/** * Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved. * * This source file is released under GPL v2 license (no other versions). * See the COPYING file included in the main directory of this source * distribution for the license terms and conditions. * * @File cthw20k2.c * * @Brief * This file contains the implementation of hardware access methord for 20k2. * * @Author Liu Chun * @Date May 14 2008 * */ #include "cthw20k2.h" #include "ct20k2reg.h" #include #include #include #include #include #include #include #include #if BITS_PER_LONG == 32 #define CT_XFI_DMA_MASK DMA_BIT_MASK(32) /* 32 bit PTE */ #else #define CT_XFI_DMA_MASK DMA_BIT_MASK(64) /* 64 bit PTE */ #endif static u32 hw_read_20kx(struct hw *hw, u32 reg); static void hw_write_20kx(struct hw *hw, u32 reg, u32 data); /* * Type definition block. * The layout of control structures can be directly applied on 20k2 chip. */ /* * SRC control block definitions. */ /* SRC resource control block */ #define SRCCTL_STATE 0x00000007 #define SRCCTL_BM 0x00000008 #define SRCCTL_RSR 0x00000030 #define SRCCTL_SF 0x000001C0 #define SRCCTL_WR 0x00000200 #define SRCCTL_PM 0x00000400 #define SRCCTL_ROM 0x00001800 #define SRCCTL_VO 0x00002000 #define SRCCTL_ST 0x00004000 #define SRCCTL_IE 0x00008000 #define SRCCTL_ILSZ 0x000F0000 #define SRCCTL_BP 0x00100000 #define SRCCCR_CISZ 0x000007FF #define SRCCCR_CWA 0x001FF800 #define SRCCCR_D 0x00200000 #define SRCCCR_RS 0x01C00000 #define SRCCCR_NAL 0x3E000000 #define SRCCCR_RA 0xC0000000 #define SRCCA_CA 0x0FFFFFFF #define SRCCA_RS 0xE0000000 #define SRCSA_SA 0x0FFFFFFF #define SRCLA_LA 0x0FFFFFFF /* Mixer Parameter Ring ram Low and Hight register. * Fixed-point value in 8.24 format for parameter channel */ #define MPRLH_PITCH 0xFFFFFFFF /* SRC resource register dirty flags */ union src_dirty { struct { u16 ctl:1; u16 ccr:1; u16 sa:1; u16 la:1; u16 ca:1; u16 mpr:1; u16 czbfs:1; /* Clear Z-Buffers */ u16 rsv:9; } bf; u16 data; }; struct src_rsc_ctrl_blk { unsigned int ctl; unsigned int ccr; unsigned int ca; unsigned int sa; unsigned int la; unsigned int mpr; union src_dirty dirty; }; /* SRC manager control block */ union src_mgr_dirty { struct { u16 enb0:1; u16 enb1:1; u16 enb2:1; u16 enb3:1; u16 enb4:1; u16 enb5:1; u16 enb6:1; u16 enb7:1; u16 enbsa:1; u16 rsv:7; } bf; u16 data; }; struct src_mgr_ctrl_blk { unsigned int enbsa; unsigned int enb[8]; union src_mgr_dirty dirty; }; /* SRCIMP manager control block */ #define SRCAIM_ARC 0x00000FFF #define SRCAIM_NXT 0x00FF0000 #define SRCAIM_SRC 0xFF000000 struct srcimap { unsigned int srcaim; unsigned int idx; }; /* SRCIMP manager register dirty flags */ union srcimp_mgr_dirty { struct { u16 srcimap:1; u16 rsv:15; } bf; u16 data; }; struct srcimp_mgr_ctrl_blk { struct srcimap srcimap; union srcimp_mgr_dirty dirty; }; /* * Function implementation block. */ static int src_get_rsc_ctrl_blk(void **rblk) { struct src_rsc_ctrl_blk *blk; *rblk = NULL; blk = kzalloc(sizeof(*blk), GFP_KERNEL); if (NULL == blk) return -ENOMEM; *rblk = blk; return 0; } static int src_put_rsc_ctrl_blk(void *blk) { kfree(blk); return 0; } static int src_set_state(void *blk, unsigned int state) { struct src_rsc_ctrl_blk *ctl = blk; set_field(&ctl->ctl, SRCCTL_STATE, state); ctl->dirty.bf.ctl = 1; return 0; } static int src_set_bm(void *blk, unsigned int bm) { struct src_rsc_ctrl_blk *ctl = blk; set_field(&ctl->ctl, SRCCTL_BM, bm); ctl->dirty.bf.ctl = 1; return 0; } static int src_set_rsr(void *blk, unsigned int rsr) { struct src_rsc_ctrl_blk *ctl = blk; set_field(&ctl->ctl, SRCCTL_RSR, rsr); ctl->dirty.bf.ctl = 1; return 0; } static int src_set_sf(void *blk, unsigned int sf) { struct src_rsc_ctrl_blk *ctl = blk; set_field(&ctl->ctl, SRCCTL_SF, sf); ctl->dirty.bf.ctl = 1; return 0; } static int src_set_wr(void *blk, unsigned int wr) { struct src_rsc_ctrl_blk *ctl = blk; set_field(&ctl->ctl, SRCCTL_WR, wr); ctl->dirty.bf.ctl = 1; return 0; } static int src_set_pm(void *blk, unsigned int pm) { struct src_rsc_ctrl_blk *ctl = blk; set_field(&ctl->ctl, SRCCTL_PM, pm); ctl->dirty.bf.ctl = 1; return 0; } static int src_set_rom(void *blk, unsigned int rom) { struct src_rsc_ctrl_blk *ctl = blk; set_field(&ctl->ctl, SRCCTL_ROM, rom); ctl->dirty.bf.ctl = 1; return 0; } static int src_set_vo(void *blk, unsigned int vo) { struct src_rsc_ctrl_blk *ctl = blk; set_field(&ctl->ctl, SRCCTL_VO, vo); ctl->dirty.bf.ctl = 1; return 0; } static int src_set_st(void *blk, unsigned int st) { struct src_rsc_ctrl_blk *ctl = blk; set_field(&ctl->ctl, SRCCTL_ST, st); ctl->dirty.bf.ctl = 1; return 0; } static int src_set_ie(void *blk, unsigned int ie) { struct src_rsc_ctrl_blk *ctl = blk; set_field(&ctl->ctl, SRCCTL_IE, ie); ctl->dirty.bf.ctl = 1; return 0; } static int src_set_ilsz(void *blk, unsigned int ilsz) { struct src_rsc_ctrl_blk *ctl = blk; set_field(&ctl->ctl, SRCCTL_ILSZ, ilsz); ctl->dirty.bf.ctl = 1; return 0; } static int src_set_bp(void *blk, unsigned int bp) { struct src_rsc_ctrl_blk *ctl = blk; set_field(&ctl->ctl, SRCCTL_BP, bp); ctl->dirty.bf.ctl = 1; return 0; } static int src_set_cisz(void *blk, unsigned int cisz) { struct src_rsc_ctrl_blk *ctl = blk; set_field(&ctl->ccr, SRCCCR_CISZ, cisz); ctl->dirty.bf.ccr = 1; return 0; } static int src_set_ca(void *blk, unsigned int ca) { struct src_rsc_ctrl_blk *ctl = blk; set_field(&ctl->ca, SRCCA_CA, ca); ctl->dirty.bf.ca = 1; return 0; } static int src_set_sa(void *blk, unsigned int sa) { struct src_rsc_ctrl_blk *ctl = blk; set_field(&ctl->sa, SRCSA_SA, sa); ctl->dirty.bf.sa = 1; return 0; } static int src_set_la(void *blk, unsigned int la) { struct src_rsc_ctrl_blk *ctl = blk; set_field(&ctl->la, SRCLA_LA, la); ctl->dirty.bf.la = 1; return 0; } static int src_set_pitch(void *blk, unsigned int pitch) { struct src_rsc_ctrl_blk *ctl = blk; set_field(&ctl->mpr, MPRLH_PITCH, pitch); ctl->dirty.bf.mpr = 1; return 0; } static int src_set_clear_zbufs(void *blk, unsigned int clear) { ((struct src_rsc_ctrl_blk *)blk)->dirty.bf.czbfs = (clear ? 1 : 0); return 0; } static int src_set_dirty(void *blk, unsigned int flags) { ((struct src_rsc_ctrl_blk *)blk)->dirty.data = (flags & 0xffff); return 0; } static int src_set_dirty_all(void *blk) { ((struct src_rsc_ctrl_blk *)blk)->dirty.data = ~(0x0); return 0; } #define AR_SLOT_SIZE 4096 #define AR_SLOT_BLOCK_SIZE 16 #define AR_PTS_PITCH 6 #define AR_PARAM_SRC_OFFSET 0x60 static unsigned int src_param_pitch_mixer(unsigned int src_idx) { return ((src_idx << 4) + AR_PTS_PITCH + AR_SLOT_SIZE - AR_PARAM_SRC_OFFSET) % AR_SLOT_SIZE; } static int src_commit_write(struct hw *hw, unsigned int idx, void *blk) { struct src_rsc_ctrl_blk *ctl = blk; int i; if (ctl->dirty.bf.czbfs) { /* Clear Z-Buffer registers */ for (i = 0; i < 8; i++) hw_write_20kx(hw, SRC_UPZ+idx*0x100+i*0x4, 0); for (i = 0; i < 4; i++) hw_write_20kx(hw, SRC_DN0Z+idx*0x100+i*0x4, 0); for (i = 0; i < 8; i++) hw_write_20kx(hw, SRC_DN1Z+idx*0x100+i*0x4, 0); ctl->dirty.bf.czbfs = 0; } if (ctl->dirty.bf.mpr) { /* Take the parameter mixer resource in the same group as that * the idx src is in for simplicity. Unlike src, all conjugate * parameter mixer resources must be programmed for * corresponding conjugate src resources. */ unsigned int pm_idx = src_param_pitch_mixer(idx); hw_write_20kx(hw, MIXER_PRING_LO_HI+4*pm_idx, ctl->mpr); hw_write_20kx(hw, MIXER_PMOPLO+8*pm_idx, 0x3); hw_write_20kx(hw, MIXER_PMOPHI+8*pm_idx, 0x0); ctl->dirty.bf.mpr = 0; } if (ctl->dirty.bf.sa) { hw_write_20kx(hw, SRC_SA+idx*0x100, ctl->sa); ctl->dirty.bf.sa = 0; } if (ctl->dirty.bf.la) { hw_write_20kx(hw, SRC_LA+idx*0x100, ctl->la); ctl->dirty.bf.la = 0; } if (ctl->dirty.bf.ca) { hw_write_20kx(hw, SRC_CA+idx*0x100, ctl->ca); ctl->dirty.bf.ca = 0; } /* Write srccf register */ hw_write_20kx(hw, SRC_CF+idx*0x100, 0x0); if (ctl->dirty.bf.ccr) { hw_write_20kx(hw, SRC_CCR+idx*0x100, ctl->ccr); ctl->dirty.bf.ccr = 0; } if (ctl->dirty.bf.ctl) { hw_write_20kx(hw, SRC_CTL+idx*0x100, ctl->ctl); ctl->dirty.bf.ctl = 0; } return 0; } static int src_get_ca(struct hw *hw, unsigned int idx, void *blk) { struct src_rsc_ctrl_blk *ctl = blk; ctl->ca = hw_read_20kx(hw, SRC_CA+idx*0x100); ctl->dirty.bf.ca = 0; return get_field(ctl->ca, SRCCA_CA); } static unsigned int src_get_dirty(void *blk) { return ((struct src_rsc_ctrl_blk *)blk)->dirty.data; } static unsigned int src_dirty_conj_mask(void) { return 0x20; } static int src_mgr_enbs_src(void *blk, unsigned int idx) { ((struct src_mgr_ctrl_blk *)blk)->enbsa |= (0x1 << ((idx%128)/4)); ((struct src_mgr_ctrl_blk *)blk)->dirty.bf.enbsa = 1; ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] |= (0x1 << (idx%32)); return 0; } static int src_mgr_enb_src(void *blk, unsigned int idx) { ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] |= (0x1 << (idx%32)); ((struct src_mgr_ctrl_blk *)blk)->dirty.data |= (0x1 << (idx/32)); return 0; } static int src_mgr_dsb_src(void *blk, unsigned int idx) { ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] &= ~(0x1 << (idx%32)); ((struct src_mgr_ctrl_blk *)blk)->dirty.data |= (0x1 << (idx/32)); return 0; } static int src_mgr_commit_write(struct hw *hw, void *blk) { struct src_mgr_ctrl_blk *ctl = blk; int i; unsigned int ret; if (ctl->dirty.bf.enbsa) { do { ret = hw_read_20kx(hw, SRC_ENBSTAT); } while (ret & 0x1); hw_write_20kx(hw, SRC_ENBSA, ctl->enbsa); ctl->dirty.bf.enbsa = 0; } for (i = 0; i < 8; i++) { if ((ctl->dirty.data & (0x1 << i))) { hw_write_20kx(hw, SRC_ENB+(i*0x100), ctl->enb[i]); ctl->dirty.data &= ~(0x1 << i); } } return 0; } static int src_mgr_get_ctrl_blk(void **rblk) { struct src_mgr_ctrl_blk *blk; *rblk = NULL; blk = kzalloc(sizeof(*blk), GFP_KERNEL); if (NULL == blk) return -ENOMEM; *rblk = blk; return 0; } static int src_mgr_put_ctrl_blk(void *blk) { kfree(blk); return 0; } static int srcimp_mgr_get_ctrl_blk(void **rblk) { struct srcimp_mgr_ctrl_blk *blk; *rblk = NULL; blk = kzalloc(sizeof(*blk), GFP_KERNEL); if (NULL == blk) return -ENOMEM; *rblk = blk; return 0; } static int srcimp_mgr_put_ctrl_blk(void *blk) { kfree(blk); return 0; } static int srcimp_mgr_set_imaparc(void *blk, unsigned int slot) { struct srcimp_mgr_ctrl_blk *ctl = blk; set_field(&ctl->srcimap.srcaim, SRCAIM_ARC, slot); ctl->dirty.bf.srcimap = 1; return 0; } static int srcimp_mgr_set_imapuser(void *blk, unsigned int user) { struct srcimp_mgr_ctrl_blk *ctl = blk; set_field(&ctl->srcimap.srcaim, SRCAIM_SRC, user); ctl->dirty.bf.srcimap = 1; return 0; } static int srcimp_mgr_set_imapnxt(void *blk, unsigned int next) { struct srcimp_mgr_ctrl_blk *ctl = blk; set_field(&ctl->srcimap.srcaim, SRCAIM_NXT, next); ctl->dirty.bf.srcimap = 1; return 0; } static int srcimp_mgr_set_imapaddr(void *blk, unsigned int addr) { ((struct srcimp_mgr_ctrl_blk *)blk)->srcimap.idx = addr; ((struct srcimp_mgr_ctrl_blk *)blk)->dirty.bf.srcimap = 1; return 0; } static int srcimp_mgr_commit_write(struct hw *hw, void *blk) { struct srcimp_mgr_ctrl_blk *ctl = blk; if (ctl->dirty.bf.srcimap) { hw_write_20kx(hw, SRC_IMAP+ctl->srcimap.idx*0x100, ctl->srcimap.srcaim); ctl->dirty.bf.srcimap = 0; } return 0; } /* * AMIXER control block definitions. */ #define AMOPLO_M 0x00000003 #define AMOPLO_IV 0x00000004 #define AMOPLO_X 0x0003FFF0 #define AMOPLO_Y 0xFFFC0000 #define AMOPHI_SADR 0x000000FF #define AMOPHI_SE 0x80000000 /* AMIXER resource register dirty flags */ union amixer_dirty { struct { u16 amoplo:1; u16 amophi:1; u16 rsv:14; } bf; u16 data; }; /* AMIXER resource control block */ struct amixer_rsc_ctrl_blk { unsigned int amoplo; unsigned int amophi; union amixer_dirty dirty; }; static int amixer_set_mode(void *blk, unsigned int mode) { struct amixer_rsc_ctrl_blk *ctl = blk; set_field(&ctl->amoplo, AMOPLO_M, mode); ctl->dirty.bf.amoplo = 1; return 0; } static int amixer_set_iv(void *blk, unsigned int iv) { struct amixer_rsc_ctrl_blk *ctl = blk; set_field(&ctl->amoplo, AMOPLO_IV, iv); ctl->dirty.bf.amoplo = 1; return 0; } static int amixer_set_x(void *blk, unsigned int x) { struct amixer_rsc_ctrl_blk *ctl = blk; set_field(&ctl->amoplo, AMOPLO_X, x); ctl->dirty.bf.amoplo = 1; return 0; } static int amixer_set_y(void *blk, unsigned int y) { struct amixer_rsc_ctrl_blk *ctl = blk; set_field(&ctl->amoplo, AMOPLO_Y, y); ctl->dirty.bf.amoplo = 1; return 0; } static int amixer_set_sadr(void *blk, unsigned int sadr) { struct amixer_rsc_ctrl_blk *ctl = blk; set_field(&ctl->amophi, AMOPHI_SADR, sadr); ctl->dirty.bf.amophi = 1; return 0; } static int amixer_set_se(void *blk, unsigned int se) { struct amixer_rsc_ctrl_blk *ctl = blk; set_field(&ctl->amophi, AMOPHI_SE, se); ctl->dirty.bf.amophi = 1; return 0; } static int amixer_set_dirty(void *blk, unsigned int flags) { ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data = (flags & 0xffff); return 0; } static int amixer_set_dirty_all(void *blk) { ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data = ~(0x0); return 0; } static int amixer_commit_write(struct hw *hw, unsigned int idx, void *blk) { struct amixer_rsc_ctrl_blk *ctl = blk; if (ctl->dirty.bf.amoplo || ctl->dirty.bf.amophi) { hw_write_20kx(hw, MIXER_AMOPLO+idx*8, ctl->amoplo); ctl->dirty.bf.amoplo = 0; hw_write_20kx(hw, MIXER_AMOPHI+idx*8, ctl->amophi); ctl->dirty.bf.amophi = 0; } return 0; } static int amixer_get_y(void *blk) { struct amixer_rsc_ctrl_blk *ctl = blk; return get_field(ctl->amoplo, AMOPLO_Y); } static unsigned int amixer_get_dirty(void *blk) { return ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data; } static int amixer_rsc_get_ctrl_blk(void **rblk) { struct amixer_rsc_ctrl_blk *blk; *rblk = NULL; blk = kzalloc(sizeof(*blk), GFP_KERNEL); if (NULL == blk) return -ENOMEM; *rblk = blk; return 0; } static int amixer_rsc_put_ctrl_blk(void *blk) { kfree(blk); return 0; } static int amixer_mgr_get_ctrl_blk(void **rblk) { *rblk = NULL; return 0; } static int amixer_mgr_put_ctrl_blk(void *blk) { return 0; } /* * DAIO control block definitions. */ /* Receiver Sample Rate Tracker Control register */ #define SRTCTL_SRCO 0x000000FF #define SRTCTL_SRCM 0x0000FF00 #define SRTCTL_RSR 0x00030000 #define SRTCTL_DRAT 0x00300000 #define SRTCTL_EC 0x01000000 #define SRTCTL_ET 0x10000000 /* DAIO Receiver register dirty flags */ union dai_dirty { struct { u16 srt:1; u16 rsv:15; } bf; u16 data; }; /* DAIO Receiver control block */ struct dai_ctrl_blk { unsigned int srt; union dai_dirty dirty; }; /* Audio Input Mapper RAM */ #define AIM_ARC 0x00000FFF #define AIM_NXT 0x007F0000 struct daoimap { unsigned int aim; unsigned int idx; }; /* Audio Transmitter Control and Status register */ #define ATXCTL_EN 0x00000001 #define ATXCTL_MODE 0x00000010 #define ATXCTL_CD 0x00000020 #define ATXCTL_RAW 0x00000100 #define ATXCTL_MT 0x00000200 #define ATXCTL_NUC 0x00003000 #define ATXCTL_BEN 0x00010000 #define ATXCTL_BMUX 0x00700000 #define ATXCTL_B24 0x01000000 #define ATXCTL_CPF 0x02000000 #define ATXCTL_RIV 0x10000000 #define ATXCTL_LIV 0x20000000 #define ATXCTL_RSAT 0x40000000 #define ATXCTL_LSAT 0x80000000 /* XDIF Transmitter register dirty flags */ union dao_dirty { struct { u16 atxcsl:1; u16 rsv:15; } bf; u16 data; }; /* XDIF Transmitter control block */ struct dao_ctrl_blk { /* XDIF Transmitter Channel Status Low Register */ unsigned int atxcsl; union dao_dirty dirty; }; /* Audio Receiver Control register */ #define ARXCTL_EN 0x00000001 /* DAIO manager register dirty flags */ union daio_mgr_dirty { struct { u32 atxctl:8; u32 arxctl:8; u32 daoimap:1; u32 rsv:15; } bf; u32 data; }; /* DAIO manager control block */ struct daio_mgr_ctrl_blk { struct daoimap daoimap; unsigned int txctl[8]; unsigned int rxctl[8]; union daio_mgr_dirty dirty; }; static int dai_srt_set_srco(void *blk, unsigned int src) { struct dai_ctrl_blk *ctl = blk; set_field(&ctl->srt, SRTCTL_SRCO, src); ctl->dirty.bf.srt = 1; return 0; } static int dai_srt_set_srcm(void *blk, unsigned int src) { struct dai_ctrl_blk *ctl = blk; set_field(&ctl->srt, SRTCTL_SRCM, src); ctl->dirty.bf.srt = 1; return 0; } static int dai_srt_set_rsr(void *blk, unsigned int rsr) { struct dai_ctrl_blk *ctl = blk; set_field(&ctl->srt, SRTCTL_RSR, rsr); ctl->dirty.bf.srt = 1; return 0; } static int dai_srt_set_drat(void *blk, unsigned int drat) { struct dai_ctrl_blk *ctl = blk; set_field(&ctl->srt, SRTCTL_DRAT, drat); ctl->dirty.bf.srt = 1; return 0; } static int dai_srt_set_ec(void *blk, unsigned int ec) { struct dai_ctrl_blk *ctl = blk; set_field(&ctl->srt, SRTCTL_EC, ec ? 1 : 0); ctl->dirty.bf.srt = 1; return 0; } static int dai_srt_set_et(void *blk, unsigned int et) { struct dai_ctrl_blk *ctl = blk; set_field(&ctl->srt, SRTCTL_ET, et ? 1 : 0); ctl->dirty.bf.srt = 1; return 0; } static int dai_commit_write(struct hw *hw, unsigned int idx, void *blk) { struct dai_ctrl_blk *ctl = blk; if (ctl->dirty.bf.srt) { hw_write_20kx(hw, AUDIO_IO_RX_SRT_CTL+0x40*idx, ctl->srt); ctl->dirty.bf.srt = 0; } return 0; } static int dai_get_ctrl_blk(void **rblk) { struct dai_ctrl_blk *blk; *rblk = NULL; blk = kzalloc(sizeof(*blk), GFP_KERNEL); if (NULL == blk) return -ENOMEM; *rblk = blk; return 0; } static int dai_put_ctrl_blk(void *blk) { kfree(blk); return 0; } static int dao_set_spos(void *blk, unsigned int spos) { ((struct dao_ctrl_blk *)blk)->atxcsl = spos; ((struct dao_ctrl_blk *)blk)->dirty.bf.atxcsl = 1; return 0; } static int dao_commit_write(struct hw *hw, unsigned int idx, void *blk) { struct dao_ctrl_blk *ctl = blk; if (ctl->dirty.bf.atxcsl) { if (idx < 4) { /* S/PDIF SPOSx */ hw_write_20kx(hw, AUDIO_IO_TX_CSTAT_L+0x40*idx, ctl->atxcsl); } ctl->dirty.bf.atxcsl = 0; } return 0; } static int dao_get_spos(void *blk, unsigned int *spos) { *spos = ((struct dao_ctrl_blk *)blk)->atxcsl; return 0; } static int dao_get_ctrl_blk(void **rblk) { struct dao_ctrl_blk *blk; *rblk = NULL; blk = kzalloc(sizeof(*blk), GFP_KERNEL); if (NULL == blk) return -ENOMEM; *rblk = blk; return 0; } static int dao_put_ctrl_blk(void *blk) { kfree(blk); return 0; } static int daio_mgr_enb_dai(void *blk, unsigned int idx) { struct daio_mgr_ctrl_blk *ctl = blk; set_field(&ctl->rxctl[idx], ARXCTL_EN, 1); ctl->dirty.bf.arxctl |= (0x1 << idx); return 0; } static int daio_mgr_dsb_dai(void *blk, unsigned int idx) { struct daio_mgr_ctrl_blk *ctl = blk; set_field(&ctl->rxctl[idx], ARXCTL_EN, 0); ctl->dirty.bf.arxctl |= (0x1 << idx); return 0; } static int daio_mgr_enb_dao(void *blk, unsigned int idx) { struct daio_mgr_ctrl_blk *ctl = blk; set_field(&ctl->txctl[idx], ATXCTL_EN, 1); ctl->dirty.bf.atxctl |= (0x1 << idx); return 0; } static int daio_mgr_dsb_dao(void *blk, unsigned int idx) { struct daio_mgr_ctrl_blk *ctl = blk; set_field(&ctl->txctl[idx], ATXCTL_EN, 0); ctl->dirty.bf.atxctl |= (0x1 << idx); return 0; } static int daio_mgr_dao_init(void *blk, unsigned int idx, unsigned int conf) { struct daio_mgr_ctrl_blk *ctl = blk; if (idx < 4) { /* S/PDIF output */ switch ((conf & 0x7)) { case 1: set_field(&ctl->txctl[idx], ATXCTL_NUC, 0); break; case 2: set_field(&ctl->txctl[idx], ATXCTL_NUC, 1); break; case 4: set_field(&ctl->txctl[idx], ATXCTL_NUC, 2); break; case 8: set_field(&ctl->txctl[idx], ATXCTL_NUC, 3); break; default: break; } /* CDIF */ set_field(&ctl->txctl[idx], ATXCTL_CD, (!(conf & 0x7))); /* Non-audio */ set_field(&ctl->txctl[idx], ATXCTL_LIV, (conf >> 4) & 0x1); /* Non-audio */ set_field(&ctl->txctl[idx], ATXCTL_RIV, (conf >> 4) & 0x1); set_field(&ctl->txctl[idx], ATXCTL_RAW, ((conf >> 3) & 0x1) ? 0 : 0); ctl->dirty.bf.atxctl |= (0x1 << idx); } else { /* I2S output */ /*idx %= 4; */ } return 0; } static int daio_mgr_set_imaparc(void *blk, unsigned int slot) { struct daio_mgr_ctrl_blk *ctl = blk; set_field(&ctl->daoimap.aim, AIM_ARC, slot); ctl->dirty.bf.daoimap = 1; return 0; } static int daio_mgr_set_imapnxt(void *blk, unsigned int next) { struct daio_mgr_ctrl_blk *ctl = blk; set_field(&ctl->daoimap.aim, AIM_NXT, next); ctl->dirty.bf.daoimap = 1; return 0; } static int daio_mgr_set_imapaddr(void *blk, unsigned int addr) { ((struct daio_mgr_ctrl_blk *)blk)->daoimap.idx = addr; ((struct daio_mgr_ctrl_blk *)blk)->dirty.bf.daoimap = 1; return 0; } static int daio_mgr_commit_write(struct hw *hw, void *blk) { struct daio_mgr_ctrl_blk *ctl = blk; unsigned int data; int i; for (i = 0; i < 8; i++) { if ((ctl->dirty.bf.atxctl & (0x1 << i))) { data = ctl->txctl[i]; hw_write_20kx(hw, (AUDIO_IO_TX_CTL+(0x40*i)), data); ctl->dirty.bf.atxctl &= ~(0x1 << i); mdelay(1); } if ((ctl->dirty.bf.arxctl & (0x1 << i))) { data = ctl->rxctl[i]; hw_write_20kx(hw, (AUDIO_IO_RX_CTL+(0x40*i)), data); ctl->dirty.bf.arxctl &= ~(0x1 << i); mdelay(1); } } if (ctl->dirty.bf.daoimap) { hw_write_20kx(hw, AUDIO_IO_AIM+ctl->daoimap.idx*4, ctl->daoimap.aim); ctl->dirty.bf.daoimap = 0; } return 0; } static int daio_mgr_get_ctrl_blk(struct hw *hw, void **rblk) { struct daio_mgr_ctrl_blk *blk; int i; *rblk = NULL; blk = kzalloc(sizeof(*blk), GFP_KERNEL); if (NULL == blk) return -ENOMEM; for (i = 0; i < 8; i++) { blk->txctl[i] = hw_read_20kx(hw, AUDIO_IO_TX_CTL+(0x40*i)); blk->rxctl[i] = hw_read_20kx(hw, AUDIO_IO_RX_CTL+(0x40*i)); } *rblk = blk; return 0; } static int daio_mgr_put_ctrl_blk(void *blk) { kfree(blk); return 0; } /* Card hardware initialization block */ struct dac_conf { unsigned int msr; /* master sample rate in rsrs */ }; struct adc_conf { unsigned int msr; /* master sample rate in rsrs */ unsigned char input; /* the input source of ADC */ unsigned char mic20db; /* boost mic by 20db if input is microphone */ }; struct daio_conf { unsigned int msr; /* master sample rate in rsrs */ }; struct trn_conf { unsigned long vm_pgt_phys; }; static int hw_daio_init(struct hw *hw, const struct daio_conf *info) { u32 dwData; int i; /* Program I2S with proper sample rate and enable the correct I2S * channel. ED(0/8/16/24): Enable all I2S/I2X master clock output */ if (1 == info->msr) { hw_write_20kx(hw, AUDIO_IO_MCLK, 0x01010101); hw_write_20kx(hw, AUDIO_IO_TX_BLRCLK, 0x01010101); hw_write_20kx(hw, AUDIO_IO_RX_BLRCLK, 0); } else if (2 == info->msr) { hw_write_20kx(hw, AUDIO_IO_MCLK, 0x11111111); /* Specify all playing 96khz * EA [0] - Enabled * RTA [4:5] - 96kHz * EB [8] - Enabled * RTB [12:13] - 96kHz * EC [16] - Enabled * RTC [20:21] - 96kHz * ED [24] - Enabled * RTD [28:29] - 96kHz */ hw_write_20kx(hw, AUDIO_IO_TX_BLRCLK, 0x11111111); hw_write_20kx(hw, AUDIO_IO_RX_BLRCLK, 0); } else { printk(KERN_ALERT "ctxfi: ERROR!!! Invalid sampling rate!!!\n"); return -EINVAL; } for (i = 0; i < 8; i++) { if (i <= 3) { /* 1st 3 channels are SPDIFs (SB0960) */ if (i == 3) dwData = 0x1001001; else dwData = 0x1000001; hw_write_20kx(hw, (AUDIO_IO_TX_CTL+(0x40*i)), dwData); hw_write_20kx(hw, (AUDIO_IO_RX_CTL+(0x40*i)), dwData); /* Initialize the SPDIF Out Channel status registers. * The value specified here is based on the typical * values provided in the specification, namely: Clock * Accuracy of 1000ppm, Sample Rate of 48KHz, * unspecified source number, Generation status = 1, * Category code = 0x12 (Digital Signal Mixer), * Mode = 0, Emph = 0, Copy Permitted, AN = 0 * (indicating that we're transmitting digital audio, * and the Professional Use bit is 0. */ hw_write_20kx(hw, AUDIO_IO_TX_CSTAT_L+(0x40*i), 0x02109204); /* Default to 48kHz */ hw_write_20kx(hw, AUDIO_IO_TX_CSTAT_H+(0x40*i), 0x0B); } else { /* Next 5 channels are I2S (SB0960) */ dwData = 0x11; hw_write_20kx(hw, AUDIO_IO_RX_CTL+(0x40*i), dwData); if (2 == info->msr) { /* Four channels per sample period */ dwData |= 0x1000; } hw_write_20kx(hw, AUDIO_IO_TX_CTL+(0x40*i), dwData); } } return 0; } /* TRANSPORT operations */ static int hw_trn_init(struct hw *hw, const struct trn_conf *info) { u32 vmctl, data; u32 ptp_phys_low, ptp_phys_high; int i; /* Set up device page table */ if ((~0UL) == info->vm_pgt_phys) { printk(KERN_ALERT "ctxfi: " "Wrong device page table page address!!!\n"); return -1; } vmctl = 0x80000C0F; /* 32-bit, 4k-size page */ ptp_phys_low = (u32)info->vm_pgt_phys; ptp_phys_high = upper_32_bits(info->vm_pgt_phys); if (sizeof(void *) == 8) /* 64bit address */ vmctl |= (3 << 8); /* Write page table physical address to all PTPAL registers */ for (i = 0; i < 64; i++) { hw_write_20kx(hw, VMEM_PTPAL+(16*i), ptp_phys_low); hw_write_20kx(hw, VMEM_PTPAH+(16*i), ptp_phys_high); } /* Enable virtual memory transfer */ hw_write_20kx(hw, VMEM_CTL, vmctl); /* Enable transport bus master and queueing of request */ hw_write_20kx(hw, TRANSPORT_CTL, 0x03); hw_write_20kx(hw, TRANSPORT_INT, 0x200c01); /* Enable transport ring */ data = hw_read_20kx(hw, TRANSPORT_ENB); hw_write_20kx(hw, TRANSPORT_ENB, (data | 0x03)); return 0; } /* Card initialization */ #define GCTL_AIE 0x00000001 #define GCTL_UAA 0x00000002 #define GCTL_DPC 0x00000004 #define GCTL_DBP 0x00000008 #define GCTL_ABP 0x00000010 #define GCTL_TBP 0x00000020 #define GCTL_SBP 0x00000040 #define GCTL_FBP 0x00000080 #define GCTL_ME 0x00000100 #define GCTL_AID 0x00001000 #define PLLCTL_SRC 0x00000007 #define PLLCTL_SPE 0x00000008 #define PLLCTL_RD 0x000000F0 #define PLLCTL_FD 0x0001FF00 #define PLLCTL_OD 0x00060000 #define PLLCTL_B 0x00080000 #define PLLCTL_AS 0x00100000 #define PLLCTL_LF 0x03E00000 #define PLLCTL_SPS 0x1C000000 #define PLLCTL_AD 0x60000000 #define PLLSTAT_CCS 0x00000007 #define PLLSTAT_SPL 0x00000008 #define PLLSTAT_CRD 0x000000F0 #define PLLSTAT_CFD 0x0001FF00 #define PLLSTAT_SL 0x00020000 #define PLLSTAT_FAS 0x00040000 #define PLLSTAT_B 0x00080000 #define PLLSTAT_PD 0x00100000 #define PLLSTAT_OCA 0x00200000 #define PLLSTAT_NCA 0x00400000 static int hw_pll_init(struct hw *hw, unsigned int rsr) { unsigned int pllenb; unsigned int pllctl; unsigned int pllstat; int i; pllenb = 0xB; hw_write_20kx(hw, PLL_ENB, pllenb); pllctl = 0x20D00000; set_field(&pllctl, PLLCTL_FD, 16 - 4); hw_write_20kx(hw, PLL_CTL, pllctl); mdelay(40); pllctl = hw_read_20kx(hw, PLL_CTL); set_field(&pllctl, PLLCTL_B, 0); if (48000 == rsr) { set_field(&pllctl, PLLCTL_FD, 16 - 2); set_field(&pllctl, PLLCTL_RD, 1 - 1); } else { /* 44100 */ set_field(&pllctl, PLLCTL_FD, 147 - 2); set_field(&pllctl, PLLCTL_RD, 10 - 1); } hw_write_20kx(hw, PLL_CTL, pllctl); mdelay(40); for (i = 0; i < 1000; i++) { pllstat = hw_read_20kx(hw, PLL_STAT); if (get_field(pllstat, PLLSTAT_PD)) continue; if (get_field(pllstat, PLLSTAT_B) != get_field(pllctl, PLLCTL_B)) continue; if (get_field(pllstat, PLLSTAT_CCS) != get_field(pllctl, PLLCTL_SRC)) continue; if (get_field(pllstat, PLLSTAT_CRD) != get_field(pllctl, PLLCTL_RD)) continue; if (get_field(pllstat, PLLSTAT_CFD) != get_field(pllctl, PLLCTL_FD)) continue; break; } if (i >= 1000) { printk(KERN_ALERT "ctxfi: PLL initialization failed!!!\n"); return -EBUSY; } return 0; } static int hw_auto_init(struct hw *hw) { unsigned int gctl; int i; gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL); set_field(&gctl, GCTL_AIE, 0); hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl); set_field(&gctl, GCTL_AIE, 1); hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl); mdelay(10); for (i = 0; i < 400000; i++) { gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL); if (get_field(gctl, GCTL_AID)) break; } if (!get_field(gctl, GCTL_AID)) { printk(KERN_ALERT "ctxfi: Card Auto-init failed!!!\n"); return -EBUSY; } return 0; } /* DAC operations */ #define CS4382_MC1 0x1 #define CS4382_MC2 0x2 #define CS4382_MC3 0x3 #define CS4382_FC 0x4 #define CS4382_IC 0x5 #define CS4382_XC1 0x6 #define CS4382_VCA1 0x7 #define CS4382_VCB1 0x8 #define CS4382_XC2 0x9 #define CS4382_VCA2 0xA #define CS4382_VCB2 0xB #define CS4382_XC3 0xC #define CS4382_VCA3 0xD #define CS4382_VCB3 0xE #define CS4382_XC4 0xF #define CS4382_VCA4 0x10 #define CS4382_VCB4 0x11 #define CS4382_CREV 0x12 /* I2C status */ #define STATE_LOCKED 0x00 #define STATE_UNLOCKED 0xAA #define DATA_READY 0x800000 /* Used with I2C_IF_STATUS */ #define DATA_ABORT 0x10000 /* Used with I2C_IF_STATUS */ #define I2C_STATUS_DCM 0x00000001 #define I2C_STATUS_BC 0x00000006 #define I2C_STATUS_APD 0x00000008 #define I2C_STATUS_AB 0x00010000 #define I2C_STATUS_DR 0x00800000 #define I2C_ADDRESS_PTAD 0x0000FFFF #define I2C_ADDRESS_SLAD 0x007F0000 struct REGS_CS4382 { u32 dwModeControl_1; u32 dwModeControl_2; u32 dwModeControl_3; u32 dwFilterControl; u32 dwInvertControl; u32 dwMixControl_P1; u32 dwVolControl_A1; u32 dwVolControl_B1; u32 dwMixControl_P2; u32 dwVolControl_A2; u32 dwVolControl_B2; u32 dwMixControl_P3; u32 dwVolControl_A3; u32 dwVolControl_B3; u32 dwMixControl_P4; u32 dwVolControl_A4; u32 dwVolControl_B4; }; static u8 m_bAddressSize, m_bDataSize, m_bDeviceID; static int I2CUnlockFullAccess(struct hw *hw) { u8 UnlockKeySequence_FLASH_FULLACCESS_MODE[2] = {0xB3, 0xD4}; /* Send keys for forced BIOS mode */ hw_write_20kx(hw, I2C_IF_WLOCK, UnlockKeySequence_FLASH_FULLACCESS_MODE[0]); hw_write_20kx(hw, I2C_IF_WLOCK, UnlockKeySequence_FLASH_FULLACCESS_MODE[1]); /* Check whether the chip is unlocked */ if (hw_read_20kx(hw, I2C_IF_WLOCK) == STATE_UNLOCKED) return 0; return -1; } static int I2CLockChip(struct hw *hw) { /* Write twice */ hw_write_20kx(hw, I2C_IF_WLOCK, STATE_LOCKED); hw_write_20kx(hw, I2C_IF_WLOCK, STATE_LOCKED); if (hw_read_20kx(hw, I2C_IF_WLOCK) == STATE_LOCKED) return 0; return -1; } static int I2CInit(struct hw *hw, u8 bDeviceID, u8 bAddressSize, u8 bDataSize) { int err; unsigned int RegI2CStatus; unsigned int RegI2CAddress; err = I2CUnlockFullAccess(hw); if (err < 0) return err; m_bAddressSize = bAddressSize; m_bDataSize = bDataSize; m_bDeviceID = bDeviceID; RegI2CAddress = 0; set_field(&RegI2CAddress, I2C_ADDRESS_SLAD, bDeviceID); hw_write_20kx(hw, I2C_IF_ADDRESS, RegI2CAddress); RegI2CStatus = hw_read_20kx(hw, I2C_IF_STATUS); set_field(&RegI2CStatus, I2C_STATUS_DCM, 1); /* Direct control mode */ hw_write_20kx(hw, I2C_IF_STATUS, RegI2CStatus); return 0; } static int I2CUninit(struct hw *hw) { unsigned int RegI2CStatus; unsigned int RegI2CAddress; RegI2CAddress = 0; set_field(&RegI2CAddress, I2C_ADDRESS_SLAD, 0x57); /* I2C id */ hw_write_20kx(hw, I2C_IF_ADDRESS, RegI2CAddress); RegI2CStatus = hw_read_20kx(hw, I2C_IF_STATUS); set_field(&RegI2CStatus, I2C_STATUS_DCM, 0); /* I2C mode */ hw_write_20kx(hw, I2C_IF_STATUS, RegI2CStatus); return I2CLockChip(hw); } static int I2CWaitDataReady(struct hw *hw) { int i = 0x400000; unsigned int ret; do { ret = hw_read_20kx(hw, I2C_IF_STATUS); } while ((!(ret & DATA_READY)) && --i); return i; } static int I2CRead(struct hw *hw, u16 wAddress, u32 *pdwData) { unsigned int RegI2CStatus; RegI2CStatus = hw_read_20kx(hw, I2C_IF_STATUS); set_field(&RegI2CStatus, I2C_STATUS_BC, (4 == m_bAddressSize) ? 0 : m_bAddressSize); hw_write_20kx(hw, I2C_IF_STATUS, RegI2CStatus); if (!I2CWaitDataReady(hw)) return -1; hw_write_20kx(hw, I2C_IF_WDATA, (u32)wAddress); if (!I2CWaitDataReady(hw)) return -1; /* Force a read operation */ hw_write_20kx(hw, I2C_IF_RDATA, 0); if (!I2CWaitDataReady(hw)) return -1; *pdwData = hw_read_20kx(hw, I2C_IF_RDATA); return 0; } static int I2CWrite(struct hw *hw, u16 wAddress, u32 dwData) { unsigned int dwI2CData = (dwData << (m_bAddressSize * 8)) | wAddress; unsigned int RegI2CStatus; RegI2CStatus = hw_read_20kx(hw, I2C_IF_STATUS); set_field(&RegI2CStatus, I2C_STATUS_BC, (4 == (m_bAddressSize + m_bDataSize)) ? 0 : (m_bAddressSize + m_bDataSize)); hw_write_20kx(hw, I2C_IF_STATUS, RegI2CStatus); I2CWaitDataReady(hw); /* Dummy write to trigger the write oprtation */ hw_write_20kx(hw, I2C_IF_WDATA, 0); I2CWaitDataReady(hw); /* This is the real data */ hw_write_20kx(hw, I2C_IF_WDATA, dwI2CData); I2CWaitDataReady(hw); return 0; } static int hw_dac_init(struct hw *hw, const struct dac_conf *info) { int err; u32 dwData; int i; struct REGS_CS4382 cs4382_Read = {0}; struct REGS_CS4382 cs4382_Def = { 0x00000001, /* Mode Control 1 */ 0x00000000, /* Mode Control 2 */ 0x00000084, /* Mode Control 3 */ 0x00000000, /* Filter Control */ 0x00000000, /* Invert Control */ 0x00000024, /* Mixing Control Pair 1 */ 0x00000000, /* Vol Control A1 */ 0x00000000, /* Vol Control B1 */ 0x00000024, /* Mixing Control Pair 2 */ 0x00000000, /* Vol Control A2 */ 0x00000000, /* Vol Control B2 */ 0x00000024, /* Mixing Control Pair 3 */ 0x00000000, /* Vol Control A3 */ 0x00000000, /* Vol Control B3 */ 0x00000024, /* Mixing Control Pair 4 */ 0x00000000, /* Vol Control A4 */ 0x00000000 /* Vol Control B4 */ }; /* Set DAC reset bit as output */ dwData = hw_read_20kx(hw, GPIO_CTRL); dwData |= 0x02; hw_write_20kx(hw, GPIO_CTRL, dwData); err = I2CInit(hw, 0x18, 1, 1); if (err < 0) goto End; for (i = 0; i < 2; i++) { /* Reset DAC twice just in-case the chip * didn't initialized properly */ dwData = hw_read_20kx(hw, GPIO_DATA); /* GPIO data bit 1 */ dwData &= 0xFFFFFFFD; hw_write_20kx(hw, GPIO_DATA, dwData); mdelay(10); dwData |= 0x2; hw_write_20kx(hw, GPIO_DATA, dwData); mdelay(50); /* Reset the 2nd time */ dwData &= 0xFFFFFFFD; hw_write_20kx(hw, GPIO_DATA, dwData); mdelay(10); dwData |= 0x2; hw_write_20kx(hw, GPIO_DATA, dwData); mdelay(50); if (I2CRead(hw, CS4382_MC1, &cs4382_Read.dwModeControl_1)) continue; if (I2CRead(hw, CS4382_MC2, &cs4382_Read.dwModeControl_2)) continue; if (I2CRead(hw, CS4382_MC3, &cs4382_Read.dwModeControl_3)) continue; if (I2CRead(hw, CS4382_FC, &cs4382_Read.dwFilterControl)) continue; if (I2CRead(hw, CS4382_IC, &cs4382_Read.dwInvertControl)) continue; if (I2CRead(hw, CS4382_XC1, &cs4382_Read.dwMixControl_P1)) continue; if (I2CRead(hw, CS4382_VCA1, &cs4382_Read.dwVolControl_A1)) continue; if (I2CRead(hw, CS4382_VCB1, &cs4382_Read.dwVolControl_B1)) continue; if (I2CRead(hw, CS4382_XC2, &cs4382_Read.dwMixControl_P2)) continue; if (I2CRead(hw, CS4382_VCA2, &cs4382_Read.dwVolControl_A2)) continue; if (I2CRead(hw, CS4382_VCB2, &cs4382_Read.dwVolControl_B2)) continue; if (I2CRead(hw, CS4382_XC3, &cs4382_Read.dwMixControl_P3)) continue; if (I2CRead(hw, CS4382_VCA3, &cs4382_Read.dwVolControl_A3)) continue; if (I2CRead(hw, CS4382_VCB3, &cs4382_Read.dwVolControl_B3)) continue; if (I2CRead(hw, CS4382_XC4, &cs4382_Read.dwMixControl_P4)) continue; if (I2CRead(hw, CS4382_VCA4, &cs4382_Read.dwVolControl_A4)) continue; if (I2CRead(hw, CS4382_VCB4, &cs4382_Read.dwVolControl_B4)) continue; if (memcmp(&cs4382_Read, &cs4382_Def, sizeof(struct REGS_CS4382))) continue; else break; } if (i >= 2) goto End; /* Note: Every I2C write must have some delay. * This is not a requirement but the delay works here... */ I2CWrite(hw, CS4382_MC1, 0x80); I2CWrite(hw, CS4382_MC2, 0x10); if (1 == info->msr) { I2CWrite(hw, CS4382_XC1, 0x24); I2CWrite(hw, CS4382_XC2, 0x24); I2CWrite(hw, CS4382_XC3, 0x24); I2CWrite(hw, CS4382_XC4, 0x24); } else if (2 == info->msr) { I2CWrite(hw, CS4382_XC1, 0x25); I2CWrite(hw, CS4382_XC2, 0x25); I2CWrite(hw, CS4382_XC3, 0x25); I2CWrite(hw, CS4382_XC4, 0x25); } else { I2CWrite(hw, CS4382_XC1, 0x26); I2CWrite(hw, CS4382_XC2, 0x26); I2CWrite(hw, CS4382_XC3, 0x26); I2CWrite(hw, CS4382_XC4, 0x26); } return 0; End: I2CUninit(hw); return -1; } /* ADC operations */ #define MAKE_WM8775_ADDR(addr, data) (u32)(((addr<<1)&0xFE)|((data>>8)&0x1)) #define MAKE_WM8775_DATA(data) (u32)(data&0xFF) #define WM8775_IC 0x0B #define WM8775_MMC 0x0C #define WM8775_AADCL 0x0E #define WM8775_AADCR 0x0F #define WM8775_ADCMC 0x15 #define WM8775_RESET 0x17 static int hw_is_adc_input_selected(struct hw *hw, enum ADCSRC type) { u32 data; data = hw_read_20kx(hw, GPIO_DATA); switch (type) { case ADC_MICIN: data = (data & (0x1 << 14)) ? 1 : 0; break; case ADC_LINEIN: data = (data & (0x1 << 14)) ? 0 : 1; break; default: data = 0; } return data; } static int hw_adc_input_select(struct hw *hw, enum ADCSRC type) { u32 data; data = hw_read_20kx(hw, GPIO_DATA); switch (type) { case ADC_MICIN: data |= (0x1 << 14); hw_write_20kx(hw, GPIO_DATA, data); I2CWrite(hw, MAKE_WM8775_ADDR(WM8775_ADCMC, 0x101), MAKE_WM8775_DATA(0x101)); /* Mic-in */ I2CWrite(hw, MAKE_WM8775_ADDR(WM8775_AADCL, 0xE7), MAKE_WM8775_DATA(0xE7)); /* +12dB boost */ I2CWrite(hw, MAKE_WM8775_ADDR(WM8775_AADCR, 0xE7), MAKE_WM8775_DATA(0xE7)); /* +12dB boost */ break; case ADC_LINEIN: data &= ~(0x1 << 14); hw_write_20kx(hw, GPIO_DATA, data); I2CWrite(hw, MAKE_WM8775_ADDR(WM8775_ADCMC, 0x102), MAKE_WM8775_DATA(0x102)); /* Line-in */ I2CWrite(hw, MAKE_WM8775_ADDR(WM8775_AADCL, 0xCF), MAKE_WM8775_DATA(0xCF)); /* No boost */ I2CWrite(hw, MAKE_WM8775_ADDR(WM8775_AADCR, 0xCF), MAKE_WM8775_DATA(0xCF)); /* No boost */ break; default: break; } return 0; } static int hw_adc_init(struct hw *hw, const struct adc_conf *info) { int err; u32 dwMux = 2, dwData, dwCtl; /* Set ADC reset bit as output */ dwData = hw_read_20kx(hw, GPIO_CTRL); dwData |= (0x1 << 15); hw_write_20kx(hw, GPIO_CTRL, dwData); /* Initialize I2C */ err = I2CInit(hw, 0x1A, 1, 1); if (err < 0) { printk(KERN_ALERT "ctxfi: Failure to acquire I2C!!!\n"); goto error; } /* Make ADC in normal operation */ dwData = hw_read_20kx(hw, GPIO_DATA); dwData &= ~(0x1 << 15); mdelay(10); dwData |= (0x1 << 15); hw_write_20kx(hw, GPIO_DATA, dwData); mdelay(50); /* Set the master mode (256fs) */ if (1 == info->msr) { I2CWrite(hw, MAKE_WM8775_ADDR(WM8775_MMC, 0x02), MAKE_WM8775_DATA(0x02)); } else if (2 == info->msr) { I2CWrite(hw, MAKE_WM8775_ADDR(WM8775_MMC, 0x0A), MAKE_WM8775_DATA(0x0A)); } else { printk(KERN_ALERT "ctxfi: Invalid master sampling " "rate (msr %d)!!!\n", info->msr); err = -EINVAL; goto error; } /* Configure GPIO bit 14 change to line-in/mic-in */ dwCtl = hw_read_20kx(hw, GPIO_CTRL); dwCtl |= 0x1<<14; hw_write_20kx(hw, GPIO_CTRL, dwCtl); /* Check using Mic-in or Line-in */ dwData = hw_read_20kx(hw, GPIO_DATA); if (dwMux == 1) { /* Configures GPIO data to select Mic-in */ dwData |= 0x1<<14; hw_write_20kx(hw, GPIO_DATA, dwData); I2CWrite(hw, MAKE_WM8775_ADDR(WM8775_ADCMC, 0x101), MAKE_WM8775_DATA(0x101)); /* Mic-in */ I2CWrite(hw, MAKE_WM8775_ADDR(WM8775_AADCL, 0xE7), MAKE_WM8775_DATA(0xE7)); /* +12dB boost */ I2CWrite(hw, MAKE_WM8775_ADDR(WM8775_AADCR, 0xE7), MAKE_WM8775_DATA(0xE7)); /* +12dB boost */ } else if (dwMux == 2) { /* Configures GPIO data to select Line-in */ dwData &= ~(0x1<<14); hw_write_20kx(hw, GPIO_DATA, dwData); /* Setup ADC */ I2CWrite(hw, MAKE_WM8775_ADDR(WM8775_ADCMC, 0x102), MAKE_WM8775_DATA(0x102)); /* Line-in */ I2CWrite(hw, MAKE_WM8775_ADDR(WM8775_AADCL, 0xCF), MAKE_WM8775_DATA(0xCF)); /* No boost */ I2CWrite(hw, MAKE_WM8775_ADDR(WM8775_AADCR, 0xCF), MAKE_WM8775_DATA(0xCF)); /* No boost */ } else { printk(KERN_ALERT "ctxfi: ERROR!!! Invalid input mux!!!\n"); err = -EINVAL; goto error; } return 0; error: I2CUninit(hw); return err; } static int hw_have_digit_io_switch(struct hw *hw) { return 0; } static int hw_card_start(struct hw *hw) { int err = 0; struct pci_dev *pci = hw->pci; unsigned int gctl; err = pci_enable_device(pci); if (err < 0) return err; /* Set DMA transfer mask */ if (pci_set_dma_mask(pci, CT_XFI_DMA_MASK) < 0 || pci_set_consistent_dma_mask(pci, CT_XFI_DMA_MASK) < 0) { printk(KERN_ERR "ctxfi: architecture does not support PCI " "busmaster DMA with mask 0x%llx\n", CT_XFI_DMA_MASK); err = -ENXIO; goto error1; } err = pci_request_regions(pci, "XFi"); if (err < 0) goto error1; hw->io_base = pci_resource_start(hw->pci, 2); hw->mem_base = (unsigned long)ioremap(hw->io_base, pci_resource_len(hw->pci, 2)); if (NULL == (void *)hw->mem_base) { err = -ENOENT; goto error2; } /* Switch to 20k2 mode from UAA mode. */ gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL); set_field(&gctl, GCTL_UAA, 0); hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl); /*if ((err = request_irq(pci->irq, ct_atc_interrupt, IRQF_SHARED, atc->chip_details->nm_card, hw))) { goto error3; } hw->irq = pci->irq; */ pci_set_master(pci); return 0; /*error3: iounmap((void *)hw->mem_base); hw->mem_base = (unsigned long)NULL;*/ error2: pci_release_regions(pci); hw->io_base = 0; error1: pci_disable_device(pci); return err; } static int hw_card_stop(struct hw *hw) { /* TODO: Disable interrupt and so on... */ return 0; } static int hw_card_shutdown(struct hw *hw) { if (hw->irq >= 0) free_irq(hw->irq, hw); hw->irq = -1; if (NULL != ((void *)hw->mem_base)) iounmap((void *)hw->mem_base); hw->mem_base = (unsigned long)NULL; if (hw->io_base) pci_release_regions(hw->pci); hw->io_base = 0; pci_disable_device(hw->pci); return 0; } static int hw_card_init(struct hw *hw, struct card_conf *info) { int err; unsigned int gctl; u32 data = 0; struct dac_conf dac_info = {0}; struct adc_conf adc_info = {0}; struct daio_conf daio_info = {0}; struct trn_conf trn_info = {0}; /* Get PCI io port/memory base address and * do 20kx core switch if needed. */ if (!hw->io_base) { err = hw_card_start(hw); if (err) return err; } /* PLL init */ err = hw_pll_init(hw, info->rsr); if (err < 0) return err; /* kick off auto-init */ err = hw_auto_init(hw); if (err < 0) return err; gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL); set_field(&gctl, GCTL_DBP, 1); set_field(&gctl, GCTL_TBP, 1); set_field(&gctl, GCTL_FBP, 1); set_field(&gctl, GCTL_DPC, 0); hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl); /* Reset all global pending interrupts */ hw_write_20kx(hw, INTERRUPT_GIE, 0); /* Reset all SRC pending interrupts */ hw_write_20kx(hw, SRC_IP, 0); /* TODO: detect the card ID and configure GPIO accordingly. */ /* Configures GPIO (0xD802 0x98028) */ /*hw_write_20kx(hw, GPIO_CTRL, 0x7F07);*/ /* Configures GPIO (SB0880) */ /*hw_write_20kx(hw, GPIO_CTRL, 0xFF07);*/ hw_write_20kx(hw, GPIO_CTRL, 0xD802); /* Enable audio ring */ hw_write_20kx(hw, MIXER_AR_ENABLE, 0x01); trn_info.vm_pgt_phys = info->vm_pgt_phys; err = hw_trn_init(hw, &trn_info); if (err < 0) return err; daio_info.msr = info->msr; err = hw_daio_init(hw, &daio_info); if (err < 0) return err; dac_info.msr = info->msr; err = hw_dac_init(hw, &dac_info); if (err < 0) return err; adc_info.msr = info->msr; adc_info.input = ADC_LINEIN; adc_info.mic20db = 0; err = hw_adc_init(hw, &adc_info); if (err < 0) return err; data = hw_read_20kx(hw, SRC_MCTL); data |= 0x1; /* Enables input from the audio ring */ hw_write_20kx(hw, SRC_MCTL, data); return 0; } static u32 hw_read_20kx(struct hw *hw, u32 reg) { return readl((void *)(hw->mem_base + reg)); } static void hw_write_20kx(struct hw *hw, u32 reg, u32 data) { writel(data, (void *)(hw->mem_base + reg)); } static struct hw ct20k2_preset __devinitdata = { .irq = -1, .card_init = hw_card_init, .card_stop = hw_card_stop, .pll_init = hw_pll_init, .is_adc_source_selected = hw_is_adc_input_selected, .select_adc_source = hw_adc_input_select, .have_digit_io_switch = hw_have_digit_io_switch, .src_rsc_get_ctrl_blk = src_get_rsc_ctrl_blk, .src_rsc_put_ctrl_blk = src_put_rsc_ctrl_blk, .src_mgr_get_ctrl_blk = src_mgr_get_ctrl_blk, .src_mgr_put_ctrl_blk = src_mgr_put_ctrl_blk, .src_set_state = src_set_state, .src_set_bm = src_set_bm, .src_set_rsr = src_set_rsr, .src_set_sf = src_set_sf, .src_set_wr = src_set_wr, .src_set_pm = src_set_pm, .src_set_rom = src_set_rom, .src_set_vo = src_set_vo, .src_set_st = src_set_st, .src_set_ie = src_set_ie, .src_set_ilsz = src_set_ilsz, .src_set_bp = src_set_bp, .src_set_cisz = src_set_cisz, .src_set_ca = src_set_ca, .src_set_sa = src_set_sa, .src_set_la = src_set_la, .src_set_pitch = src_set_pitch, .src_set_dirty = src_set_dirty, .src_set_clear_zbufs = src_set_clear_zbufs, .src_set_dirty_all = src_set_dirty_all, .src_commit_write = src_commit_write, .src_get_ca = src_get_ca, .src_get_dirty = src_get_dirty, .src_dirty_conj_mask = src_dirty_conj_mask, .src_mgr_enbs_src = src_mgr_enbs_src, .src_mgr_enb_src = src_mgr_enb_src, .src_mgr_dsb_src = src_mgr_dsb_src, .src_mgr_commit_write = src_mgr_commit_write, .srcimp_mgr_get_ctrl_blk = srcimp_mgr_get_ctrl_blk, .srcimp_mgr_put_ctrl_blk = srcimp_mgr_put_ctrl_blk, .srcimp_mgr_set_imaparc = srcimp_mgr_set_imaparc, .srcimp_mgr_set_imapuser = srcimp_mgr_set_imapuser, .srcimp_mgr_set_imapnxt = srcimp_mgr_set_imapnxt, .srcimp_mgr_set_imapaddr = srcimp_mgr_set_imapaddr, .srcimp_mgr_commit_write = srcimp_mgr_commit_write, .amixer_rsc_get_ctrl_blk = amixer_rsc_get_ctrl_blk, .amixer_rsc_put_ctrl_blk = amixer_rsc_put_ctrl_blk, .amixer_mgr_get_ctrl_blk = amixer_mgr_get_ctrl_blk, .amixer_mgr_put_ctrl_blk = amixer_mgr_put_ctrl_blk, .amixer_set_mode = amixer_set_mode, .amixer_set_iv = amixer_set_iv, .amixer_set_x = amixer_set_x, .amixer_set_y = amixer_set_y, .amixer_set_sadr = amixer_set_sadr, .amixer_set_se = amixer_set_se, .amixer_set_dirty = amixer_set_dirty, .amixer_set_dirty_all = amixer_set_dirty_all, .amixer_commit_write = amixer_commit_write, .amixer_get_y = amixer_get_y, .amixer_get_dirty = amixer_get_dirty, .dai_get_ctrl_blk = dai_get_ctrl_blk, .dai_put_ctrl_blk = dai_put_ctrl_blk, .dai_srt_set_srco = dai_srt_set_srco, .dai_srt_set_srcm = dai_srt_set_srcm, .dai_srt_set_rsr = dai_srt_set_rsr, .dai_srt_set_drat = dai_srt_set_drat, .dai_srt_set_ec = dai_srt_set_ec, .dai_srt_set_et = dai_srt_set_et, .dai_commit_write = dai_commit_write, .dao_get_ctrl_blk = dao_get_ctrl_blk, .dao_put_ctrl_blk = dao_put_ctrl_blk, .dao_set_spos = dao_set_spos, .dao_commit_write = dao_commit_write, .dao_get_spos = dao_get_spos, .daio_mgr_get_ctrl_blk = daio_mgr_get_ctrl_blk, .daio_mgr_put_ctrl_blk = daio_mgr_put_ctrl_blk, .daio_mgr_enb_dai = daio_mgr_enb_dai, .daio_mgr_dsb_dai = daio_mgr_dsb_dai, .daio_mgr_enb_dao = daio_mgr_enb_dao, .daio_mgr_dsb_dao = daio_mgr_dsb_dao, .daio_mgr_dao_init = daio_mgr_dao_init, .daio_mgr_set_imaparc = daio_mgr_set_imaparc, .daio_mgr_set_imapnxt = daio_mgr_set_imapnxt, .daio_mgr_set_imapaddr = daio_mgr_set_imapaddr, .daio_mgr_commit_write = daio_mgr_commit_write, }; int __devinit create_20k2_hw_obj(struct hw **rhw) { struct hw *hw; *rhw = NULL; hw = kzalloc(sizeof(*hw), GFP_KERNEL); if (NULL == hw) return -ENOMEM; *hw = ct20k2_preset; *rhw = hw; return 0; } int destroy_20k2_hw_obj(struct hw *hw) { if (hw->io_base) hw_card_shutdown(hw); kfree(hw); return 0; }