/* * Copyright (c) 2008-2011 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include "hw.h" #include "hw-ops.h" struct ani_ofdm_level_entry { int spur_immunity_level; int fir_step_level; int ofdm_weak_signal_on; }; /* values here are relative to the INI */ /* * Legend: * * SI: Spur immunity * FS: FIR Step * WS: OFDM / CCK Weak Signal detection * MRC-CCK: Maximal Ratio Combining for CCK */ static const struct ani_ofdm_level_entry ofdm_level_table[] = { /* SI FS WS */ { 0, 0, 1 }, /* lvl 0 */ { 1, 1, 1 }, /* lvl 1 */ { 2, 2, 1 }, /* lvl 2 */ { 3, 2, 1 }, /* lvl 3 (default) */ { 4, 3, 1 }, /* lvl 4 */ { 5, 4, 1 }, /* lvl 5 */ { 6, 5, 1 }, /* lvl 6 */ { 7, 6, 1 }, /* lvl 7 */ { 7, 6, 0 }, /* lvl 8 */ { 7, 7, 0 } /* lvl 9 */ }; #define ATH9K_ANI_OFDM_NUM_LEVEL \ ARRAY_SIZE(ofdm_level_table) #define ATH9K_ANI_OFDM_MAX_LEVEL \ (ATH9K_ANI_OFDM_NUM_LEVEL-1) #define ATH9K_ANI_OFDM_DEF_LEVEL \ 3 /* default level - matches the INI settings */ /* * MRC (Maximal Ratio Combining) has always been used with multi-antenna ofdm. * With OFDM for single stream you just add up all antenna inputs, you're * only interested in what you get after FFT. Signal aligment is also not * required for OFDM because any phase difference adds up in the frequency * domain. * * MRC requires extra work for use with CCK. You need to align the antenna * signals from the different antenna before you can add the signals together. * You need aligment of signals as CCK is in time domain, so addition can cancel * your signal completely if phase is 180 degrees (think of adding sine waves). * You also need to remove noise before the addition and this is where ANI * MRC CCK comes into play. One of the antenna inputs may be stronger but * lower SNR, so just adding after alignment can be dangerous. * * Regardless of alignment in time, the antenna signals add constructively after * FFT and improve your reception. For more information: * * http://en.wikipedia.org/wiki/Maximal-ratio_combining */ struct ani_cck_level_entry { int fir_step_level; int mrc_cck_on; }; static const struct ani_cck_level_entry cck_level_table[] = { /* FS MRC-CCK */ { 0, 1 }, /* lvl 0 */ { 1, 1 }, /* lvl 1 */ { 2, 1 }, /* lvl 2 (default) */ { 3, 1 }, /* lvl 3 */ { 4, 0 }, /* lvl 4 */ { 5, 0 }, /* lvl 5 */ { 6, 0 }, /* lvl 6 */ { 6, 0 }, /* lvl 7 (only for high rssi) */ { 7, 0 } /* lvl 8 (only for high rssi) */ }; #define ATH9K_ANI_CCK_NUM_LEVEL \ ARRAY_SIZE(cck_level_table) #define ATH9K_ANI_CCK_MAX_LEVEL \ (ATH9K_ANI_CCK_NUM_LEVEL-1) #define ATH9K_ANI_CCK_MAX_LEVEL_LOW_RSSI \ (ATH9K_ANI_CCK_NUM_LEVEL-3) #define ATH9K_ANI_CCK_DEF_LEVEL \ 2 /* default level - matches the INI settings */ static bool use_new_ani(struct ath_hw *ah) { return AR_SREV_9300_20_OR_LATER(ah) || modparam_force_new_ani; } static void ath9k_hw_update_mibstats(struct ath_hw *ah, struct ath9k_mib_stats *stats) { stats->ackrcv_bad += REG_READ(ah, AR_ACK_FAIL); stats->rts_bad += REG_READ(ah, AR_RTS_FAIL); stats->fcs_bad += REG_READ(ah, AR_FCS_FAIL); stats->rts_good += REG_READ(ah, AR_RTS_OK); stats->beacons += REG_READ(ah, AR_BEACON_CNT); } static void ath9k_ani_restart(struct ath_hw *ah) { struct ar5416AniState *aniState; struct ath_common *common = ath9k_hw_common(ah); u32 ofdm_base = 0, cck_base = 0; if (!DO_ANI(ah)) return; aniState = &ah->curchan->ani; aniState->listenTime = 0; if (!use_new_ani(ah)) { ofdm_base = AR_PHY_COUNTMAX - ah->config.ofdm_trig_high; cck_base = AR_PHY_COUNTMAX - ah->config.cck_trig_high; } ath_dbg(common, ANI, "Writing ofdmbase=%u cckbase=%u\n", ofdm_base, cck_base); ENABLE_REGWRITE_BUFFER(ah); REG_WRITE(ah, AR_PHY_ERR_1, ofdm_base); REG_WRITE(ah, AR_PHY_ERR_2, cck_base); REG_WRITE(ah, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING); REG_WRITE(ah, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING); REGWRITE_BUFFER_FLUSH(ah); ath9k_hw_update_mibstats(ah, &ah->ah_mibStats); aniState->ofdmPhyErrCount = 0; aniState->cckPhyErrCount = 0; } static void ath9k_hw_ani_ofdm_err_trigger_old(struct ath_hw *ah) { struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf; struct ar5416AniState *aniState; int32_t rssi; aniState = &ah->curchan->ani; if (aniState->noiseImmunityLevel < HAL_NOISE_IMMUNE_MAX) { if (ath9k_hw_ani_control(ah, ATH9K_ANI_NOISE_IMMUNITY_LEVEL, aniState->noiseImmunityLevel + 1)) { return; } } if (aniState->spurImmunityLevel < HAL_SPUR_IMMUNE_MAX) { if (ath9k_hw_ani_control(ah, ATH9K_ANI_SPUR_IMMUNITY_LEVEL, aniState->spurImmunityLevel + 1)) { return; } } if (ah->opmode != NL80211_IFTYPE_STATION) { if (aniState->firstepLevel < HAL_FIRST_STEP_MAX) { ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL, aniState->firstepLevel + 1); } return; } rssi = BEACON_RSSI(ah); if (rssi > aniState->rssiThrHigh) { if (aniState->ofdmWeakSigDetect) { if (ath9k_hw_ani_control(ah, ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION, false)) { ath9k_hw_ani_control(ah, ATH9K_ANI_SPUR_IMMUNITY_LEVEL, 0); return; } } if (aniState->firstepLevel < HAL_FIRST_STEP_MAX) { ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL, aniState->firstepLevel + 1); return; } } else if (rssi > aniState->rssiThrLow) { if (!aniState->ofdmWeakSigDetect) ath9k_hw_ani_control(ah, ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION, true); if (aniState->firstepLevel < HAL_FIRST_STEP_MAX) ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL, aniState->firstepLevel + 1); return; } else { if ((conf->channel->band == IEEE80211_BAND_2GHZ) && !conf_is_ht(conf)) { if (aniState->ofdmWeakSigDetect) ath9k_hw_ani_control(ah, ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION, false); if (aniState->firstepLevel > 0) ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL, 0); return; } } } static void ath9k_hw_ani_cck_err_trigger_old(struct ath_hw *ah) { struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf; struct ar5416AniState *aniState; int32_t rssi; aniState = &ah->curchan->ani; if (aniState->noiseImmunityLevel < HAL_NOISE_IMMUNE_MAX) { if (ath9k_hw_ani_control(ah, ATH9K_ANI_NOISE_IMMUNITY_LEVEL, aniState->noiseImmunityLevel + 1)) { return; } } if (ah->opmode != NL80211_IFTYPE_STATION) { if (aniState->firstepLevel < HAL_FIRST_STEP_MAX) { ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL, aniState->firstepLevel + 1); } return; } rssi = BEACON_RSSI(ah); if (rssi > aniState->rssiThrLow) { if (aniState->firstepLevel < HAL_FIRST_STEP_MAX) ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL, aniState->firstepLevel + 1); } else { if ((conf->channel->band == IEEE80211_BAND_2GHZ) && !conf_is_ht(conf)) { if (aniState->firstepLevel > 0) ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL, 0); } } } /* Adjust the OFDM Noise Immunity Level */ static void ath9k_hw_set_ofdm_nil(struct ath_hw *ah, u8 immunityLevel) { struct ar5416AniState *aniState = &ah->curchan->ani; struct ath_common *common = ath9k_hw_common(ah); const struct ani_ofdm_level_entry *entry_ofdm; const struct ani_cck_level_entry *entry_cck; bool weak_sig; ath_dbg(common, ANI, "**** ofdmlevel %d=>%d, rssi=%d[lo=%d hi=%d]\n", aniState->ofdmNoiseImmunityLevel, immunityLevel, BEACON_RSSI(ah), aniState->rssiThrLow, aniState->rssiThrHigh); if (aniState->update_ani) aniState->ofdmNoiseImmunityLevel = (immunityLevel > ATH9K_ANI_OFDM_DEF_LEVEL) ? immunityLevel : ATH9K_ANI_OFDM_DEF_LEVEL; entry_ofdm = &ofdm_level_table[aniState->ofdmNoiseImmunityLevel]; entry_cck = &cck_level_table[aniState->cckNoiseImmunityLevel]; if (aniState->spurImmunityLevel != entry_ofdm->spur_immunity_level) ath9k_hw_ani_control(ah, ATH9K_ANI_SPUR_IMMUNITY_LEVEL, entry_ofdm->spur_immunity_level); if (aniState->firstepLevel != entry_ofdm->fir_step_level && entry_ofdm->fir_step_level >= entry_cck->fir_step_level) ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL, entry_ofdm->fir_step_level); weak_sig = entry_ofdm->ofdm_weak_signal_on; if (ah->opmode == NL80211_IFTYPE_STATION && BEACON_RSSI(ah) <= aniState->rssiThrHigh) weak_sig = true; if (aniState->ofdmWeakSigDetect != weak_sig) ath9k_hw_ani_control(ah, ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION, entry_ofdm->ofdm_weak_signal_on); } static void ath9k_hw_ani_ofdm_err_trigger(struct ath_hw *ah) { struct ar5416AniState *aniState; if (!DO_ANI(ah)) return; if (!use_new_ani(ah)) { ath9k_hw_ani_ofdm_err_trigger_old(ah); return; } aniState = &ah->curchan->ani; if (aniState->ofdmNoiseImmunityLevel < ATH9K_ANI_OFDM_MAX_LEVEL) ath9k_hw_set_ofdm_nil(ah, aniState->ofdmNoiseImmunityLevel + 1); } /* * Set the ANI settings to match an CCK level. */ static void ath9k_hw_set_cck_nil(struct ath_hw *ah, u_int8_t immunityLevel) { struct ar5416AniState *aniState = &ah->curchan->ani; struct ath_common *common = ath9k_hw_common(ah); const struct ani_ofdm_level_entry *entry_ofdm; const struct ani_cck_level_entry *entry_cck; ath_dbg(common, ANI, "**** ccklevel %d=>%d, rssi=%d[lo=%d hi=%d]\n", aniState->cckNoiseImmunityLevel, immunityLevel, BEACON_RSSI(ah), aniState->rssiThrLow, aniState->rssiThrHigh); if (ah->opmode == NL80211_IFTYPE_STATION && BEACON_RSSI(ah) <= aniState->rssiThrLow && immunityLevel > ATH9K_ANI_CCK_MAX_LEVEL_LOW_RSSI) immunityLevel = ATH9K_ANI_CCK_MAX_LEVEL_LOW_RSSI; if (aniState->update_ani) aniState->cckNoiseImmunityLevel = (immunityLevel > ATH9K_ANI_CCK_DEF_LEVEL) ? immunityLevel : ATH9K_ANI_CCK_DEF_LEVEL; entry_ofdm = &ofdm_level_table[aniState->ofdmNoiseImmunityLevel]; entry_cck = &cck_level_table[aniState->cckNoiseImmunityLevel]; if (aniState->firstepLevel != entry_cck->fir_step_level && entry_cck->fir_step_level >= entry_ofdm->fir_step_level) ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL, entry_cck->fir_step_level); /* Skip MRC CCK for pre AR9003 families */ if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9485(ah)) return; if (aniState->mrcCCKOff == entry_cck->mrc_cck_on) ath9k_hw_ani_control(ah, ATH9K_ANI_MRC_CCK, entry_cck->mrc_cck_on); } static void ath9k_hw_ani_cck_err_trigger(struct ath_hw *ah) { struct ar5416AniState *aniState; if (!DO_ANI(ah)) return; if (!use_new_ani(ah)) { ath9k_hw_ani_cck_err_trigger_old(ah); return; } aniState = &ah->curchan->ani; if (aniState->cckNoiseImmunityLevel < ATH9K_ANI_CCK_MAX_LEVEL) ath9k_hw_set_cck_nil(ah, aniState->cckNoiseImmunityLevel + 1); } static void ath9k_hw_ani_lower_immunity_old(struct ath_hw *ah) { struct ar5416AniState *aniState; int32_t rssi; aniState = &ah->curchan->ani; if (ah->opmode != NL80211_IFTYPE_STATION) { if (aniState->firstepLevel > 0) { if (ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL, aniState->firstepLevel - 1)) return; } } else { rssi = BEACON_RSSI(ah); if (rssi > aniState->rssiThrHigh) { /* XXX: Handle me */ } else if (rssi > aniState->rssiThrLow) { if (!aniState->ofdmWeakSigDetect) { if (ath9k_hw_ani_control(ah, ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION, true)) return; } if (aniState->firstepLevel > 0) { if (ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL, aniState->firstepLevel - 1)) return; } } else { if (aniState->firstepLevel > 0) { if (ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL, aniState->firstepLevel - 1)) return; } } } if (aniState->spurImmunityLevel > 0) { if (ath9k_hw_ani_control(ah, ATH9K_ANI_SPUR_IMMUNITY_LEVEL, aniState->spurImmunityLevel - 1)) return; } if (aniState->noiseImmunityLevel > 0) { ath9k_hw_ani_control(ah, ATH9K_ANI_NOISE_IMMUNITY_LEVEL, aniState->noiseImmunityLevel - 1); return; } } /* * only lower either OFDM or CCK errors per turn * we lower the other one next time */ static void ath9k_hw_ani_lower_immunity(struct ath_hw *ah) { struct ar5416AniState *aniState; aniState = &ah->curchan->ani; if (!use_new_ani(ah)) { ath9k_hw_ani_lower_immunity_old(ah); return; } /* lower OFDM noise immunity */ if (aniState->ofdmNoiseImmunityLevel > 0 && (aniState->ofdmsTurn || aniState->cckNoiseImmunityLevel == 0)) { ath9k_hw_set_ofdm_nil(ah, aniState->ofdmNoiseImmunityLevel - 1); return; } /* lower CCK noise immunity */ if (aniState->cckNoiseImmunityLevel > 0) ath9k_hw_set_cck_nil(ah, aniState->cckNoiseImmunityLevel - 1); } static void ath9k_ani_reset_old(struct ath_hw *ah, bool is_scanning) { struct ar5416AniState *aniState; struct ath9k_channel *chan = ah->curchan; struct ath_common *common = ath9k_hw_common(ah); if (!DO_ANI(ah)) return; aniState = &ah->curchan->ani; if (ah->opmode != NL80211_IFTYPE_STATION) { ath_dbg(common, ANI, "Reset ANI state opmode %u\n", ah->opmode); ah->stats.ast_ani_reset++; if (ah->opmode == NL80211_IFTYPE_AP) { /* * ath9k_hw_ani_control() will only process items set on * ah->ani_function */ if (IS_CHAN_2GHZ(chan)) ah->ani_function = (ATH9K_ANI_SPUR_IMMUNITY_LEVEL | ATH9K_ANI_FIRSTEP_LEVEL); else ah->ani_function = 0; } ath9k_hw_ani_control(ah, ATH9K_ANI_NOISE_IMMUNITY_LEVEL, 0); ath9k_hw_ani_control(ah, ATH9K_ANI_SPUR_IMMUNITY_LEVEL, 0); ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL, 0); ath9k_hw_ani_control(ah, ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION, !ATH9K_ANI_USE_OFDM_WEAK_SIG); ath9k_hw_ani_control(ah, ATH9K_ANI_CCK_WEAK_SIGNAL_THR, ATH9K_ANI_CCK_WEAK_SIG_THR); ath9k_ani_restart(ah); return; } if (aniState->noiseImmunityLevel != 0) ath9k_hw_ani_control(ah, ATH9K_ANI_NOISE_IMMUNITY_LEVEL, aniState->noiseImmunityLevel); if (aniState->spurImmunityLevel != 0) ath9k_hw_ani_control(ah, ATH9K_ANI_SPUR_IMMUNITY_LEVEL, aniState->spurImmunityLevel); if (!aniState->ofdmWeakSigDetect) ath9k_hw_ani_control(ah, ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION, aniState->ofdmWeakSigDetect); if (aniState->cckWeakSigThreshold) ath9k_hw_ani_control(ah, ATH9K_ANI_CCK_WEAK_SIGNAL_THR, aniState->cckWeakSigThreshold); if (aniState->firstepLevel != 0) ath9k_hw_ani_control(ah, ATH9K_ANI_FIRSTEP_LEVEL, aniState->firstepLevel); ath9k_ani_restart(ah); ENABLE_REGWRITE_BUFFER(ah); REG_WRITE(ah, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING); REG_WRITE(ah, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING); REGWRITE_BUFFER_FLUSH(ah); } /* * Restore the ANI parameters in the HAL and reset the statistics. * This routine should be called for every hardware reset and for * every channel change. */ void ath9k_ani_reset(struct ath_hw *ah, bool is_scanning) { struct ar5416AniState *aniState = &ah->curchan->ani; struct ath9k_channel *chan = ah->curchan; struct ath_common *common = ath9k_hw_common(ah); if (!DO_ANI(ah)) return; if (!use_new_ani(ah)) return ath9k_ani_reset_old(ah, is_scanning); BUG_ON(aniState == NULL); ah->stats.ast_ani_reset++; /* only allow a subset of functions in AP mode */ if (ah->opmode == NL80211_IFTYPE_AP) { if (IS_CHAN_2GHZ(chan)) { ah->ani_function = (ATH9K_ANI_SPUR_IMMUNITY_LEVEL | ATH9K_ANI_FIRSTEP_LEVEL); if (AR_SREV_9300_20_OR_LATER(ah)) ah->ani_function |= ATH9K_ANI_MRC_CCK; } else ah->ani_function = 0; } /* always allow mode (on/off) to be controlled */ ah->ani_function |= ATH9K_ANI_MODE; if (is_scanning || (ah->opmode != NL80211_IFTYPE_STATION && ah->opmode != NL80211_IFTYPE_ADHOC)) { /* * If we're scanning or in AP mode, the defaults (ini) * should be in place. For an AP we assume the historical * levels for this channel are probably outdated so start * from defaults instead. */ if (aniState->ofdmNoiseImmunityLevel != ATH9K_ANI_OFDM_DEF_LEVEL || aniState->cckNoiseImmunityLevel != ATH9K_ANI_CCK_DEF_LEVEL) { ath_dbg(common, ANI, "Restore defaults: opmode %u chan %d Mhz/0x%x is_scanning=%d ofdm:%d cck:%d\n", ah->opmode, chan->channel, chan->channelFlags, is_scanning, aniState->ofdmNoiseImmunityLevel, aniState->cckNoiseImmunityLevel); aniState->update_ani = false; ath9k_hw_set_ofdm_nil(ah, ATH9K_ANI_OFDM_DEF_LEVEL); ath9k_hw_set_cck_nil(ah, ATH9K_ANI_CCK_DEF_LEVEL); } } else { /* * restore historical levels for this channel */ ath_dbg(common, ANI, "Restore history: opmode %u chan %d Mhz/0x%x is_scanning=%d ofdm:%d cck:%d\n", ah->opmode, chan->channel, chan->channelFlags, is_scanning, aniState->ofdmNoiseImmunityLevel, aniState->cckNoiseImmunityLevel); aniState->update_ani = true; ath9k_hw_set_ofdm_nil(ah, aniState->ofdmNoiseImmunityLevel); ath9k_hw_set_cck_nil(ah, aniState->cckNoiseImmunityLevel); } /* * enable phy counters if hw supports or if not, enable phy * interrupts (so we can count each one) */ ath9k_ani_restart(ah); ENABLE_REGWRITE_BUFFER(ah); REG_WRITE(ah, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING); REG_WRITE(ah, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING); REGWRITE_BUFFER_FLUSH(ah); } static bool ath9k_hw_ani_read_counters(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); struct ar5416AniState *aniState = &ah->curchan->ani; u32 ofdm_base = 0; u32 cck_base = 0; u32 ofdmPhyErrCnt, cckPhyErrCnt; u32 phyCnt1, phyCnt2; int32_t listenTime; ath_hw_cycle_counters_update(common); listenTime = ath_hw_get_listen_time(common); if (listenTime <= 0) { ah->stats.ast_ani_lneg_or_lzero++; ath9k_ani_restart(ah); return false; } if (!use_new_ani(ah)) { ofdm_base = AR_PHY_COUNTMAX - ah->config.ofdm_trig_high; cck_base = AR_PHY_COUNTMAX - ah->config.cck_trig_high; } aniState->listenTime += listenTime; ath9k_hw_update_mibstats(ah, &ah->ah_mibStats); phyCnt1 = REG_READ(ah, AR_PHY_ERR_1); phyCnt2 = REG_READ(ah, AR_PHY_ERR_2); if (!use_new_ani(ah) && (phyCnt1 < ofdm_base || phyCnt2 < cck_base)) { if (phyCnt1 < ofdm_base) { ath_dbg(common, ANI, "phyCnt1 0x%x, resetting counter value to 0x%x\n", phyCnt1, ofdm_base); REG_WRITE(ah, AR_PHY_ERR_1, ofdm_base); REG_WRITE(ah, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING); } if (phyCnt2 < cck_base) { ath_dbg(common, ANI, "phyCnt2 0x%x, resetting counter value to 0x%x\n", phyCnt2, cck_base); REG_WRITE(ah, AR_PHY_ERR_2, cck_base); REG_WRITE(ah, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING); } return false; } ofdmPhyErrCnt = phyCnt1 - ofdm_base; ah->stats.ast_ani_ofdmerrs += ofdmPhyErrCnt - aniState->ofdmPhyErrCount; aniState->ofdmPhyErrCount = ofdmPhyErrCnt; cckPhyErrCnt = phyCnt2 - cck_base; ah->stats.ast_ani_cckerrs += cckPhyErrCnt - aniState->cckPhyErrCount; aniState->cckPhyErrCount = cckPhyErrCnt; return true; } void ath9k_hw_ani_monitor(struct ath_hw *ah, struct ath9k_channel *chan) { struct ar5416AniState *aniState; struct ath_common *common = ath9k_hw_common(ah); u32 ofdmPhyErrRate, cckPhyErrRate; if (!DO_ANI(ah)) return; aniState = &ah->curchan->ani; if (WARN_ON(!aniState)) return; if (!ath9k_hw_ani_read_counters(ah)) return; ofdmPhyErrRate = aniState->ofdmPhyErrCount * 1000 / aniState->listenTime; cckPhyErrRate = aniState->cckPhyErrCount * 1000 / aniState->listenTime; ath_dbg(common, ANI, "listenTime=%d OFDM:%d errs=%d/s CCK:%d errs=%d/s ofdm_turn=%d\n", aniState->listenTime, aniState->ofdmNoiseImmunityLevel, ofdmPhyErrRate, aniState->cckNoiseImmunityLevel, cckPhyErrRate, aniState->ofdmsTurn); if (aniState->listenTime > ah->aniperiod) { if (cckPhyErrRate < ah->config.cck_trig_low && ((ofdmPhyErrRate < ah->config.ofdm_trig_low && aniState->ofdmNoiseImmunityLevel < ATH9K_ANI_OFDM_DEF_LEVEL) || (ofdmPhyErrRate < ATH9K_ANI_OFDM_TRIG_LOW_ABOVE_INI && aniState->ofdmNoiseImmunityLevel >= ATH9K_ANI_OFDM_DEF_LEVEL))) { ath9k_hw_ani_lower_immunity(ah); aniState->ofdmsTurn = !aniState->ofdmsTurn; } else if ((ofdmPhyErrRate > ah->config.ofdm_trig_high && aniState->ofdmNoiseImmunityLevel >= ATH9K_ANI_OFDM_DEF_LEVEL) || (ofdmPhyErrRate > ATH9K_ANI_OFDM_TRIG_HIGH_BELOW_INI && aniState->ofdmNoiseImmunityLevel < ATH9K_ANI_OFDM_DEF_LEVEL)) { ath9k_hw_ani_ofdm_err_trigger(ah); aniState->ofdmsTurn = false; } else if (cckPhyErrRate > ah->config.cck_trig_high) { ath9k_hw_ani_cck_err_trigger(ah); aniState->ofdmsTurn = true; } ath9k_ani_restart(ah); } } EXPORT_SYMBOL(ath9k_hw_ani_monitor); void ath9k_enable_mib_counters(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); ath_dbg(common, ANI, "Enable MIB counters\n"); ath9k_hw_update_mibstats(ah, &ah->ah_mibStats); ENABLE_REGWRITE_BUFFER(ah); REG_WRITE(ah, AR_FILT_OFDM, 0); REG_WRITE(ah, AR_FILT_CCK, 0); REG_WRITE(ah, AR_MIBC, ~(AR_MIBC_COW | AR_MIBC_FMC | AR_MIBC_CMC | AR_MIBC_MCS) & 0x0f); REG_WRITE(ah, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING); REG_WRITE(ah, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING); REGWRITE_BUFFER_FLUSH(ah); } /* Freeze the MIB counters, get the stats and then clear them */ void ath9k_hw_disable_mib_counters(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); ath_dbg(common, ANI, "Disable MIB counters\n"); REG_WRITE(ah, AR_MIBC, AR_MIBC_FMC); ath9k_hw_update_mibstats(ah, &ah->ah_mibStats); REG_WRITE(ah, AR_MIBC, AR_MIBC_CMC); REG_WRITE(ah, AR_FILT_OFDM, 0); REG_WRITE(ah, AR_FILT_CCK, 0); } EXPORT_SYMBOL(ath9k_hw_disable_mib_counters); /* * Process a MIB interrupt. We may potentially be invoked because * any of the MIB counters overflow/trigger so don't assume we're * here because a PHY error counter triggered. */ void ath9k_hw_proc_mib_event(struct ath_hw *ah) { u32 phyCnt1, phyCnt2; /* Reset these counters regardless */ REG_WRITE(ah, AR_FILT_OFDM, 0); REG_WRITE(ah, AR_FILT_CCK, 0); if (!(REG_READ(ah, AR_SLP_MIB_CTRL) & AR_SLP_MIB_PENDING)) REG_WRITE(ah, AR_SLP_MIB_CTRL, AR_SLP_MIB_CLEAR); /* Clear the mib counters and save them in the stats */ ath9k_hw_update_mibstats(ah, &ah->ah_mibStats); if (!DO_ANI(ah)) { /* * We must always clear the interrupt cause by * resetting the phy error regs. */ REG_WRITE(ah, AR_PHY_ERR_1, 0); REG_WRITE(ah, AR_PHY_ERR_2, 0); return; } /* NB: these are not reset-on-read */ phyCnt1 = REG_READ(ah, AR_PHY_ERR_1); phyCnt2 = REG_READ(ah, AR_PHY_ERR_2); if (((phyCnt1 & AR_MIBCNT_INTRMASK) == AR_MIBCNT_INTRMASK) || ((phyCnt2 & AR_MIBCNT_INTRMASK) == AR_MIBCNT_INTRMASK)) { if (!use_new_ani(ah)) ath9k_hw_ani_read_counters(ah); /* NB: always restart to insure the h/w counters are reset */ ath9k_ani_restart(ah); } } EXPORT_SYMBOL(ath9k_hw_proc_mib_event); void ath9k_hw_ani_setup(struct ath_hw *ah) { int i; static const int totalSizeDesired[] = { -55, -55, -55, -55, -62 }; static const int coarseHigh[] = { -14, -14, -14, -14, -12 }; static const int coarseLow[] = { -64, -64, -64, -64, -70 }; static const int firpwr[] = { -78, -78, -78, -78, -80 }; for (i = 0; i < 5; i++) { ah->totalSizeDesired[i] = totalSizeDesired[i]; ah->coarse_high[i] = coarseHigh[i]; ah->coarse_low[i] = coarseLow[i]; ah->firpwr[i] = firpwr[i]; } } void ath9k_hw_ani_init(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); int i; ath_dbg(common, ANI, "Initialize ANI\n"); if (use_new_ani(ah)) { ah->config.ofdm_trig_high = ATH9K_ANI_OFDM_TRIG_HIGH_NEW; ah->config.ofdm_trig_low = ATH9K_ANI_OFDM_TRIG_LOW_NEW; ah->config.cck_trig_high = ATH9K_ANI_CCK_TRIG_HIGH_NEW; ah->config.cck_trig_low = ATH9K_ANI_CCK_TRIG_LOW_NEW; } else { ah->config.ofdm_trig_high = ATH9K_ANI_OFDM_TRIG_HIGH_OLD; ah->config.ofdm_trig_low = ATH9K_ANI_OFDM_TRIG_LOW_OLD; ah->config.cck_trig_high = ATH9K_ANI_CCK_TRIG_HIGH_OLD; ah->config.cck_trig_low = ATH9K_ANI_CCK_TRIG_LOW_OLD; } for (i = 0; i < ARRAY_SIZE(ah->channels); i++) { struct ath9k_channel *chan = &ah->channels[i]; struct ar5416AniState *ani = &chan->ani; if (use_new_ani(ah)) { ani->spurImmunityLevel = ATH9K_ANI_SPUR_IMMUNE_LVL_NEW; ani->firstepLevel = ATH9K_ANI_FIRSTEP_LVL_NEW; if (AR_SREV_9300_20_OR_LATER(ah)) ani->mrcCCKOff = !ATH9K_ANI_ENABLE_MRC_CCK; else ani->mrcCCKOff = true; ani->ofdmsTurn = true; } else { ani->spurImmunityLevel = ATH9K_ANI_SPUR_IMMUNE_LVL_OLD; ani->firstepLevel = ATH9K_ANI_FIRSTEP_LVL_OLD; ani->cckWeakSigThreshold = ATH9K_ANI_CCK_WEAK_SIG_THR; } ani->rssiThrHigh = ATH9K_ANI_RSSI_THR_HIGH; ani->rssiThrLow = ATH9K_ANI_RSSI_THR_LOW; ani->ofdmWeakSigDetect = ATH9K_ANI_USE_OFDM_WEAK_SIG; ani->cckNoiseImmunityLevel = ATH9K_ANI_CCK_DEF_LEVEL; ani->ofdmNoiseImmunityLevel = ATH9K_ANI_OFDM_DEF_LEVEL; ani->update_ani = false; } /* * since we expect some ongoing maintenance on the tables, let's sanity * check here default level should not modify INI setting. */ if (use_new_ani(ah)) { ah->aniperiod = ATH9K_ANI_PERIOD_NEW; ah->config.ani_poll_interval = ATH9K_ANI_POLLINTERVAL_NEW; } else { ah->aniperiod = ATH9K_ANI_PERIOD_OLD; ah->config.ani_poll_interval = ATH9K_ANI_POLLINTERVAL_OLD; } if (ah->config.enable_ani) ah->proc_phyerr |= HAL_PROCESS_ANI; ath9k_ani_restart(ah); ath9k_enable_mib_counters(ah); }