/* * Based on arch/arm/kernel/setup.c * * Copyright (C) 1995-2001 Russell King * Copyright (C) 2012 ARM Ltd. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include unsigned long elf_hwcap __read_mostly; EXPORT_SYMBOL_GPL(elf_hwcap); #ifdef CONFIG_COMPAT #define COMPAT_ELF_HWCAP_DEFAULT \ (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\ COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\ COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\ COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\ COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\ COMPAT_HWCAP_LPAE) unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT; unsigned int compat_elf_hwcap2 __read_mostly; #endif DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS); phys_addr_t __fdt_pointer __initdata; /* * Standard memory resources */ static struct resource mem_res[] = { { .name = "Kernel code", .start = 0, .end = 0, .flags = IORESOURCE_MEM }, { .name = "Kernel data", .start = 0, .end = 0, .flags = IORESOURCE_MEM } }; #define kernel_code mem_res[0] #define kernel_data mem_res[1] /* * The recorded values of x0 .. x3 upon kernel entry. */ u64 __cacheline_aligned boot_args[4]; void __init smp_setup_processor_id(void) { u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK; cpu_logical_map(0) = mpidr; /* * clear __my_cpu_offset on boot CPU to avoid hang caused by * using percpu variable early, for example, lockdep will * access percpu variable inside lock_release */ set_my_cpu_offset(0); pr_info("Booting Linux on physical CPU 0x%lx\n", (unsigned long)mpidr); } bool arch_match_cpu_phys_id(int cpu, u64 phys_id) { return phys_id == cpu_logical_map(cpu); } struct mpidr_hash mpidr_hash; /** * smp_build_mpidr_hash - Pre-compute shifts required at each affinity * level in order to build a linear index from an * MPIDR value. Resulting algorithm is a collision * free hash carried out through shifting and ORing */ static void __init smp_build_mpidr_hash(void) { u32 i, affinity, fs[4], bits[4], ls; u64 mask = 0; /* * Pre-scan the list of MPIDRS and filter out bits that do * not contribute to affinity levels, ie they never toggle. */ for_each_possible_cpu(i) mask |= (cpu_logical_map(i) ^ cpu_logical_map(0)); pr_debug("mask of set bits %#llx\n", mask); /* * Find and stash the last and first bit set at all affinity levels to * check how many bits are required to represent them. */ for (i = 0; i < 4; i++) { affinity = MPIDR_AFFINITY_LEVEL(mask, i); /* * Find the MSB bit and LSB bits position * to determine how many bits are required * to express the affinity level. */ ls = fls(affinity); fs[i] = affinity ? ffs(affinity) - 1 : 0; bits[i] = ls - fs[i]; } /* * An index can be created from the MPIDR_EL1 by isolating the * significant bits at each affinity level and by shifting * them in order to compress the 32 bits values space to a * compressed set of values. This is equivalent to hashing * the MPIDR_EL1 through shifting and ORing. It is a collision free * hash though not minimal since some levels might contain a number * of CPUs that is not an exact power of 2 and their bit * representation might contain holes, eg MPIDR_EL1[7:0] = {0x2, 0x80}. */ mpidr_hash.shift_aff[0] = MPIDR_LEVEL_SHIFT(0) + fs[0]; mpidr_hash.shift_aff[1] = MPIDR_LEVEL_SHIFT(1) + fs[1] - bits[0]; mpidr_hash.shift_aff[2] = MPIDR_LEVEL_SHIFT(2) + fs[2] - (bits[1] + bits[0]); mpidr_hash.shift_aff[3] = MPIDR_LEVEL_SHIFT(3) + fs[3] - (bits[2] + bits[1] + bits[0]); mpidr_hash.mask = mask; mpidr_hash.bits = bits[3] + bits[2] + bits[1] + bits[0]; pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] aff3[%u] mask[%#llx] bits[%u]\n", mpidr_hash.shift_aff[0], mpidr_hash.shift_aff[1], mpidr_hash.shift_aff[2], mpidr_hash.shift_aff[3], mpidr_hash.mask, mpidr_hash.bits); /* * 4x is an arbitrary value used to warn on a hash table much bigger * than expected on most systems. */ if (mpidr_hash_size() > 4 * num_possible_cpus()) pr_warn("Large number of MPIDR hash buckets detected\n"); __flush_dcache_area(&mpidr_hash, sizeof(struct mpidr_hash)); } void __init setup_cpu_features(void) { u64 features; s64 block; u32 cwg; int cls; /* * Check for sane CTR_EL0.CWG value. */ cwg = cache_type_cwg(); cls = cache_line_size(); if (!cwg) pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n", cls); if (L1_CACHE_BYTES < cls) pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n", L1_CACHE_BYTES, cls); /* * ID_AA64ISAR0_EL1 contains 4-bit wide signed feature blocks. * The blocks we test below represent incremental functionality * for non-negative values. Negative values are reserved. */ features = read_cpuid(ID_AA64ISAR0_EL1); block = cpuid_feature_extract_field(features, 4); if (block > 0) { switch (block) { default: case 2: elf_hwcap |= HWCAP_PMULL; case 1: elf_hwcap |= HWCAP_AES; case 0: break; } } if (cpuid_feature_extract_field(features, 8) > 0) elf_hwcap |= HWCAP_SHA1; if (cpuid_feature_extract_field(features, 12) > 0) elf_hwcap |= HWCAP_SHA2; if (cpuid_feature_extract_field(features, 16) > 0) elf_hwcap |= HWCAP_CRC32; block = cpuid_feature_extract_field(features, 20); if (block > 0) { switch (block) { default: case 2: elf_hwcap |= HWCAP_ATOMICS; case 1: /* RESERVED */ case 0: break; } } #ifdef CONFIG_COMPAT /* * ID_ISAR5_EL1 carries similar information as above, but pertaining to * the AArch32 32-bit execution state. */ features = read_cpuid(ID_ISAR5_EL1); block = cpuid_feature_extract_field(features, 4); if (block > 0) { switch (block) { default: case 2: compat_elf_hwcap2 |= COMPAT_HWCAP2_PMULL; case 1: compat_elf_hwcap2 |= COMPAT_HWCAP2_AES; case 0: break; } } if (cpuid_feature_extract_field(features, 8) > 0) compat_elf_hwcap2 |= COMPAT_HWCAP2_SHA1; if (cpuid_feature_extract_field(features, 12) > 0) compat_elf_hwcap2 |= COMPAT_HWCAP2_SHA2; if (cpuid_feature_extract_field(features, 16) > 0) compat_elf_hwcap2 |= COMPAT_HWCAP2_CRC32; #endif } static void __init setup_machine_fdt(phys_addr_t dt_phys) { void *dt_virt = fixmap_remap_fdt(dt_phys); if (!dt_virt || !early_init_dt_scan(dt_virt)) { pr_crit("\n" "Error: invalid device tree blob at physical address %pa (virtual address 0x%p)\n" "The dtb must be 8-byte aligned and must not exceed 2 MB in size\n" "\nPlease check your bootloader.", &dt_phys, dt_virt); while (true) cpu_relax(); } dump_stack_set_arch_desc("%s (DT)", of_flat_dt_get_machine_name()); } static void __init request_standard_resources(void) { struct memblock_region *region; struct resource *res; kernel_code.start = virt_to_phys(_text); kernel_code.end = virt_to_phys(_etext - 1); kernel_data.start = virt_to_phys(_sdata); kernel_data.end = virt_to_phys(_end - 1); for_each_memblock(memory, region) { res = alloc_bootmem_low(sizeof(*res)); res->name = "System RAM"; res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region)); res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1; res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; request_resource(&iomem_resource, res); if (kernel_code.start >= res->start && kernel_code.end <= res->end) request_resource(res, &kernel_code); if (kernel_data.start >= res->start && kernel_data.end <= res->end) request_resource(res, &kernel_data); } } #ifdef CONFIG_BLK_DEV_INITRD /* * Relocate initrd if it is not completely within the linear mapping. * This would be the case if mem= cuts out all or part of it. */ static void __init relocate_initrd(void) { phys_addr_t orig_start = __virt_to_phys(initrd_start); phys_addr_t orig_end = __virt_to_phys(initrd_end); phys_addr_t ram_end = memblock_end_of_DRAM(); phys_addr_t new_start; unsigned long size, to_free = 0; void *dest; if (orig_end <= ram_end) return; /* * Any of the original initrd which overlaps the linear map should * be freed after relocating. */ if (orig_start < ram_end) to_free = ram_end - orig_start; size = orig_end - orig_start; /* initrd needs to be relocated completely inside linear mapping */ new_start = memblock_find_in_range(0, PFN_PHYS(max_pfn), size, PAGE_SIZE); if (!new_start) panic("Cannot relocate initrd of size %ld\n", size); memblock_reserve(new_start, size); initrd_start = __phys_to_virt(new_start); initrd_end = initrd_start + size; pr_info("Moving initrd from [%llx-%llx] to [%llx-%llx]\n", orig_start, orig_start + size - 1, new_start, new_start + size - 1); dest = (void *)initrd_start; if (to_free) { memcpy(dest, (void *)__phys_to_virt(orig_start), to_free); dest += to_free; } copy_from_early_mem(dest, orig_start + to_free, size - to_free); if (to_free) { pr_info("Freeing original RAMDISK from [%llx-%llx]\n", orig_start, orig_start + to_free - 1); memblock_free(orig_start, to_free); } } #else static inline void __init relocate_initrd(void) { } #endif u64 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = INVALID_HWID }; void __init setup_arch(char **cmdline_p) { pr_info("Boot CPU: AArch64 Processor [%08x]\n", read_cpuid_id()); sprintf(init_utsname()->machine, ELF_PLATFORM); init_mm.start_code = (unsigned long) _text; init_mm.end_code = (unsigned long) _etext; init_mm.end_data = (unsigned long) _edata; init_mm.brk = (unsigned long) _end; *cmdline_p = boot_command_line; early_fixmap_init(); early_ioremap_init(); setup_machine_fdt(__fdt_pointer); parse_early_param(); /* * Unmask asynchronous aborts after bringing up possible earlycon. * (Report possible System Errors once we can report this occurred) */ local_async_enable(); efi_init(); arm64_memblock_init(); /* Parse the ACPI tables for possible boot-time configuration */ acpi_boot_table_init(); paging_init(); relocate_initrd(); kasan_init(); request_standard_resources(); early_ioremap_reset(); if (acpi_disabled) { unflatten_device_tree(); psci_dt_init(); } else { psci_acpi_init(); } xen_early_init(); cpu_read_bootcpu_ops(); smp_init_cpus(); smp_build_mpidr_hash(); #ifdef CONFIG_VT #if defined(CONFIG_VGA_CONSOLE) conswitchp = &vga_con; #elif defined(CONFIG_DUMMY_CONSOLE) conswitchp = &dummy_con; #endif #endif if (boot_args[1] || boot_args[2] || boot_args[3]) { pr_err("WARNING: x1-x3 nonzero in violation of boot protocol:\n" "\tx1: %016llx\n\tx2: %016llx\n\tx3: %016llx\n" "This indicates a broken bootloader or old kernel\n", boot_args[1], boot_args[2], boot_args[3]); } } static int __init arm64_device_init(void) { if (of_have_populated_dt()) { of_iommu_init(); of_platform_populate(NULL, of_default_bus_match_table, NULL, NULL); } else if (acpi_disabled) { pr_crit("Device tree not populated\n"); } return 0; } arch_initcall_sync(arm64_device_init); static int __init topology_init(void) { int i; for_each_possible_cpu(i) { struct cpu *cpu = &per_cpu(cpu_data.cpu, i); cpu->hotpluggable = 1; register_cpu(cpu, i); } return 0; } subsys_initcall(topology_init); static const char *hwcap_str[] = { "fp", "asimd", "evtstrm", "aes", "pmull", "sha1", "sha2", "crc32", "atomics", NULL }; #ifdef CONFIG_COMPAT static const char *compat_hwcap_str[] = { "swp", "half", "thumb", "26bit", "fastmult", "fpa", "vfp", "edsp", "java", "iwmmxt", "crunch", "thumbee", "neon", "vfpv3", "vfpv3d16", "tls", "vfpv4", "idiva", "idivt", "vfpd32", "lpae", "evtstrm" }; static const char *compat_hwcap2_str[] = { "aes", "pmull", "sha1", "sha2", "crc32", NULL }; #endif /* CONFIG_COMPAT */ static int c_show(struct seq_file *m, void *v) { int i, j; for_each_online_cpu(i) { struct cpuinfo_arm64 *cpuinfo = &per_cpu(cpu_data, i); u32 midr = cpuinfo->reg_midr; /* * glibc reads /proc/cpuinfo to determine the number of * online processors, looking for lines beginning with * "processor". Give glibc what it expects. */ seq_printf(m, "processor\t: %d\n", i); /* * Dump out the common processor features in a single line. * Userspace should read the hwcaps with getauxval(AT_HWCAP) * rather than attempting to parse this, but there's a body of * software which does already (at least for 32-bit). */ seq_puts(m, "Features\t:"); if (personality(current->personality) == PER_LINUX32) { #ifdef CONFIG_COMPAT for (j = 0; compat_hwcap_str[j]; j++) if (compat_elf_hwcap & (1 << j)) seq_printf(m, " %s", compat_hwcap_str[j]); for (j = 0; compat_hwcap2_str[j]; j++) if (compat_elf_hwcap2 & (1 << j)) seq_printf(m, " %s", compat_hwcap2_str[j]); #endif /* CONFIG_COMPAT */ } else { for (j = 0; hwcap_str[j]; j++) if (elf_hwcap & (1 << j)) seq_printf(m, " %s", hwcap_str[j]); } seq_puts(m, "\n"); seq_printf(m, "CPU implementer\t: 0x%02x\n", MIDR_IMPLEMENTOR(midr)); seq_printf(m, "CPU architecture: 8\n"); seq_printf(m, "CPU variant\t: 0x%x\n", MIDR_VARIANT(midr)); seq_printf(m, "CPU part\t: 0x%03x\n", MIDR_PARTNUM(midr)); seq_printf(m, "CPU revision\t: %d\n\n", MIDR_REVISION(midr)); } return 0; } static void *c_start(struct seq_file *m, loff_t *pos) { return *pos < 1 ? (void *)1 : NULL; } static void *c_next(struct seq_file *m, void *v, loff_t *pos) { ++*pos; return NULL; } static void c_stop(struct seq_file *m, void *v) { } const struct seq_operations cpuinfo_op = { .start = c_start, .next = c_next, .stop = c_stop, .show = c_show };