = 0, sector_ret = 0, passthrough; u32 sectors = 0, size = 0, pr_reg_type = 0; u16 service_action; u8 alua_ascq = 0; /* * Check for an existing UNIT ATTENTION condition */ if (core_scsi3_ua_check(cmd, cdb) < 0) { cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks; cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION; return -2; } /* * Check status of Asymmetric Logical Unit Assignment port */ ret = T10_ALUA(su_dev)->alua_state_check(cmd, cdb, &alua_ascq); if (ret != 0) { cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks; /* * Set SCSI additional sense code (ASC) to 'LUN Not Accessible'; * The ALUA additional sense code qualifier (ASCQ) is determined * by the ALUA primary or secondary access state.. */ if (ret > 0) { #if 0 printk(KERN_INFO "[%s]: ALUA TG Port not available," " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n", CMD_TFO(cmd)->get_fabric_name(), alua_ascq); #endif transport_set_sense_codes(cmd, 0x04, alua_ascq); cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY; return -2; } goto out_invalid_cdb_field; } /* * Check status for SPC-3 Persistent Reservations */ if (T10_PR_OPS(su_dev)->t10_reservation_check(cmd, &pr_reg_type) != 0) { if (T10_PR_OPS(su_dev)->t10_seq_non_holder( cmd, cdb, pr_reg_type) != 0) return transport_handle_reservation_conflict(cmd); /* * This means the CDB is allowed for the SCSI Initiator port * when said port is *NOT* holding the legacy SPC-2 or * SPC-3 Persistent Reservation. */ } switch (cdb[0]) { case READ_6: sectors = transport_get_sectors_6(cdb, cmd, §or_ret); if (sector_ret) goto out_unsupported_cdb; size = transport_get_size(sectors, cdb, cmd); cmd->transport_split_cdb = &split_cdb_XX_6; T_TASK(cmd)->t_task_lba = transport_lba_21(cdb); cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; break; case READ_10: sectors = transport_get_sectors_10(cdb, cmd, §or_ret); if (sector_ret) goto out_unsupported_cdb; size = transport_get_size(sectors, cdb, cmd); cmd->transport_split_cdb = &split_cdb_XX_10; T_TASK(cmd)->t_task_lba = transport_lba_32(cdb); cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; break; case READ_12: sectors = transport_get_sectors_12(cdb, cmd, §or_ret); if (sector_ret) goto out_unsupported_cdb; size = transport_get_size(sectors, cdb, cmd); cmd->transport_split_cdb = &split_cdb_XX_12; T_TASK(cmd)->t_task_lba = transport_lba_32(cdb); cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; break; case READ_16: sectors = transport_get_sectors_16(cdb, cmd, §or_ret); if (sector_ret) goto out_unsupported_cdb; size = transport_get_size(sectors, cdb, cmd); cmd->transport_split_cdb = &split_cdb_XX_16; T_TASK(cmd)->t_task_lba = transport_lba_64(cdb); cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; break; case WRITE_6: sectors = transport_get_sectors_6(cdb, cmd, §or_ret); if (sector_ret) goto out_unsupported_cdb; size = transport_get_size(sectors, cdb, cmd); cmd->transport_split_cdb = &split_cdb_XX_6; T_TASK(cmd)->t_task_lba = transport_lba_21(cdb); cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; break; case WRITE_10: sectors = transport_get_sectors_10(cdb, cmd, §or_ret); if (sector_ret) goto out_unsupported_cdb; size = transport_get_size(sectors, cdb, cmd); cmd->transport_split_cdb = &split_cdb_XX_10; T_TASK(cmd)->t_task_lba = transport_lba_32(cdb); T_TASK(cmd)->t_tasks_fua = (cdb[1] & 0x8); cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; break; case WRITE_12: sectors = transport_get_sectors_12(cdb, cmd, §or_ret); if (sector_ret) goto out_unsupported_cdb; size = transport_get_size(sectors, cdb, cmd); cmd->transport_split_cdb = &split_cdb_XX_12; T_TASK(cmd)->t_task_lba = transport_lba_32(cdb); T_TASK(cmd)->t_tasks_fua = (cdb[1] & 0x8); cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; break; case WRITE_16: sectors = transport_get_sectors_16(cdb, cmd, §or_ret); if (sector_ret) goto out_unsupported_cdb; size = transport_get_size(sectors, cdb, cmd); cmd->transport_split_cdb = &split_cdb_XX_16; T_TASK(cmd)->t_task_lba = transport_lba_64(cdb); T_TASK(cmd)->t_tasks_fua = (cdb[1] & 0x8); cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; break; case XDWRITEREAD_10: if ((cmd->data_direction != DMA_TO_DEVICE) || !(T_TASK(cmd)->t_tasks_bidi)) goto out_invalid_cdb_field; sectors = transport_get_sectors_10(cdb, cmd, §or_ret); if (sector_ret) goto out_unsupported_cdb; size = transport_get_size(sectors, cdb, cmd); cmd->transport_split_cdb = &split_cdb_XX_10; T_TASK(cmd)->t_task_lba = transport_lba_32(cdb); cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; passthrough = (TRANSPORT(dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV); /* * Skip the remaining assignments for TCM/PSCSI passthrough */ if (passthrough) break; /* * Setup BIDI XOR callback to be run during transport_generic_complete_ok() */ cmd->transport_complete_callback = &transport_xor_callback; T_TASK(cmd)->t_tasks_fua = (cdb[1] & 0x8); break; case VARIABLE_LENGTH_CMD: service_action = get_unaligned_be16(&cdb[8]); /* * Determine if this is TCM/PSCSI device and we should disable * internal emulation for this CDB. */ passthrough = (TRANSPORT(dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV); switch (service_action) { case XDWRITEREAD_32: sectors = transport_get_sectors_32(cdb, cmd, §or_ret); if (sector_ret) goto out_unsupported_cdb; size = transport_get_size(sectors, cdb, cmd); /* * Use WRITE_32 and READ_32 opcodes for the emulated * XDWRITE_READ_32 logic. */ cmd->transport_split_cdb = &split_cdb_XX_32; T_TASK(cmd)->t_task_lba = transport_lba_64_ext(cdb); cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB; /* * Skip the remaining assignments for TCM/PSCSI passthrough */ if (passthrough) break; /* * Setup BIDI XOR callback to be run during * transport_generic_complete_ok() */ cmd->transport_complete_callback = &transport_xor_callback; T_TASK(cmd)->t_tasks_fua = (cdb[10] & 0x8); break; case WRITE_SAME_32: sectors = transport_get_sectors_32(cdb, cmd, §or_ret); if (sector_ret) goto out_unsupported_cdb; size = transport_get_size(sectors, cdb, cmd); T_TASK(cmd)->t_task_lba = get_unaligned_be64(&cdb[12]); cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; /* * Skip the remaining assignments for TCM/PSCSI passthrough */ if (passthrough) break; if ((cdb[10] & 0x04) || (cdb[10] & 0x02)) { printk(KERN_ERR "WRITE_SAME PBDATA and LBDATA" " bits not supported for Block Discard" " Emulation\n"); goto out_invalid_cdb_field; } /* * Currently for the emulated case we only accept * tpws with the UNMAP=1 bit set. */ if (!(cdb[10] & 0x08)) { printk(KERN_ERR "WRITE_SAME w/o UNMAP bit not" " supported for Block Discard Emulation\n"); goto out_invalid_cdb_field; } break; default: printk(KERN_ERR "VARIABLE_LENGTH_CMD service action" " 0x%04x not supported\n", service_action); goto out_unsupported_cdb; } break; case 0xa3: if (TRANSPORT(dev)->get_device_type(dev) != TYPE_ROM) { /* MAINTENANCE_IN from SCC-2 */ /* * Check for emulated MI_REPORT_TARGET_PGS. */ if (cdb[1] == MI_REPORT_TARGET_PGS) { cmd->transport_emulate_cdb = (T10_ALUA(su_dev)->alua_type == SPC3_ALUA_EMULATED) ? &core_emulate_report_target_port_groups : NULL; } size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9]; } else { /* GPCMD_SEND_KEY from multi media commands */ size = (cdb[8] << 8) + cdb[9]; } cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; break; case MODE_SELECT: size = cdb[4]; cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; break; case MODE_SELECT_10: size = (cdb[7] << 8) + cdb[8]; cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; break; case MODE_SENSE: size = cdb[4]; cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; break; case MODE_SENSE_10: case GPCMD_READ_BUFFER_CAPACITY: case GPCMD_SEND_OPC: case LOG_SELECT: case LOG_SENSE: size = (cdb[7] << 8) + cdb[8]; cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; break; case READ_BLOCK_LIMITS: size = READ_BLOCK_LEN; cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; break; case GPCMD_GET_CONFIGURATION: case GPCMD_READ_FORMAT_CAPACITIES: case GPCMD_READ_DISC_INFO: case GPCMD_READ_TRACK_RZONE_INFO: size = (cdb[7] << 8) + cdb[8]; cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; break; case PERSISTENT_RESERVE_IN: case PERSISTENT_RESERVE_OUT: cmd->transport_emulate_cdb = (T10_RES(su_dev)->res_type == SPC3_PERSISTENT_RESERVATIONS) ? &core_scsi3_emulate_pr : NULL; size = (cdb[7] << 8) + cdb[8]; cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; break; case GPCMD_MECHANISM_STATUS: case GPCMD_READ_DVD_STRUCTURE: size = (cdb[8] << 8) + cdb[9]; cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; break; case READ_POSITION: size = READ_POSITION_LEN; cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; break; case 0xa4: if (TRANSPORT(dev)->get_device_type(dev) != TYPE_ROM) { /* MAINTENANCE_OUT from SCC-2 * * Check for emulated MO_SET_TARGET_PGS. */ if (cdb[1] == MO_SET_TARGET_PGS) { cmd->transport_emulate_cdb = (T10_ALUA(su_dev)->alua_type == SPC3_ALUA_EMULATED) ? &core_emulate_set_target_port_groups : NULL; } size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9]; } else { /* GPCMD_REPORT_KEY from multi media commands */ size = (cdb[8] << 8) + cdb[9]; } cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; break; case INQUIRY: size = (cdb[3] << 8) + cdb[4]; /* * Do implict HEAD_OF_QUEUE processing for INQUIRY. * See spc4r17 section 5.3 */ if (SE_DEV(cmd)->dev_task_attr_type == SAM_TASK_ATTR_EMULATED) cmd->sam_task_attr = TASK_ATTR_HOQ; cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; break; case READ_BUFFER: size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8]; cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; break; case READ_CAPACITY: size = READ_CAP_LEN; cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; break; case READ_MEDIA_SERIAL_NUMBER: case SECURITY_PROTOCOL_IN: case SECURITY_PROTOCOL_OUT: size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9]; cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; break; case SERVICE_ACTION_IN: case ACCESS_CONTROL_IN: case ACCESS_CONTROL_OUT: case EXTENDED_COPY: case READ_ATTRIBUTE: case RECEIVE_COPY_RESULTS: case WRITE_ATTRIBUTE: size = (cdb[10] << 24) | (cdb[11] << 16) | (cdb[12] << 8) | cdb[13]; cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; break; case RECEIVE_DIAGNOSTIC: case SEND_DIAGNOSTIC: size = (cdb[3] << 8) | cdb[4]; cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; break; /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */ #if 0 case GPCMD_READ_CD: sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8]; size = (2336 * sectors); cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; break; #endif case READ_TOC: size = cdb[8]; cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; break; case REQUEST_SENSE: size = cdb[4]; cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; break; case READ_ELEMENT_STATUS: size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9]; cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; break; case WRITE_BUFFER: size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8]; cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; break; case RESERVE: case RESERVE_10: /* * The SPC-2 RESERVE does not contain a size in the SCSI CDB. * Assume the passthrough or $FABRIC_MOD will tell us about it. */ if (cdb[0] == RESERVE_10) size = (cdb[7] << 8) | cdb[8]; else size = cmd->data_length; /* * Setup the legacy emulated handler for SPC-2 and * >= SPC-3 compatible reservation handling (CRH=1) * Otherwise, we assume the underlying SCSI logic is * is running in SPC_PASSTHROUGH, and wants reservations * emulation disabled. */ cmd->transport_emulate_cdb = (T10_RES(su_dev)->res_type != SPC_PASSTHROUGH) ? &core_scsi2_emulate_crh : NULL; cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB; break; case RELEASE: case RELEASE_10: /* * The SPC-2 RELEASE does not contain a size in the SCSI CDB. * Assume the passthrough or $FABRIC_MOD will tell us about it. */ if (cdb[0] == RELEASE_10) size = (cdb[7] << 8) | cdb[8]; else size = cmd->data_length; cmd->transport_emulate_cdb = (T10_RES(su_dev)->res_type != SPC_PASSTHROUGH) ? &core_scsi2_emulate_crh : NULL; cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB; break; case SYNCHRONIZE_CACHE: case 0x91: /* SYNCHRONIZE_CACHE_16: */ /* * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE */ if (cdb[0] == SYNCHRONIZE_CACHE) { sectors = transport_get_sectors_10(cdb, cmd, §or_ret); T_TASK(cmd)->t_task_lba = transport_lba_32(cdb); } else { sectors = transport_get_sectors_16(cdb, cmd, §or_ret); T_TASK(cmd)->t_task_lba = transport_lba_64(cdb); } if (sector_ret) goto out_unsupported_cdb; size = transport_get_size(sectors, cdb, cmd); cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB; /* * For TCM/pSCSI passthrough, skip cmd->transport_emulate_cdb() */ if (TRANSPORT(dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) break; /* * Set SCF_EMULATE_CDB_ASYNC to ensure asynchronous operation * for SYNCHRONIZE_CACHE* Immed=1 case in __transport_execute_tasks() */ cmd->se_cmd_flags |= SCF_EMULATE_CDB_ASYNC; /* * Check to ensure that LBA + Range does not exceed past end of * device. */ if (transport_get_sectors(cmd) < 0) goto out_invalid_cdb_field; break; case UNMAP: size = get_unaligned_be16(&cdb[7]); passthrough = (TRANSPORT(dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV); /* * Determine if the received UNMAP used to for direct passthrough * into Linux/SCSI with struct request via TCM/pSCSI or we are * signaling the use of internal transport_generic_unmap() emulation * for UNMAP -> Linux/BLOCK disbard with TCM/IBLOCK and TCM/FILEIO * subsystem plugin backstores. */ if (!(passthrough)) cmd->se_cmd_flags |= SCF_EMULATE_SYNC_UNMAP; cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; break; case WRITE_SAME_16: sectors = transport_get_sectors_16(cdb, cmd, §or_ret); if (sector_ret) goto out_unsupported_cdb; size = transport_get_size(sectors, cdb, cmd); T_TASK(cmd)->t_task_lba = get_unaligned_be16(&cdb[2]); passthrough = (TRANSPORT(dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV); /* * Determine if the received WRITE_SAME_16 is used to for direct * passthrough into Linux/SCSI with struct request via TCM/pSCSI * or we are signaling the use of internal WRITE_SAME + UNMAP=1 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK and * TCM/FILEIO subsystem plugin backstores. */ if (!(passthrough)) { if ((cdb[1] & 0x04) || (cdb[1] & 0x02)) { printk(KERN_ERR "WRITE_SAME PBDATA and LBDATA" " bits not supported for Block Discard" " Emulation\n"); goto out_invalid_cdb_field; } /* * Currently for the emulated case we only accept * tpws with the UNMAP=1 bit set. */ if (!(cdb[1] & 0x08)) { printk(KERN_ERR "WRITE_SAME w/o UNMAP bit not " " supported for Block Discard Emulation\n"); goto out_invalid_cdb_field; } } cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB; break; case ALLOW_MEDIUM_REMOVAL: case GPCMD_CLOSE_TRACK: case ERASE: case INITIALIZE_ELEMENT_STATUS: case GPCMD_LOAD_UNLOAD: case REZERO_UNIT: case SEEK_10: case GPCMD_SET_SPEED: case SPACE: case START_STOP: case TEST_UNIT_READY: case VERIFY: case WRITE_FILEMARKS: case MOVE_MEDIUM: cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB; break; case REPORT_LUNS: cmd->transport_emulate_cdb = &transport_core_report_lun_response; size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9]; /* * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS * See spc4r17 section 5.3 */ if (SE_DEV(cmd)->dev_task_attr_type == SAM_TASK_ATTR_EMULATED) cmd->sam_task_attr = TASK_ATTR_HOQ; cmd->se_cmd_flags |= SCF_SCSI_CONTROL_NONSG_IO_CDB; break; default: printk(KERN_WARNING "TARGET_CORE[%s]: Unsupported SCSI Opcode" " 0x%02x, sending CHECK_CONDITION.\n", CMD_TFO(cmd)->get_fabric_name(), cdb[0]); cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks; goto out_unsupported_cdb; } if (size != cmd->data_length) { printk(KERN_WARNING "TARGET_CORE[%s]: Expected Transfer Length:" " %u does not match SCSI CDB Length: %u for SAM Opcode:" " 0x%02x\n", CMD_TFO(cmd)->get_fabric_name(), cmd->data_length, size, cdb[0]); cmd->cmd_spdtl = size; if (cmd->data_direction == DMA_TO_DEVICE) { printk(KERN_ERR "Rejecting underflow/overflow" " WRITE data\n"); goto out_invalid_cdb_field; } /* * Reject READ_* or WRITE_* with overflow/underflow for * type SCF_SCSI_DATA_SG_IO_CDB. */ if (!(ret) && (DEV_ATTRIB(dev)->block_size != 512)) { printk(KERN_ERR "Failing OVERFLOW/UNDERFLOW for LBA op" " CDB on non 512-byte sector setup subsystem" " plugin: %s\n", TRANSPORT(dev)->name); /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */ goto out_invalid_cdb_field; } if (size > cmd->data_length) { cmd->se_cmd_flags |= SCF_OVERFLOW_BIT; cmd->residual_count = (size - cmd->data_length); } else { cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT; cmd->residual_count = (cmd->data_length - size); } cmd->data_length = size; } transport_set_supported_SAM_opcode(cmd); return ret; out_unsupported_cdb: cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE; return -2; out_invalid_cdb_field: cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD; return -2; } static inline void transport_release_tasks(struct se_cmd *); /* * This function will copy a contiguous *src buffer into a destination * struct scatterlist array. */ static void transport_memcpy_write_contig( struct se_cmd *cmd, struct scatterlist *sg_d, unsigned char *src) { u32 i = 0, length = 0, total_length = cmd->data_length; void *dst; while (total_length) { length = sg_d[i].length; if (length > total_length) length = total_length; dst = sg_virt(&sg_d[i]); memcpy(dst, src, length); if (!(total_length -= length)) return; src += length; i++; } } /* * This function will copy a struct scatterlist array *sg_s into a destination * contiguous *dst buffer. */ static void transport_memcpy_read_contig( struct se_cmd *cmd, unsigned char *dst, struct scatterlist *sg_s) { u32 i = 0, length = 0, total_length = cmd->data_length; void *src; while (total_length) { length = sg_s[i].length; if (length > total_length) length = total_length; src = sg_virt(&sg_s[i]); memcpy(dst, src, length); if (!(total_length -= length)) return; dst += length; i++; } } static void transport_memcpy_se_mem_read_contig( struct se_cmd *cmd, unsigned char *dst, struct list_head *se_mem_list) { struct se_mem *se_mem; void *src; u32 length = 0, total_length = cmd->data_length; list_for_each_entry(se_mem, se_mem_list, se_list) { length = se_mem->se_len; if (length > total_length) length = total_length; src = page_address(se_mem->se_page) + se_mem->se_off; memcpy(dst, src, length); if (!(total_length -= length)) return; dst += length; } } /* * Called from transport_generic_complete_ok() and * transport_generic_request_failure() to determine which dormant/delayed * and ordered cmds need to have their tasks added to the execution queue. */ static void transport_complete_task_attr(struct se_cmd *cmd) { struct se_device *dev = SE_DEV(cmd); struct se_cmd *cmd_p, *cmd_tmp; int new_active_tasks = 0; if (cmd->sam_task_attr == TASK_ATTR_SIMPLE) { atomic_dec(&dev->simple_cmds); smp_mb__after_atomic_dec(); dev->dev_cur_ordered_id++; DEBUG_STA("Incremented dev->dev_cur_ordered_id: %u for" " SIMPLE: %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id); } else if (cmd->sam_task_attr == TASK_ATTR_HOQ) { atomic_dec(&dev->dev_hoq_count); smp_mb__after_atomic_dec(); dev->dev_cur_ordered_id++; DEBUG_STA("Incremented dev_cur_ordered_id: %u for" " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id); } else if (cmd->sam_task_attr == TASK_ATTR_ORDERED) { spin_lock(&dev->ordered_cmd_lock); list_del(&cmd->se_ordered_list); atomic_dec(&dev->dev_ordered_sync); smp_mb__after_atomic_dec(); spin_unlock(&dev->ordered_cmd_lock); dev->dev_cur_ordered_id++; DEBUG_STA("Incremented dev_cur_ordered_id: %u for ORDERED:" " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id); } /* * Process all commands up to the last received * ORDERED task attribute which requires another blocking * boundary */ spin_lock(&dev->delayed_cmd_lock); list_for_each_entry_safe(cmd_p, cmd_tmp, &dev->delayed_cmd_list, se_delayed_list) { list_del(&cmd_p->se_delayed_list); spin_unlock(&dev->delayed_cmd_lock); DEBUG_STA("Calling add_tasks() for" " cmd_p: 0x%02x Task Attr: 0x%02x" " Dormant -> Active, se_ordered_id: %u\n", T_TASK(cmd_p)->t_task_cdb[0], cmd_p->sam_task_attr, cmd_p->se_ordered_id); transport_add_tasks_from_cmd(cmd_p); new_active_tasks++; spin_lock(&dev->delayed_cmd_lock); if (cmd_p->sam_task_attr == TASK_ATTR_ORDERED) break; } spin_unlock(&dev->delayed_cmd_lock); /* * If new tasks have become active, wake up the transport thread * to do the processing of the Active tasks. */ if (new_active_tasks != 0) wake_up_interruptible(&dev->dev_queue_obj->thread_wq); } static void transport_generic_complete_ok(struct se_cmd *cmd) { int reason = 0; /* * Check if we need to move delayed/dormant tasks from cmds on the * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task * Attribute. */ if (SE_DEV(cmd)->dev_task_attr_type == SAM_TASK_ATTR_EMULATED) transport_complete_task_attr(cmd); /* * Check if we need to retrieve a sense buffer from * the struct se_cmd in question. */ if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) { if (transport_get_sense_data(cmd) < 0) reason = TCM_NON_EXISTENT_LUN; /* * Only set when an struct se_task->task_scsi_status returned * a non GOOD status. */ if (cmd->scsi_status) { transport_send_check_condition_and_sense( cmd, reason, 1); transport_lun_remove_cmd(cmd); transport_cmd_check_stop_to_fabric(cmd); return; } } /* * Check for a callback, used by amongst other things * XDWRITE_READ_10 emulation. */ if (cmd->transport_complete_callback) cmd->transport_complete_callback(cmd); switch (cmd->data_direction) { case DMA_FROM_DEVICE: spin_lock(&cmd->se_lun->lun_sep_lock); if (SE_LUN(cmd)->lun_sep) { SE_LUN(cmd)->lun_sep->sep_stats.tx_data_octets += cmd->data_length; } spin_unlock(&cmd->se_lun->lun_sep_lock); /* * If enabled by TCM fabirc module pre-registered SGL * memory, perform the memcpy() from the TCM internal * contigious buffer back to the original SGL. */ if (cmd->se_cmd_flags & SCF_PASSTHROUGH_CONTIG_TO_SG) transport_memcpy_write_contig(cmd, T_TASK(cmd)->t_task_pt_sgl, T_TASK(cmd)->t_task_buf); CMD_TFO(cmd)->queue_data_in(cmd); break; case DMA_TO_DEVICE: spin_lock(&cmd->se_lun->lun_sep_lock); if (SE_LUN(cmd)->lun_sep) { SE_LUN(cmd)->lun_sep->sep_stats.rx_data_octets += cmd->data_length; } spin_unlock(&cmd->se_lun->lun_sep_lock); /* * Check if we need to send READ payload for BIDI-COMMAND */ if (T_TASK(cmd)->t_mem_bidi_list != NULL) { spin_lock(&cmd->se_lun->lun_sep_lock); if (SE_LUN(cmd)->lun_sep) { SE_LUN(cmd)->lun_sep->sep_stats.tx_data_octets += cmd->data_length; } spin_unlock(&cmd->se_lun->lun_sep_lock); CMD_TFO(cmd)->queue_data_in(cmd); break; } /* Fall through for DMA_TO_DEVICE */ case DMA_NONE: CMD_TFO(cmd)->queue_status(cmd); break; default: break; } transport_lun_remove_cmd(cmd); transport_cmd_check_stop_to_fabric(cmd); } static void transport_free_dev_tasks(struct se_cmd *cmd) { struct se_task *task, *task_tmp; unsigned long flags; spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); list_for_each_entry_safe(task, task_tmp, &T_TASK(cmd)->t_task_list, t_list) { if (atomic_read(&task->task_active)) continue; kfree(task->task_sg_bidi); kfree(task->task_sg); list_del(&task->t_list); spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); if (task->se_dev) TRANSPORT(task->se_dev)->free_task(task); else printk(KERN_ERR "task[%u] - task->se_dev is NULL\n", task->task_no); spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); } spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); } static inline void transport_free_pages(struct se_cmd *cmd) { struct se_mem *se_mem, *se_mem_tmp; int free_page = 1; if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) free_page = 0; if (cmd->se_dev->transport->do_se_mem_map) free_page = 0; if (T_TASK(cmd)->t_task_buf) { kfree(T_TASK(cmd)->t_task_buf); T_TASK(cmd)->t_task_buf = NULL; return; } /* * Caller will handle releasing of struct se_mem. */ if (cmd->se_cmd_flags & SCF_CMD_PASSTHROUGH_NOALLOC) return; if (!(T_TASK(cmd)->t_tasks_se_num)) return; list_for_each_entry_safe(se_mem, se_mem_tmp, T_TASK(cmd)->t_mem_list, se_list) { /* * We only release call __free_page(struct se_mem->se_page) when * SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC is NOT in use, */ if (free_page) __free_page(se_mem->se_page); list_del(&se_mem->se_list); kmem_cache_free(se_mem_cache, se_mem); } if (T_TASK(cmd)->t_mem_bidi_list && T_TASK(cmd)->t_tasks_se_bidi_num) { list_for_each_entry_safe(se_mem, se_mem_tmp, T_TASK(cmd)->t_mem_bidi_list, se_list) { /* * We only release call __free_page(struct se_mem->se_page) when * SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC is NOT in use, */ if (free_page) __free_page(se_mem->se_page); list_del(&se_mem->se_list); kmem_cache_free(se_mem_cache, se_mem); } } kfree(T_TASK(cmd)->t_mem_bidi_list); T_TASK(cmd)->t_mem_bidi_list = NULL; kfree(T_TASK(cmd)->t_mem_list); T_TASK(cmd)->t_mem_list = NULL; T_TASK(cmd)->t_tasks_se_num = 0; } static inline void transport_release_tasks(struct se_cmd *cmd) { transport_free_dev_tasks(cmd); } static inline int transport_dec_and_check(struct se_cmd *cmd) { unsigned long flags; spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); if (atomic_read(&T_TASK(cmd)->t_fe_count)) { if (!(atomic_dec_and_test(&T_TASK(cmd)->t_fe_count))) { spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); return 1; } } if (atomic_read(&T_TASK(cmd)->t_se_count)) { if (!(atomic_dec_and_test(&T_TASK(cmd)->t_se_count))) { spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); return 1; } } spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); return 0; } static void transport_release_fe_cmd(struct se_cmd *cmd) { unsigned long flags; if (transport_dec_and_check(cmd)) return; spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); if (!(atomic_read(&T_TASK(cmd)->transport_dev_active))) { spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); goto free_pages; } atomic_set(&T_TASK(cmd)->transport_dev_active, 0); transport_all_task_dev_remove_state(cmd); spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); transport_release_tasks(cmd); free_pages: transport_free_pages(cmd); transport_free_se_cmd(cmd); CMD_TFO(cmd)->release_cmd_direct(cmd); } static int transport_generic_remove( struct se_cmd *cmd, int release_to_pool, int session_reinstatement) { unsigned long flags; if (!(T_TASK(cmd))) goto release_cmd; if (transport_dec_and_check(cmd)) { if (session_reinstatement) { spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); transport_all_task_dev_remove_state(cmd); spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); } return 1; } spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); if (!(atomic_read(&T_TASK(cmd)->transport_dev_active))) { spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); goto free_pages; } atomic_set(&T_TASK(cmd)->transport_dev_active, 0); transport_all_task_dev_remove_state(cmd); spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); transport_release_tasks(cmd); free_pages: transport_free_pages(cmd); release_cmd: if (release_to_pool) { transport_release_cmd_to_pool(cmd); } else { transport_free_se_cmd(cmd); CMD_TFO(cmd)->release_cmd_direct(cmd); } return 0; } /* * transport_generic_map_mem_to_cmd - Perform SGL -> struct se_mem map * @cmd: Associated se_cmd descriptor * @mem: SGL style memory for TCM WRITE / READ * @sg_mem_num: Number of SGL elements * @mem_bidi_in: SGL style memory for TCM BIDI READ * @sg_mem_bidi_num: Number of BIDI READ SGL elements * * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage * of parameters. */ int transport_generic_map_mem_to_cmd( struct se_cmd *cmd, struct scatterlist *mem, u32 sg_mem_num, struct scatterlist *mem_bidi_in, u32 sg_mem_bidi_num) { u32 se_mem_cnt_out = 0; int ret; if (!(mem) || !(sg_mem_num)) return 0; /* * Passed *mem will contain a list_head containing preformatted * struct se_mem elements... */ if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM)) { if ((mem_bidi_in) || (sg_mem_bidi_num)) { printk(KERN_ERR "SCF_CMD_PASSTHROUGH_NOALLOC not supported" " with BIDI-COMMAND\n"); return -ENOSYS; } T_TASK(cmd)->t_mem_list = (struct list_head *)mem; T_TASK(cmd)->t_tasks_se_num = sg_mem_num; cmd->se_cmd_flags |= SCF_CMD_PASSTHROUGH_NOALLOC; return 0; } /* * Otherwise, assume the caller is passing a struct scatterlist * array from include/linux/scatterlist.h */ if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) || (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) { /* * For CDB using TCM struct se_mem linked list scatterlist memory * processed into a TCM struct se_subsystem_dev, we do the mapping * from the passed physical memory to struct se_mem->se_page here. */ T_TASK(cmd)->t_mem_list = transport_init_se_mem_list(); if (!(T_TASK(cmd)->t_mem_list)) return -ENOMEM; ret = transport_map_sg_to_mem(cmd, T_TASK(cmd)->t_mem_list, mem, &se_mem_cnt_out); if (ret < 0) return -ENOMEM; T_TASK(cmd)->t_tasks_se_num = se_mem_cnt_out; /* * Setup BIDI READ list of struct se_mem elements */ if ((mem_bidi_in) && (sg_mem_bidi_num)) { T_TASK(cmd)->t_mem_bidi_list = transport_init_se_mem_list(); if (!(T_TASK(cmd)->t_mem_bidi_list)) { kfree(T_TASK(cmd)->t_mem_list); return -ENOMEM; } se_mem_cnt_out = 0; ret = transport_map_sg_to_mem(cmd, T_TASK(cmd)->t_mem_bidi_list, mem_bidi_in, &se_mem_cnt_out); if (ret < 0) { kfree(T_TASK(cmd)->t_mem_list); return -ENOMEM; } T_TASK(cmd)->t_tasks_se_bidi_num = se_mem_cnt_out; } cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC; } else if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_NONSG_IO_CDB) { if (mem_bidi_in || sg_mem_bidi_num) { printk(KERN_ERR "BIDI-Commands not supported using " "SCF_SCSI_CONTROL_NONSG_IO_CDB\n"); return -ENOSYS; } /* * For incoming CDBs using a contiguous buffer internall with TCM, * save the passed struct scatterlist memory. After TCM storage object * processing has completed for this struct se_cmd, TCM core will call * transport_memcpy_[write,read]_contig() as necessary from * transport_generic_complete_ok() and transport_write_pending() in order * to copy the TCM buffer to/from the original passed *mem in SGL -> * struct scatterlist format. */ cmd->se_cmd_flags |= SCF_PASSTHROUGH_CONTIG_TO_SG; T_TASK(cmd)->t_task_pt_sgl = mem; } return 0; } EXPORT_SYMBOL(transport_generic_map_mem_to_cmd); static inline long long transport_dev_end_lba(struct se_device *dev) { return dev->transport->get_blocks(dev) + 1; } static int transport_get_sectors(struct se_cmd *cmd) { struct se_device *dev = SE_DEV(cmd); T_TASK(cmd)->t_tasks_sectors = (cmd->data_length / DEV_ATTRIB(dev)->block_size); if (!(T_TASK(cmd)->t_tasks_sectors)) T_TASK(cmd)->t_tasks_sectors = 1; if (TRANSPORT(dev)->get_device_type(dev) != TYPE_DISK) return 0; if ((T_TASK(cmd)->t_task_lba + T_TASK(cmd)->t_tasks_sectors) > transport_dev_end_lba(dev)) { printk(KERN_ERR "LBA: %llu Sectors: %u exceeds" " transport_dev_end_lba(): %llu\n", T_TASK(cmd)->t_task_lba, T_TASK(cmd)->t_tasks_sectors, transport_dev_end_lba(dev)); cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY; return PYX_TRANSPORT_REQ_TOO_MANY_SECTORS; } return 0; } static int transport_new_cmd_obj(struct se_cmd *cmd) { struct se_device *dev = SE_DEV(cmd); u32 task_cdbs = 0, rc; if (!(cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)) { task_cdbs++; T_TASK(cmd)->t_task_cdbs++; } else { int set_counts = 1; /* * Setup any BIDI READ tasks and memory from * T_TASK(cmd)->t_mem_bidi_list so the READ struct se_tasks * are queued first for the non pSCSI passthrough case. */ if ((T_TASK(cmd)->t_mem_bidi_list != NULL) && (TRANSPORT(dev)->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV)) { rc = transport_generic_get_cdb_count(cmd, T_TASK(cmd)->t_task_lba, T_TASK(cmd)->t_tasks_sectors, DMA_FROM_DEVICE, T_TASK(cmd)->t_mem_bidi_list, set_counts); if (!(rc)) { cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; return PYX_TRANSPORT_LU_COMM_FAILURE; } set_counts = 0; } /* * Setup the tasks and memory from T_TASK(cmd)->t_mem_list * Note for BIDI transfers this will contain the WRITE payload */ task_cdbs = transport_generic_get_cdb_count(cmd, T_TASK(cmd)->t_task_lba, T_TASK(cmd)->t_tasks_sectors, cmd->data_direction, T_TASK(cmd)->t_mem_list, set_counts); if (!(task_cdbs)) { cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; return PYX_TRANSPORT_LU_COMM_FAILURE; } T_TASK(cmd)->t_task_cdbs += task_cdbs; #if 0 printk(KERN_INFO "data_length: %u, LBA: %llu t_tasks_sectors:" " %u, t_task_cdbs: %u\n", obj_ptr, cmd->data_length, T_TASK(cmd)->t_task_lba, T_TASK(cmd)->t_tasks_sectors, T_TASK(cmd)->t_task_cdbs); #endif } atomic_set(&T_TASK(cmd)->t_task_cdbs_left, task_cdbs); atomic_set(&T_TASK(cmd)->t_task_cdbs_ex_left, task_cdbs); atomic_set(&T_TASK(cmd)->t_task_cdbs_timeout_left, task_cdbs); return 0; } static struct list_head *transport_init_se_mem_list(void) { struct list_head *se_mem_list; se_mem_list = kzalloc(sizeof(struct list_head), GFP_KERNEL); if (!(se_mem_list)) { printk(KERN_ERR "Unable to allocate memory for se_mem_list\n"); return NULL; } INIT_LIST_HEAD(se_mem_list); return se_mem_list; } static int transport_generic_get_mem(struct se_cmd *cmd, u32 length, u32 dma_size) { unsigned char *buf; struct se_mem *se_mem; T_TASK(cmd)->t_mem_list = transport_init_se_mem_list(); if (!(T_TASK(cmd)->t_mem_list)) return -ENOMEM; /* * If the device uses memory mapping this is enough. */ if (cmd->se_dev->transport->do_se_mem_map) return 0; /* * Setup BIDI-COMMAND READ list of struct se_mem elements */ if (T_TASK(cmd)->t_tasks_bidi) { T_TASK(cmd)->t_mem_bidi_list = transport_init_se_mem_list(); if (!(T_TASK(cmd)->t_mem_bidi_list)) { kfree(T_TASK(cmd)->t_mem_list); return -ENOMEM; } } while (length) { se_mem = kmem_cache_zalloc(se_mem_cache, GFP_KERNEL); if (!(se_mem)) { printk(KERN_ERR "Unable to allocate struct se_mem\n"); goto out; } /* #warning FIXME Allocate contigous pages for struct se_mem elements */ se_mem->se_page = alloc_pages(GFP_KERNEL, 0); if (!(se_mem->se_page)) { printk(KERN_ERR "alloc_pages() failed\n"); goto out; } buf = kmap_atomic(se_mem->se_page, KM_IRQ0); if (!(buf)) { printk(KERN_ERR "kmap_atomic() failed\n"); goto out; } INIT_LIST_HEAD(&se_mem->se_list); se_mem->se_len = (length > dma_size) ? dma_size : length; memset(buf, 0, se_mem->se_len); kunmap_atomic(buf, KM_IRQ0); list_add_tail(&se_mem->se_list, T_TASK(cmd)->t_mem_list); T_TASK(cmd)->t_tasks_se_num++; DEBUG_MEM("Allocated struct se_mem page(%p) Length(%u)" " Offset(%u)\n", se_mem->se_page, se_mem->se_len, se_mem->se_off); length -= se_mem->se_len; } DEBUG_MEM("Allocated total struct se_mem elements(%u)\n", T_TASK(cmd)->t_tasks_se_num); return 0; out: if (se_mem) __free_pages(se_mem->se_page, 0); kmem_cache_free(se_mem_cache, se_mem); return -1; } u32 transport_calc_sg_num( struct se_task *task, struct se_mem *in_se_mem, u32 task_offset) { struct se_cmd *se_cmd = task->task_se_cmd; struct se_device *se_dev = SE_DEV(se_cmd); struct se_mem *se_mem = in_se_mem; struct target_core_fabric_ops *tfo = CMD_TFO(se_cmd); u32 sg_length, task_size = task->task_size, task_sg_num_padded; while (task_size != 0) { DEBUG_SC("se_mem->se_page(%p) se_mem->se_len(%u)" " se_mem->se_off(%u) task_offset(%u)\n", se_mem->se_page, se_mem->se_len, se_mem->se_off, task_offset); if (task_offset == 0) { if (task_size >= se_mem->se_len) { sg_length = se_mem->se_len; if (!(list_is_last(&se_mem->se_list, T_TASK(se_cmd)->t_mem_list))) se_mem = list_entry(se_mem->se_list.next, struct se_mem, se_list); } else { sg_length = task_size; task_size -= sg_length; goto next; } DEBUG_SC("sg_length(%u) task_size(%u)\n", sg_length, task_size); } else { if ((se_mem->se_len - task_offset) > task_size) { sg_length = task_size; task_size -= sg_length; goto next; } else { sg_length = (se_mem->se_len - task_offset); if (!(list_is_last(&se_mem->se_list, T_TASK(se_cmd)->t_mem_list))) se_mem = list_entry(se_mem->se_list.next, struct se_mem, se_list); } DEBUG_SC("sg_length(%u) task_size(%u)\n", sg_length, task_size); task_offset = 0; } task_size -= sg_length; next: DEBUG_SC("task[%u] - Reducing task_size to(%u)\n", task->task_no, task_size); task->task_sg_num++; } /* * Check if the fabric module driver is requesting that all * struct se_task->task_sg[] be chained together.. If so, * then allocate an extra padding SG entry for linking and * marking the end of the chained SGL. */ if (tfo->task_sg_chaining) { task_sg_num_padded = (task->task_sg_num + 1); task->task_padded_sg = 1; } else task_sg_num_padded = task->task_sg_num; task->task_sg = kzalloc(task_sg_num_padded * sizeof(struct scatterlist), GFP_KERNEL); if (!(task->task_sg)) { printk(KERN_ERR "Unable to allocate memory for" " task->task_sg\n"); return 0; } sg_init_table(&task->task_sg[0], task_sg_num_padded); /* * Setup task->task_sg_bidi for SCSI READ payload for * TCM/pSCSI passthrough if present for BIDI-COMMAND */ if ((T_TASK(se_cmd)->t_mem_bidi_list != NULL) && (TRANSPORT(se_dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)) { task->task_sg_bidi = kzalloc(task_sg_num_padded * sizeof(struct scatterlist), GFP_KERNEL); if (!(task->task_sg_bidi)) { printk(KERN_ERR "Unable to allocate memory for" " task->task_sg_bidi\n"); return 0; } sg_init_table(&task->task_sg_bidi[0], task_sg_num_padded); } /* * For the chaining case, setup the proper end of SGL for the * initial submission struct task into struct se_subsystem_api. * This will be cleared later by transport_do_task_sg_chain() */ if (task->task_padded_sg) { sg_mark_end(&task->task_sg[task->task_sg_num - 1]); /* * Added the 'if' check before marking end of bi-directional * scatterlist (which gets created only in case of request * (RD + WR). */ if (task->task_sg_bidi) sg_mark_end(&task->task_sg_bidi[task->task_sg_num - 1]); } DEBUG_SC("Successfully allocated task->task_sg_num(%u)," " task_sg_num_padded(%u)\n", task->task_sg_num, task_sg_num_padded); return task->task_sg_num; } static inline int transport_set_tasks_sectors_disk( struct se_task *task, struct se_device *dev, unsigned long long lba, u32 sectors, int *max_sectors_set) { if ((lba + sectors) > transport_dev_end_lba(dev)) { task->task_sectors = ((transport_dev_end_lba(dev) - lba) + 1); if (task->task_sectors > DEV_ATTRIB(dev)->max_sectors) { task->task_sectors = DEV_ATTRIB(dev)->max_sectors; *max_sectors_set = 1; } } else { if (sectors > DEV_ATTRIB(dev)->max_sectors) { task->task_sectors = DEV_ATTRIB(dev)->max_sectors; *max_sectors_set = 1; } else task->task_sectors = sectors; } return 0; } static inline int transport_set_tasks_sectors_non_disk( struct se_task *task, struct se_device *dev, unsigned long long lba, u32 sectors, int *max_sectors_set) { if (sectors > DEV_ATTRIB(dev)->max_sectors) { task->task_sectors = DEV_ATTRIB(dev)->max_sectors; *max_sectors_set = 1; } else task->task_sectors = sectors; return 0; } static inline int transport_set_tasks_sectors( struct se_task *task, struct se_device *dev, unsigned long long lba, u32 sectors, int *max_sectors_set) { return (TRANSPORT(dev)->get_device_type(dev) == TYPE_DISK) ? transport_set_tasks_sectors_disk(task, dev, lba, sectors, max_sectors_set) : transport_set_tasks_sectors_non_disk(task, dev, lba, sectors, max_sectors_set); } static int transport_map_sg_to_mem( struct se_cmd *cmd, struct list_head *se_mem_list, void *in_mem, u32 *se_mem_cnt) { struct se_mem *se_mem; struct scatterlist *sg; u32 sg_count = 1, cmd_size = cmd->data_length; if (!in_mem) { printk(KERN_ERR "No source scatterlist\n"); return -1; } sg = (struct scatterlist *)in_mem; while (cmd_size) { se_mem = kmem_cache_zalloc(se_mem_cache, GFP_KERNEL); if (!(se_mem)) { printk(KERN_ERR "Unable to allocate struct se_mem\n"); return -1; } INIT_LIST_HEAD(&se_mem->se_list); DEBUG_MEM("sg_to_mem: Starting loop with cmd_size: %u" " sg_page: %p offset: %d length: %d\n", cmd_size, sg_page(sg), sg->offset, sg->length); se_mem->se_page = sg_page(sg); se_mem->se_off = sg->offset; if (cmd_size > sg->length) { se_mem->se_len = sg->length; sg = sg_next(sg); sg_count++; } else se_mem->se_len = cmd_size; cmd_size -= se_mem->se_len; DEBUG_MEM("sg_to_mem: *se_mem_cnt: %u cmd_size: %u\n", *se_mem_cnt, cmd_size); DEBUG_MEM("sg_to_mem: Final se_page: %p se_off: %d se_len: %d\n", se_mem->se_page, se_mem->se_off, se_mem->se_len); list_add_tail(&se_mem->se_list, se_mem_list); (*se_mem_cnt)++; } DEBUG_MEM("task[0] - Mapped(%u) struct scatterlist segments to(%u)" " struct se_mem\n", sg_count, *se_mem_cnt); if (sg_count != *se_mem_cnt) BUG(); return 0; } /* transport_map_mem_to_sg(): * * */ int transport_map_mem_to_sg( struct se_task *task, struct list_head *se_mem_list, void *in_mem, struct se_mem *in_se_mem, struct se_mem **out_se_mem, u32 *se_mem_cnt, u32 *task_offset) { struct se_cmd *se_cmd = task->task_se_cmd; struct se_mem *se_mem = in_se_mem; struct scatterlist *sg = (struct scatterlist *)in_mem; u32 task_size = task->task_size, sg_no = 0; if (!sg) { printk(KERN_ERR "Unable to locate valid struct" " scatterlist pointer\n"); return -1; } while (task_size != 0) { /* * Setup the contigious array of scatterlists for * this struct se_task. */ sg_assign_page(sg, se_mem->se_page); if (*task_offset == 0) { sg->offset = se_mem->se_off; if (task_size >= se_mem->se_len) { sg->length = se_mem->se_len; if (!(list_is_last(&se_mem->se_list, T_TASK(se_cmd)->t_mem_list))) { se_mem = list_entry(se_mem->se_list.next, struct se_mem, se_list); (*se_mem_cnt)++; } } else { sg->length = task_size; /* * Determine if we need to calculate an offset * into the struct se_mem on the next go around.. */ task_size -= sg->length; if (!(task_size)) *task_offset = sg->length; goto next; } } else { sg->offset = (*task_offset + se_mem->se_off); if ((se_mem->se_len - *task_offset) > task_size) { sg->length = task_size; /* * Determine if we need to calculate an offset * into the struct se_mem on the next go around.. */ task_size -= sg->length; if (!(task_size)) *task_offset += sg->length; goto next; } else { sg->length = (se_mem->se_len - *task_offset); if (!(list_is_last(&se_mem->se_list, T_TASK(se_cmd)->t_mem_list))) { se_mem = list_entry(se_mem->se_list.next, struct se_mem, se_list); (*se_mem_cnt)++; } } *task_offset = 0; } task_size -= sg->length; next: DEBUG_MEM("task[%u] mem_to_sg - sg[%u](%p)(%u)(%u) - Reducing" " task_size to(%u), task_offset: %u\n", task->task_no, sg_no, sg_page(sg), sg->length, sg->offset, task_size, *task_offset); sg_no++; if (!(task_size)) break; sg = sg_next(sg); if (task_size > se_cmd->data_length) BUG(); } *out_se_mem = se_mem; DEBUG_MEM("task[%u] - Mapped(%u) struct se_mem segments to total(%u)" " SGs\n", task->task_no, *se_mem_cnt, sg_no); return 0; } /* * This function can be used by HW target mode drivers to create a linked * scatterlist from all contiguously allocated struct se_task->task_sg[]. * This is intended to be called during the completion path by TCM Core * when struct target_core_fabric_ops->check_task_sg_chaining is enabled. */ void transport_do_task_sg_chain(struct se_cmd *cmd) { struct scatterlist *sg_head = NULL, *sg_link = NULL, *sg_first = NULL; struct scatterlist *sg_head_cur = NULL, *sg_link_cur = NULL; struct scatterlist *sg, *sg_end = NULL, *sg_end_cur = NULL; struct se_task *task; struct target_core_fabric_ops *tfo = CMD_TFO(cmd); u32 task_sg_num = 0, sg_count = 0; int i; if (tfo->task_sg_chaining == 0) { printk(KERN_ERR "task_sg_chaining is diabled for fabric module:" " %s\n", tfo->get_fabric_name()); dump_stack(); return; } /* * Walk the struct se_task list and setup scatterlist chains * for each contiguosly allocated struct se_task->task_sg[]. */ list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) { if (!(task->task_sg) || !(task->task_padded_sg)) continue; if (sg_head && sg_link) { sg_head_cur = &task->task_sg[0]; sg_link_cur = &task->task_sg[task->task_sg_num]; /* * Either add chain or mark end of scatterlist */ if (!(list_is_last(&task->t_list, &T_TASK(cmd)->t_task_list))) { /* * Clear existing SGL termination bit set in * transport_calc_sg_num(), see sg_mark_end() */ sg_end_cur = &task->task_sg[task->task_sg_num - 1]; sg_end_cur->page_link &= ~0x02; sg_chain(sg_head, task_sg_num, sg_head_cur); sg_count += task->task_sg_num; task_sg_num = (task->task_sg_num + 1); } else { sg_chain(sg_head, task_sg_num, sg_head_cur); sg_count += task->task_sg_num; task_sg_num = task->task_sg_num; } sg_head = sg_head_cur; sg_link = sg_link_cur; continue; } sg_head = sg_first = &task->task_sg[0]; sg_link = &task->task_sg[task->task_sg_num]; /* * Check for single task.. */ if (!(list_is_last(&task->t_list, &T_TASK(cmd)->t_task_list))) { /* * Clear existing SGL termination bit set in * transport_calc_sg_num(), see sg_mark_end() */ sg_end = &task->task_sg[task->task_sg_num - 1]; sg_end->page_link &= ~0x02; sg_count += task->task_sg_num; task_sg_num = (task->task_sg_num + 1); } else { sg_count += task->task_sg_num; task_sg_num = task->task_sg_num; } } /* * Setup the starting pointer and total t_tasks_sg_linked_no including * padding SGs for linking and to mark the end. */ T_TASK(cmd)->t_tasks_sg_chained = sg_first; T_TASK(cmd)->t_tasks_sg_chained_no = sg_count; DEBUG_CMD_M("Setup cmd: %p T_TASK(cmd)->t_tasks_sg_chained: %p and" " t_tasks_sg_chained_no: %u\n", cmd, T_TASK(cmd)->t_tasks_sg_chained, T_TASK(cmd)->t_tasks_sg_chained_no); for_each_sg(T_TASK(cmd)->t_tasks_sg_chained, sg, T_TASK(cmd)->t_tasks_sg_chained_no, i) { DEBUG_CMD_M("SG[%d]: %p page: %p length: %d offset: %d, magic: 0x%08x\n", i, sg, sg_page(sg), sg->length, sg->offset, sg->sg_magic); if (sg_is_chain(sg)) DEBUG_CMD_M("SG: %p sg_is_chain=1\n", sg); if (sg_is_last(sg)) DEBUG_CMD_M("SG: %p sg_is_last=1\n", sg); } } EXPORT_SYMBOL(transport_do_task_sg_chain); static int transport_do_se_mem_map( struct se_device *dev, struct se_task *task, struct list_head *se_mem_list, void *in_mem, struct se_mem *in_se_mem, struct se_mem **out_se_mem, u32 *se_mem_cnt, u32 *task_offset_in) { u32 task_offset = *task_offset_in; int ret = 0; /* * se_subsystem_api_t->do_se_mem_map is used when internal allocation * has been done by the transport plugin. */ if (TRANSPORT(dev)->do_se_mem_map) { ret = TRANSPORT(dev)->do_se_mem_map(task, se_mem_list, in_mem, in_se_mem, out_se_mem, se_mem_cnt, task_offset_in); if (ret == 0) T_TASK(task->task_se_cmd)->t_tasks_se_num += *se_mem_cnt; return ret; } BUG_ON(list_empty(se_mem_list)); /* * This is the normal path for all normal non BIDI and BIDI-COMMAND * WRITE payloads.. If we need to do BIDI READ passthrough for * TCM/pSCSI the first call to transport_do_se_mem_map -> * transport_calc_sg_num() -> transport_map_mem_to_sg() will do the * allocation for task->task_sg_bidi, and the subsequent call to * transport_do_se_mem_map() from transport_generic_get_cdb_count() */ if (!(task->task_sg_bidi)) { /* * Assume default that transport plugin speaks preallocated * scatterlists. */ if (!(transport_calc_sg_num(task, in_se_mem, task_offset))) return -1; /* * struct se_task->task_sg now contains the struct scatterlist array. */ return transport_map_mem_to_sg(task, se_mem_list, task->task_sg, in_se_mem, out_se_mem, se_mem_cnt, task_offset_in); } /* * Handle the se_mem_list -> struct task->task_sg_bidi * memory map for the extra BIDI READ payload */ return transport_map_mem_to_sg(task, se_mem_list, task->task_sg_bidi, in_se_mem, out_se_mem, se_mem_cnt, task_offset_in); } static u32 transport_generic_get_cdb_count( struct se_cmd *cmd, unsigned long long lba, u32 sectors, enum dma_data_direction data_direction, struct list_head *mem_list, int set_counts) { unsigned char *cdb = NULL; struct se_task *task; struct se_mem *se_mem = NULL, *se_mem_lout = NULL; struct se_mem *se_mem_bidi = NULL, *se_mem_bidi_lout = NULL; struct se_device *dev = SE_DEV(cmd); int max_sectors_set = 0, ret; u32 task_offset_in = 0, se_mem_cnt = 0, se_mem_bidi_cnt = 0, task_cdbs = 0; if (!mem_list) { printk(KERN_ERR "mem_list is NULL in transport_generic_get" "_cdb_count()\n"); return 0; } /* * While using RAMDISK_DR backstores is the only case where * mem_list will ever be empty at this point. */ if (!(list_empty(mem_list))) se_mem = list_entry(mem_list->next, struct se_mem, se_list); /* * Check for extra se_mem_bidi mapping for BIDI-COMMANDs to * struct se_task->task_sg_bidi for TCM/pSCSI passthrough operation */ if ((T_TASK(cmd)->t_mem_bidi_list != NULL) && !(list_empty(T_TASK(cmd)->t_mem_bidi_list)) && (TRANSPORT(dev)->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)) se_mem_bidi = list_entry(T_TASK(cmd)->t_mem_bidi_list->next, struct se_mem, se_list); while (sectors) { DEBUG_VOL("ITT[0x%08x] LBA(%llu) SectorsLeft(%u) EOBJ(%llu)\n", CMD_TFO(cmd)->get_task_tag(cmd), lba, sectors, transport_dev_end_lba(dev)); task = transport_generic_get_task(cmd, data_direction); if (!(task)) goto out; transport_set_tasks_sectors(task, dev, lba, sectors, &max_sectors_set); task->task_lba = lba; lba += task->task_sectors; sectors -= task->task_sectors; task->task_size = (task->task_sectors * DEV_ATTRIB(dev)->block_size); cdb = TRANSPORT(dev)->get_cdb(task); if ((cdb)) { memcpy(cdb, T_TASK(cmd)->t_task_cdb, scsi_command_size(T_TASK(cmd)->t_task_cdb)); cmd->transport_split_cdb(task->task_lba, &task->task_sectors, cdb); } /* * Perform the SE OBJ plugin and/or Transport plugin specific * mapping for T_TASK(cmd)->t_mem_list. And setup the * task->task_sg and if necessary task->task_sg_bidi */ ret = transport_do_se_mem_map(dev, task, mem_list, NULL, se_mem, &se_mem_lout, &se_mem_cnt, &task_offset_in); if (ret < 0) goto out; se_mem = se_mem_lout; /* * Setup the T_TASK(cmd)->t_mem_bidi_list -> task->task_sg_bidi * mapping for SCSI READ for BIDI-COMMAND passthrough with TCM/pSCSI * * Note that the first call to transport_do_se_mem_map() above will * allocate struct se_task->task_sg_bidi in transport_do_se_mem_map() * -> transport_calc_sg_num(), and the second here will do the * mapping for SCSI READ for BIDI-COMMAND passthrough with TCM/pSCSI. */ if (task->task_sg_bidi != NULL) { ret = transport_do_se_mem_map(dev, task, T_TASK(cmd)->t_mem_bidi_list, NULL, se_mem_bidi, &se_mem_bidi_lout, &se_mem_bidi_cnt, &task_offset_in); if (ret < 0) goto out; se_mem_bidi = se_mem_bidi_lout; } task_cdbs++; DEBUG_VOL("Incremented task_cdbs(%u) task->task_sg_num(%u)\n", task_cdbs, task->task_sg_num); if (max_sectors_set) { max_sectors_set = 0; continue; } if (!sectors) break; } if (set_counts) { atomic_inc(&T_TASK(cmd)->t_fe_count); atomic_inc(&T_TASK(cmd)->t_se_count); } DEBUG_VOL("ITT[0x%08x] total %s cdbs(%u)\n", CMD_TFO(cmd)->get_task_tag(cmd), (data_direction == DMA_TO_DEVICE) ? "DMA_TO_DEVICE" : "DMA_FROM_DEVICE", task_cdbs); return task_cdbs; out: return 0; } static int transport_map_control_cmd_to_task(struct se_cmd *cmd) { struct se_device *dev = SE_DEV(cmd); unsigned char *cdb; struct se_task *task; int ret; task = transport_generic_get_task(cmd, cmd->data_direction); if (!task) return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES; cdb = TRANSPORT(dev)->get_cdb(task); if (cdb) memcpy(cdb, cmd->t_task->t_task_cdb, scsi_command_size(cmd->t_task->t_task_cdb)); task->task_size = cmd->data_length; task->task_sg_num = (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) ? 1 : 0; atomic_inc(&cmd->t_task->t_fe_count); atomic_inc(&cmd->t_task->t_se_count); if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) { struct se_mem *se_mem = NULL, *se_mem_lout = NULL; u32 se_mem_cnt = 0, task_offset = 0; if (!list_empty(T_TASK(cmd)->t_mem_list)) se_mem = list_entry(T_TASK(cmd)->t_mem_list->next, struct se_mem, se_list); ret = transport_do_se_mem_map(dev, task, cmd->t_task->t_mem_list, NULL, se_mem, &se_mem_lout, &se_mem_cnt, &task_offset); if (ret < 0) return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES; if (dev->transport->map_task_SG) return dev->transport->map_task_SG(task); return 0; } else if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_NONSG_IO_CDB) { if (dev->transport->map_task_non_SG) return dev->transport->map_task_non_SG(task); return 0; } else if (cmd->se_cmd_flags & SCF_SCSI_NON_DATA_CDB) { if (dev->transport->cdb_none) return dev->transport->cdb_none(task); return 0; } else { BUG(); return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES; } } /* transport_generic_new_cmd(): Called from transport_processing_thread() * * Allocate storage transport resources from a set of values predefined * by transport_generic_cmd_sequencer() from the iSCSI Target RX process. * Any non zero return here is treated as an "out of resource' op here. */ /* * Generate struct se_task(s) and/or their payloads for this CDB. */ static int transport_generic_new_cmd(struct se_cmd *cmd) { struct se_portal_group *se_tpg; struct se_task *task; struct se_device *dev = SE_DEV(cmd); int ret = 0; /* * Determine is the TCM fabric module has already allocated physical * memory, and is directly calling transport_generic_map_mem_to_cmd() * to setup beforehand the linked list of physical memory at * T_TASK(cmd)->t_mem_list of struct se_mem->se_page */ if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)) { ret = transport_allocate_resources(cmd); if (ret < 0) return ret; } ret = transport_get_sectors(cmd); if (ret < 0) return ret; ret = transport_new_cmd_obj(cmd); if (ret < 0) return ret; /* * Determine if the calling TCM fabric module is talking to * Linux/NET via kernel sockets and needs to allocate a * struct iovec array to complete the struct se_cmd */ se_tpg = SE_LUN(cmd)->lun_sep->sep_tpg; if (TPG_TFO(se_tpg)->alloc_cmd_iovecs != NULL) { ret = TPG_TFO(se_tpg)->alloc_cmd_iovecs(cmd); if (ret < 0) return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES; } if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) { list_for_each_entry(task, &T_TASK(cmd)->t_task_list, t_list) { if (atomic_read(&task->task_sent)) continue; if (!dev->transport->map_task_SG) continue; ret = dev->transport->map_task_SG(task); if (ret < 0) return ret; } } else { ret = transport_map_control_cmd_to_task(cmd); if (ret < 0) return ret; } /* * For WRITEs, let the iSCSI Target RX Thread know its buffer is ready.. * This WRITE struct se_cmd (and all of its associated struct se_task's) * will be added to the struct se_device execution queue after its WRITE * data has arrived. (ie: It gets handled by the transport processing * thread a second time) */ if (cmd->data_direction == DMA_TO_DEVICE) { transport_add_tasks_to_state_queue(cmd); return transport_generic_write_pending(cmd); } /* * Everything else but a WRITE, add the struct se_cmd's struct se_task's * to the execution queue. */ transport_execute_tasks(cmd); return 0; } /* transport_generic_process_write(): * * */ void transport_generic_process_write(struct se_cmd *cmd) { #if 0 /* * Copy SCSI Presented DTL sector(s) from received buffers allocated to * original EDTL */ if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) { if (!T_TASK(cmd)->t_tasks_se_num) { unsigned char *dst, *buf = (unsigned char *)T_TASK(cmd)->t_task_buf; dst = kzalloc(cmd->cmd_spdtl), GFP_KERNEL); if (!(dst)) { printk(KERN_ERR "Unable to allocate memory for" " WRITE underflow\n"); transport_generic_request_failure(cmd, NULL, PYX_TRANSPORT_REQ_TOO_MANY_SECTORS, 1); return; } memcpy(dst, buf, cmd->cmd_spdtl); kfree(T_TASK(cmd)->t_task_buf); T_TASK(cmd)->t_task_buf = dst; } else { struct scatterlist *sg = (struct scatterlist *sg)T_TASK(cmd)->t_task_buf; struct scatterlist *orig_sg; orig_sg = kzalloc(sizeof(struct scatterlist) * T_TASK(cmd)->t_tasks_se_num, GFP_KERNEL))) { if (!(orig_sg)) { printk(KERN_ERR "Unable to allocate memory" " for WRITE underflow\n"); transport_generic_request_failure(cmd, NULL, PYX_TRANSPORT_REQ_TOO_MANY_SECTORS, 1); return; } memcpy(orig_sg, T_TASK(cmd)->t_task_buf, sizeof(struct scatterlist) * T_TASK(cmd)->t_tasks_se_num); cmd->data_length = cmd->cmd_spdtl; /* * FIXME, clear out original struct se_task and state * information. */ if (transport_generic_new_cmd(cmd) < 0) { transport_generic_request_failure(cmd, NULL, PYX_TRANSPORT_REQ_TOO_MANY_SECTORS, 1); kfree(orig_sg); return; } transport_memcpy_write_sg(cmd, orig_sg); } } #endif transport_execute_tasks(cmd); } EXPORT_SYMBOL(transport_generic_process_write); /* transport_generic_write_pending(): * * */ static int transport_generic_write_pending(struct se_cmd *cmd) { unsigned long flags; int ret; spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); cmd->t_state = TRANSPORT_WRITE_PENDING; spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); /* * For the TCM control CDBs using a contiguous buffer, do the memcpy * from the passed Linux/SCSI struct scatterlist located at * T_TASK(se_cmd)->t_task_pt_buf to the contiguous buffer at * T_TASK(se_cmd)->t_task_buf. */ if (cmd->se_cmd_flags & SCF_PASSTHROUGH_CONTIG_TO_SG) transport_memcpy_read_contig(cmd, T_TASK(cmd)->t_task_buf, T_TASK(cmd)->t_task_pt_sgl); /* * Clear the se_cmd for WRITE_PENDING status in order to set * T_TASK(cmd)->t_transport_active=0 so that transport_generic_handle_data * can be called from HW target mode interrupt code. This is safe * to be called with transport_off=1 before the CMD_TFO(cmd)->write_pending * because the se_cmd->se_lun pointer is not being cleared. */ transport_cmd_check_stop(cmd, 1, 0); /* * Call the fabric write_pending function here to let the * frontend know that WRITE buffers are ready. */ ret = CMD_TFO(cmd)->write_pending(cmd); if (ret < 0) return ret; return PYX_TRANSPORT_WRITE_PENDING; } /* transport_release_cmd_to_pool(): * * */ void transport_release_cmd_to_pool(struct se_cmd *cmd) { BUG_ON(!T_TASK(cmd)); BUG_ON(!CMD_TFO(cmd)); transport_free_se_cmd(cmd); CMD_TFO(cmd)->release_cmd_to_pool(cmd); } EXPORT_SYMBOL(transport_release_cmd_to_pool); /* transport_generic_free_cmd(): * * Called from processing frontend to release storage engine resources */ void transport_generic_free_cmd( struct se_cmd *cmd, int wait_for_tasks, int release_to_pool, int session_reinstatement) { if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) || !T_TASK(cmd)) transport_release_cmd_to_pool(cmd); else { core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd); if (SE_LUN(cmd)) { #if 0 printk(KERN_INFO "cmd: %p ITT: 0x%08x contains" " SE_LUN(cmd)\n", cmd, CMD_TFO(cmd)->get_task_tag(cmd)); #endif transport_lun_remove_cmd(cmd); } if (wait_for_tasks && cmd->transport_wait_for_tasks) cmd->transport_wait_for_tasks(cmd, 0, 0); transport_generic_remove(cmd, release_to_pool, session_reinstatement); } } EXPORT_SYMBOL(transport_generic_free_cmd); static void transport_nop_wait_for_tasks( struct se_cmd *cmd, int remove_cmd, int session_reinstatement) { return; } /* transport_lun_wait_for_tasks(): * * Called from ConfigFS context to stop the passed struct se_cmd to allow * an struct se_lun to be successfully shutdown. */ static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun) { unsigned long flags; int ret; /* * If the frontend has already requested this struct se_cmd to * be stopped, we can safely ignore this struct se_cmd. */ spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); if (atomic_read(&T_TASK(cmd)->t_transport_stop)) { atomic_set(&T_TASK(cmd)->transport_lun_stop, 0); DEBUG_TRANSPORT_S("ConfigFS ITT[0x%08x] - t_transport_stop ==" " TRUE, skipping\n", CMD_TFO(cmd)->get_task_tag(cmd)); spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); transport_cmd_check_stop(cmd, 1, 0); return -1; } atomic_set(&T_TASK(cmd)->transport_lun_fe_stop, 1); spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); wake_up_interruptible(&SE_DEV(cmd)->dev_queue_obj->thread_wq); ret = transport_stop_tasks_for_cmd(cmd); DEBUG_TRANSPORT_S("ConfigFS: cmd: %p t_task_cdbs: %d stop tasks ret:" " %d\n", cmd, T_TASK(cmd)->t_task_cdbs, ret); if (!ret) { DEBUG_TRANSPORT_S("ConfigFS: ITT[0x%08x] - stopping cmd....\n", CMD_TFO(cmd)->get_task_tag(cmd)); wait_for_completion(&T_TASK(cmd)->transport_lun_stop_comp); DEBUG_TRANSPORT_S("ConfigFS: ITT[0x%08x] - stopped cmd....\n", CMD_TFO(cmd)->get_task_tag(cmd)); } transport_remove_cmd_from_queue(cmd, SE_DEV(cmd)->dev_queue_obj); return 0; } /* #define DEBUG_CLEAR_LUN */ #ifdef DEBUG_CLEAR_LUN #define DEBUG_CLEAR_L(x...) printk(KERN_INFO x) #else #define DEBUG_CLEAR_L(x...) #endif static void __transport_clear_lun_from_sessions(struct se_lun *lun) { struct se_cmd *cmd = NULL; unsigned long lun_flags, cmd_flags; /* * Do exception processing and return CHECK_CONDITION status to the * Initiator Port. */ spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags); while (!list_empty_careful(&lun->lun_cmd_list)) { cmd = list_entry(lun->lun_cmd_list.next, struct se_cmd, se_lun_list); list_del(&cmd->se_lun_list); if (!(T_TASK(cmd))) { printk(KERN_ERR "ITT: 0x%08x, T_TASK(cmd) = NULL" "[i,t]_state: %u/%u\n", CMD_TFO(cmd)->get_task_tag(cmd), CMD_TFO(cmd)->get_cmd_state(cmd), cmd->t_state); BUG(); } atomic_set(&T_TASK(cmd)->transport_lun_active, 0); /* * This will notify iscsi_target_transport.c: * transport_cmd_check_stop() that a LUN shutdown is in * progress for the iscsi_cmd_t. */ spin_lock(&T_TASK(cmd)->t_state_lock); DEBUG_CLEAR_L("SE_LUN[%d] - Setting T_TASK(cmd)->transport" "_lun_stop for ITT: 0x%08x\n", SE_LUN(cmd)->unpacked_lun, CMD_TFO(cmd)->get_task_tag(cmd)); atomic_set(&T_TASK(cmd)->transport_lun_stop, 1); spin_unlock(&T_TASK(cmd)->t_state_lock); spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags); if (!(SE_LUN(cmd))) { printk(KERN_ERR "ITT: 0x%08x, [i,t]_state: %u/%u\n", CMD_TFO(cmd)->get_task_tag(cmd), CMD_TFO(cmd)->get_cmd_state(cmd), cmd->t_state); BUG(); } /* * If the Storage engine still owns the iscsi_cmd_t, determine * and/or stop its context. */ DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x before transport" "_lun_wait_for_tasks()\n", SE_LUN(cmd)->unpacked_lun, CMD_TFO(cmd)->get_task_tag(cmd)); if (transport_lun_wait_for_tasks(cmd, SE_LUN(cmd)) < 0) { spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags); continue; } DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x after transport_lun" "_wait_for_tasks(): SUCCESS\n", SE_LUN(cmd)->unpacked_lun, CMD_TFO(cmd)->get_task_tag(cmd)); spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, cmd_flags); if (!(atomic_read(&T_TASK(cmd)->transport_dev_active))) { spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, cmd_flags); goto check_cond; } atomic_set(&T_TASK(cmd)->transport_dev_active, 0); transport_all_task_dev_remove_state(cmd); spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, cmd_flags); transport_free_dev_tasks(cmd); /* * The Storage engine stopped this struct se_cmd before it was * send to the fabric frontend for delivery back to the * Initiator Node. Return this SCSI CDB back with an * CHECK_CONDITION status. */ check_cond: transport_send_check_condition_and_sense(cmd, TCM_NON_EXISTENT_LUN, 0); /* * If the fabric frontend is waiting for this iscsi_cmd_t to * be released, notify the waiting thread now that LU has * finished accessing it. */ spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, cmd_flags); if (atomic_read(&T_TASK(cmd)->transport_lun_fe_stop)) { DEBUG_CLEAR_L("SE_LUN[%d] - Detected FE stop for" " struct se_cmd: %p ITT: 0x%08x\n", lun->unpacked_lun, cmd, CMD_TFO(cmd)->get_task_tag(cmd)); spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, cmd_flags); transport_cmd_check_stop(cmd, 1, 0); complete(&T_TASK(cmd)->transport_lun_fe_stop_comp); spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags); continue; } DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x finished processing\n", lun->unpacked_lun, CMD_TFO(cmd)->get_task_tag(cmd)); spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, cmd_flags); spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags); } spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags); } static int transport_clear_lun_thread(void *p) { struct se_lun *lun = (struct se_lun *)p; __transport_clear_lun_from_sessions(lun); complete(&lun->lun_shutdown_comp); return 0; } int transport_clear_lun_from_sessions(struct se_lun *lun) { struct task_struct *kt; kt = kthread_run(transport_clear_lun_thread, (void *)lun, "tcm_cl_%u", lun->unpacked_lun); if (IS_ERR(kt)) { printk(KERN_ERR "Unable to start clear_lun thread\n"); return -1; } wait_for_completion(&lun->lun_shutdown_comp); return 0; } /* transport_generic_wait_for_tasks(): * * Called from frontend or passthrough context to wait for storage engine * to pause and/or release frontend generated struct se_cmd. */ static void transport_generic_wait_for_tasks( struct se_cmd *cmd, int remove_cmd, int session_reinstatement) { unsigned long flags; if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req)) return; spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); /* * If we are already stopped due to an external event (ie: LUN shutdown) * sleep until the connection can have the passed struct se_cmd back. * The T_TASK(cmd)->transport_lun_stopped_sem will be upped by * transport_clear_lun_from_sessions() once the ConfigFS context caller * has completed its operation on the struct se_cmd. */ if (atomic_read(&T_TASK(cmd)->transport_lun_stop)) { DEBUG_TRANSPORT_S("wait_for_tasks: Stopping" " wait_for_completion(&T_TASK(cmd)transport_lun_fe" "_stop_comp); for ITT: 0x%08x\n", CMD_TFO(cmd)->get_task_tag(cmd)); /* * There is a special case for WRITES where a FE exception + * LUN shutdown means ConfigFS context is still sleeping on * transport_lun_stop_comp in transport_lun_wait_for_tasks(). * We go ahead and up transport_lun_stop_comp just to be sure * here. */ spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); complete(&T_TASK(cmd)->transport_lun_stop_comp); wait_for_completion(&T_TASK(cmd)->transport_lun_fe_stop_comp); spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); transport_all_task_dev_remove_state(cmd); /* * At this point, the frontend who was the originator of this * struct se_cmd, now owns the structure and can be released through * normal means below. */ DEBUG_TRANSPORT_S("wait_for_tasks: Stopped" " wait_for_completion(&T_TASK(cmd)transport_lun_fe_" "stop_comp); for ITT: 0x%08x\n", CMD_TFO(cmd)->get_task_tag(cmd)); atomic_set(&T_TASK(cmd)->transport_lun_stop, 0); } if (!atomic_read(&T_TASK(cmd)->t_transport_active) || atomic_read(&T_TASK(cmd)->t_transport_aborted)) goto remove; atomic_set(&T_TASK(cmd)->t_transport_stop, 1); DEBUG_TRANSPORT_S("wait_for_tasks: Stopping %p ITT: 0x%08x" " i_state: %d, t_state/def_t_state: %d/%d, t_transport_stop" " = TRUE\n", cmd, CMD_TFO(cmd)->get_task_tag(cmd), CMD_TFO(cmd)->get_cmd_state(cmd), cmd->t_state, cmd->deferred_t_state); spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); wake_up_interruptible(&SE_DEV(cmd)->dev_queue_obj->thread_wq); wait_for_completion(&T_TASK(cmd)->t_transport_stop_comp); spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); atomic_set(&T_TASK(cmd)->t_transport_active, 0); atomic_set(&T_TASK(cmd)->t_transport_stop, 0); DEBUG_TRANSPORT_S("wait_for_tasks: Stopped wait_for_compltion(" "&T_TASK(cmd)->t_transport_stop_comp) for ITT: 0x%08x\n", CMD_TFO(cmd)->get_task_tag(cmd)); remove: spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); if (!remove_cmd) return; transport_generic_free_cmd(cmd, 0, 0, session_reinstatement); } static int transport_get_sense_codes( struct se_cmd *cmd, u8 *asc, u8 *ascq) { *asc = cmd->scsi_asc; *ascq = cmd->scsi_ascq; return 0; } static int transport_set_sense_codes( struct se_cmd *cmd, u8 asc, u8 ascq) { cmd->scsi_asc = asc; cmd->scsi_ascq = ascq; return 0; } int transport_send_check_condition_and_sense( struct se_cmd *cmd, u8 reason, int from_transport) { unsigned char *buffer = cmd->sense_buffer; unsigned long flags; int offset; u8 asc = 0, ascq = 0; spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) { spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); return 0; } cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION; spin_unlock_irqrestore(&T_TASK(cmd)->t_state_lock, flags); if (!reason && from_transport) goto after_reason; if (!from_transport) cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE; /* * Data Segment and SenseLength of the fabric response PDU. * * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE * from include/scsi/scsi_cmnd.h */ offset = CMD_TFO(cmd)->set_fabric_sense_len(cmd, TRANSPORT_SENSE_BUFFER); /* * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses * SENSE KEY values from include/scsi/scsi.h */ switch (reason) { case TCM_NON_EXISTENT_LUN: case TCM_UNSUPPORTED_SCSI_OPCODE: case TCM_SECTOR_COUNT_TOO_MANY: /* CURRENT ERROR */ buffer[offset] = 0x70; /* ILLEGAL REQUEST */ buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; /* INVALID COMMAND OPERATION CODE */ buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20; break; case TCM_UNKNOWN_MODE_PAGE: /* CURRENT ERROR */ buffer[offset] = 0x70; /* ILLEGAL REQUEST */ buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; /* INVALID FIELD IN CDB */ buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24; break; case TCM_CHECK_CONDITION_ABORT_CMD: /* CURRENT ERROR */ buffer[offset] = 0x70; /* ABORTED COMMAND */ buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; /* BUS DEVICE RESET FUNCTION OCCURRED */ buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29; buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03; break; case TCM_INCORRECT_AMOUNT_OF_DATA: /* CURRENT ERROR */ buffer[offset] = 0x70; /* ABORTED COMMAND */ buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; /* WRITE ERROR */ buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c; /* NOT ENOUGH UNSOLICITED DATA */ buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d; break; case TCM_INVALID_CDB_FIELD: /* CURRENT ERROR */ buffer[offset] = 0x70; /* ABORTED COMMAND */ buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; /* INVALID FIELD IN CDB */ buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24; break; case TCM_INVALID_PARAMETER_LIST: /* CURRENT ERROR */ buffer[offset] = 0x70; /* ABORTED COMMAND */ buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; /* INVALID FIELD IN PARAMETER LIST */ buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26; break; case TCM_UNEXPECTED_UNSOLICITED_DATA: /* CURRENT ERROR */ buffer[offset] = 0x70; /* ABORTED COMMAND */ buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; /* WRITE ERROR */ buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c; /* UNEXPECTED_UNSOLICITED_DATA */ buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c; break; case TCM_SERVICE_CRC_ERROR: /* CURRENT ERROR */ buffer[offset] = 0x70; /* ABORTED COMMAND */ buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; /* PROTOCOL SERVICE CRC ERROR */ buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47; /* N/A */ buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05; break; case TCM_SNACK_REJECTED: /* CURRENT ERROR */ buffer[offset] = 0x70; /* ABORTED COMMAND */ buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND; /* READ ERROR */ buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11; /* FAILED RETRANSMISSION REQUEST */ buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13; break; case TCM_WRITE_PROTECTED: /* CURRENT ERROR */ buffer[offset] = 0x70; /* DATA PROTECT */ buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT; /* WRITE PROTECTED */ buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27; break; case TCM_CHECK_CONDITION_UNIT_ATTENTION: /* CURRENT ERROR */ buffer[offset] = 0x70; /* UNIT ATTENTION */ buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION; core_scsi3_ua_for_check_condition(cmd, &asc, &ascq); buffer[offset+SPC_ASC_KEY_OFFSET] = asc; buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq; break; case TCM_CHECK_CONDITION_NOT_READY: /* CURRENT ERROR */ buffer[offset] = 0x70; /* Not Ready */ buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY; transport_get_sense_codes(cmd, &asc, &ascq); buffer[offset+SPC_ASC_KEY_OFFSET] = asc; buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq; break; case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE: default: /* CURRENT ERROR */ buffer[offset] = 0x70; /* ILLEGAL REQUEST */ buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST; /* LOGICAL UNIT COMMUNICATION FAILURE */ buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80; break; } /* * This code uses linux/include/scsi/scsi.h SAM status codes! */ cmd->scsi_status = SAM_STAT_CHECK_CONDITION; /* * Automatically padded, this value is encoded in the fabric's * data_length response PDU containing the SCSI defined sense data. */ cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset; after_reason: CMD_TFO(cmd)->queue_status(cmd); return 0; } EXPORT_SYMBOL(transport_send_check_condition_and_sense); int transport_check_aborted_status(struct se_cmd *cmd, int send_status) { int ret = 0; if (atomic_read(&T_TASK(cmd)->t_transport_aborted) != 0) { if (!(send_status) || (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS)) return 1; #if 0 printk(KERN_INFO "Sending delayed SAM_STAT_TASK_ABORTED" " status for CDB: 0x%02x ITT: 0x%08x\n", T_TASK(cmd)->t_task_cdb[0], CMD_TFO(cmd)->get_task_tag(cmd)); #endif cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS; CMD_TFO(cmd)->queue_status(cmd); ret = 1; } return ret; } EXPORT_SYMBOL(transport_check_aborted_status); void transport_send_task_abort(struct se_cmd *cmd) { /* * If there are still expected incoming fabric WRITEs, we wait * until until they have completed before sending a TASK_ABORTED * response. This response with TASK_ABORTED status will be * queued back to fabric module by transport_check_aborted_status(). */ if (cmd->data_direction == DMA_TO_DEVICE) { if (CMD_TFO(cmd)->write_pending_status(cmd) != 0) { atomic_inc(&T_TASK(cmd)->t_transport_aborted); smp_mb__after_atomic_inc(); cmd->scsi_status = SAM_STAT_TASK_ABORTED; transport_new_cmd_failure(cmd); return; } } cmd->scsi_status = SAM_STAT_TASK_ABORTED; #if 0 printk(KERN_INFO "Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x," " ITT: 0x%08x\n", T_TASK(cmd)->t_task_cdb[0], CMD_TFO(cmd)->get_task_tag(cmd)); #endif CMD_TFO(cmd)->queue_status(cmd); } /* transport_generic_do_tmr(): * * */ int transport_generic_do_tmr(struct se_cmd *cmd) { struct se_cmd *ref_cmd; struct se_device *dev = SE_DEV(cmd); struct se_tmr_req *tmr = cmd->se_tmr_req; int ret; switch (tmr->function) { case TMR_ABORT_TASK: ref_cmd = tmr->ref_cmd; tmr->response = TMR_FUNCTION_REJECTED; break; case TMR_ABORT_TASK_SET: case TMR_CLEAR_ACA: case TMR_CLEAR_TASK_SET: tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED; break; case TMR_LUN_RESET: ret = core_tmr_lun_reset(dev, tmr, NULL, NULL); tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE : TMR_FUNCTION_REJECTED; break; case TMR_TARGET_WARM_RESET: tmr->response = TMR_FUNCTION_REJECTED; break; case TMR_TARGET_COLD_RESET: tmr->response = TMR_FUNCTION_REJECTED; break; default: printk(KERN_ERR "Uknown TMR function: 0x%02x.\n", tmr->function); tmr->response = TMR_FUNCTION_REJECTED; break; } cmd->t_state = TRANSPORT_ISTATE_PROCESSING; CMD_TFO(cmd)->queue_tm_rsp(cmd); transport_cmd_check_stop(cmd, 2, 0); return 0; } /* * Called with spin_lock_irq(&dev->execute_task_lock); held * */ static struct se_task * transport_get_task_from_state_list(struct se_device *dev) { struct se_task *task; if (list_empty(&dev->state_task_list)) return NULL; list_for_each_entry(task, &dev->state_task_list, t_state_list) break; list_del(&task->t_state_list); atomic_set(&task->task_state_active, 0); return task; } static void transport_processing_shutdown(struct se_device *dev) { struct se_cmd *cmd; struct se_queue_req *qr; struct se_task *task; u8 state; unsigned long flags; /* * Empty the struct se_device's struct se_task state list. */ spin_lock_irqsave(&dev->execute_task_lock, flags); while ((task = transport_get_task_from_state_list(dev))) { if (!(TASK_CMD(task))) { printk(KERN_ERR "TASK_CMD(task) is NULL!\n"); continue; } cmd = TASK_CMD(task); if (!T_TASK(cmd)) { printk(KERN_ERR "T_TASK(cmd) is NULL for task: %p cmd:" " %p ITT: 0x%08x\n", task, cmd, CMD_TFO(cmd)->get_task_tag(cmd)); continue; } spin_unlock_irqrestore(&dev->execute_task_lock, flags); spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); DEBUG_DO("PT: cmd: %p task: %p ITT/CmdSN: 0x%08x/0x%08x," " i_state/def_i_state: %d/%d, t_state/def_t_state:" " %d/%d cdb: 0x%02x\n", cmd, task, CMD_TFO(cmd)->get_task_tag(cmd), cmd->cmd_sn, CMD_TFO(cmd)->get_cmd_state(cmd), cmd->deferred_i_state, cmd->t_state, cmd->deferred_t_state, T_TASK(cmd)->t_task_cdb[0]); DEBUG_DO("PT: ITT[0x%08x] - t_task_cdbs: %d t_task_cdbs_left:" " %d t_task_cdbs_sent: %d -- t_transport_active: %d" " t_transport_stop: %d t_transport_sent: %d\n", CMD_TFO(cmd)->get_task_tag(cmd), T_TASK(cmd)->t_task_cdbs, atomic_read(&T_TASK(cmd)->t_task_cdbs_left), atomic_read(&T_TASK(cmd)->t_task_cdbs_sent), atomic_read(&T_TASK(cmd)->t_transport_active), atomic_read(&T_TASK(cmd)->t_transport_stop), atomic_read(&T_TASK(cmd)->t_transport_sent)); if (atomic_read(&task->task_active)) { atomic_set(&task->task_stop, 1); spin_unlock_irqrestore( &T_TASK(cmd)->t_state_lock, flags); DEBUG_DO("Waiting for task: %p to shutdown for dev:" " %p\n", task, dev); wait_for_completion(&task->task_stop_comp); DEBUG_DO("Completed task: %p shutdown for dev: %p\n", task, dev); spin_lock_irqsave(&T_TASK(cmd)->t_state_lock, flags); atomic_dec(&T_TASK(cmd)->t_task_cdbs_left); atomic_set(&task->task_active, 0); atomic_set(&task->task_stop, 0); } else { if (atomic_read(&task->task_execute_queue) != 0) transport_remove_task_from_execute_queue(task, dev); } __transport_stop_task_timer(task, &flags); if (!(atomic_dec_and_test(&T_TASK(cmd)->t_task_cdbs_ex_left))) { spin_unlock_irqrestore( &T_TASK(cmd)->t_state_lock, flags); DEBUG_DO("Skipping task: %p, dev: %p for" " t_task_cdbs_ex_left: %d\n", task, dev, atomic_read(&T_TASK(cmd)->t_task_cdbs_ex_left)); spin_lock_irqsave(&dev->execute_task_lock, flags); continue; } if (atomic_read(&T_TASK(cmd)->t_transport_active)) { DEBUG_DO("got t_transport_active = 1 for task: %p, dev:" " %p\n", task, dev); if (atomic_read(&T_TASK(cmd)->t_fe_count)) { spin_unlock_irqrestore( &T_TASK(cmd)->t_state_lock, flags); transport_send_check_condition_and_sense( cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, 0); transport_remove_cmd_from_queue(cmd, SE_DEV(cmd)->dev_queue_obj); transport_lun_remove_cmd(cmd); transport_cmd_check_stop(cmd, 1, 0); } else { spin_unlock_irqrestore( &T_TASK(cmd)->t_state_lock, flags); transport_remove_cmd_from_queue(cmd, SE_DEV(cmd)->dev_queue_obj); transport_lun_remove_cmd(cmd); if (transport_cmd_check_stop(cmd, 1, 0)) transport_generic_remove(cmd, 0, 0); } spin_lock_irqsave(&dev->execute_task_lock, flags); continue; } DEBUG_DO("Got t_transport_active = 0 for task: %p, dev: %p\n", task, dev); if (atomic_read(&T_TASK(cmd)->t_fe_count)) { spin_unlock_irqrestore( &T_TASK(cmd)->t_state_lock, flags); transport_send_check_condition_and_sense(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, 0); transport_remove_cmd_from_queue(cmd, SE_DEV(cmd)->dev_queue_obj); transport_lun_remove_cmd(cmd); transport_cmd_check_stop(cmd, 1, 0); } else { spin_unlock_irqrestore( &T_TASK(cmd)->t_state_lock, flags); transport_remove_cmd_from_queue(cmd, SE_DEV(cmd)->dev_queue_obj); transport_lun_remove_cmd(cmd); if (transport_cmd_check_stop(cmd, 1, 0)) transport_generic_remove(cmd, 0, 0); } spin_lock_irqsave(&dev->execute_task_lock, flags); } spin_unlock_irqrestore(&dev->execute_task_lock, flags); /* * Empty the struct se_device's struct se_cmd list. */ spin_lock_irqsave(&dev->dev_queue_obj->cmd_queue_lock, flags); while ((qr = __transport_get_qr_from_queue(dev->dev_queue_obj))) { spin_unlock_irqrestore( &dev->dev_queue_obj->cmd_queue_lock, flags); cmd = (struct se_cmd *)qr->cmd; state = qr->state; kfree(qr); DEBUG_DO("From Device Queue: cmd: %p t_state: %d\n", cmd, state); if (atomic_read(&T_TASK(cmd)->t_fe_count)) { transport_send_check_condition_and_sense(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, 0); transport_lun_remove_cmd(cmd); transport_cmd_check_stop(cmd, 1, 0); } else { transport_lun_remove_cmd(cmd); if (transport_cmd_check_stop(cmd, 1, 0)) transport_generic_remove(cmd, 0, 0); } spin_lock_irqsave(&dev->dev_queue_obj->cmd_queue_lock, flags); } spin_unlock_irqrestore(&dev->dev_queue_obj->cmd_queue_lock, flags); } /* transport_processing_thread(): * * */ static int transport_processing_thread(void *param) { int ret, t_state; struct se_cmd *cmd; struct se_device *dev = (struct se_device *) param; struct se_queue_req *qr; set_user_nice(current, -20); while (!kthread_should_stop()) { ret = wait_event_interruptible(dev->dev_queue_obj->thread_wq, atomic_read(&dev->dev_queue_obj->queue_cnt) || kthread_should_stop()); if (ret < 0) goto out; spin_lock_irq(&dev->dev_status_lock); if (dev->dev_status & TRANSPORT_DEVICE_SHUTDOWN) { spin_unlock_irq(&dev->dev_status_lock); transport_processing_shutdown(dev); continue; } spin_unlock_irq(&dev->dev_status_lock); get_cmd: __transport_execute_tasks(dev); qr = transport_get_qr_from_queue(dev->dev_queue_obj); if (!(qr)) continue; cmd = (struct se_cmd *)qr->cmd; t_state = qr->state; kfree(qr); switch (t_state) { case TRANSPORT_NEW_CMD_MAP: if (!(CMD_TFO(cmd)->new_cmd_map)) { printk(KERN_ERR "CMD_TFO(cmd)->new_cmd_map is" " NULL for TRANSPORT_NEW_CMD_MAP\n"); BUG(); } ret = CMD_TFO(cmd)->new_cmd_map(cmd); if (ret < 0) { cmd->transport_error_status = ret; transport_generic_request_failure(cmd, NULL, 0, (cmd->data_direction != DMA_TO_DEVICE)); break; } /* Fall through */ case TRANSPORT_NEW_CMD: ret = transport_generic_new_cmd(cmd); if (ret < 0) { cmd->transport_error_status = ret; transport_generic_request_failure(cmd, NULL, 0, (cmd->data_direction != DMA_TO_DEVICE)); } break; case TRANSPORT_PROCESS_WRITE: transport_generic_process_write(cmd); break; case TRANSPORT_COMPLETE_OK: transport_stop_all_task_timers(cmd); transport_generic_complete_ok(cmd); break; case TRANSPORT_REMOVE: transport_generic_remove(cmd, 1, 0); break; case TRANSPORT_PROCESS_TMR: transport_generic_do_tmr(cmd); break; case TRANSPORT_COMPLETE_FAILURE: transport_generic_request_failure(cmd, NULL, 1, 1); break; case TRANSPORT_COMPLETE_TIMEOUT: transport_stop_all_task_timers(cmd); transport_generic_request_timeout(cmd); break; default: printk(KERN_ERR "Unknown t_state: %d deferred_t_state:" " %d for ITT: 0x%08x i_state: %d on SE LUN:" " %u\n", t_state, cmd->deferred_t_state, CMD_TFO(cmd)->get_task_tag(cmd), CMD_TFO(cmd)->get_cmd_state(cmd), SE_LUN(cmd)->unpacked_lun); BUG(); } goto get_cmd; } out: transport_release_all_cmds(dev); dev->process_thread = NULL; return 0; }