/* * Primary bucket allocation code * * Copyright 2012 Google, Inc. * * Allocation in bcache is done in terms of buckets: * * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in * btree pointers - they must match for the pointer to be considered valid. * * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a * bucket simply by incrementing its gen. * * The gens (along with the priorities; it's really the gens are important but * the code is named as if it's the priorities) are written in an arbitrary list * of buckets on disk, with a pointer to them in the journal header. * * When we invalidate a bucket, we have to write its new gen to disk and wait * for that write to complete before we use it - otherwise after a crash we * could have pointers that appeared to be good but pointed to data that had * been overwritten. * * Since the gens and priorities are all stored contiguously on disk, we can * batch this up: We fill up the free_inc list with freshly invalidated buckets, * call prio_write(), and when prio_write() finishes we pull buckets off the * free_inc list and optionally discard them. * * free_inc isn't the only freelist - if it was, we'd often to sleep while * priorities and gens were being written before we could allocate. c->free is a * smaller freelist, and buckets on that list are always ready to be used. * * If we've got discards enabled, that happens when a bucket moves from the * free_inc list to the free list. * * There is another freelist, because sometimes we have buckets that we know * have nothing pointing into them - these we can reuse without waiting for * priorities to be rewritten. These come from freed btree nodes and buckets * that garbage collection discovered no longer had valid keys pointing into * them (because they were overwritten). That's the unused list - buckets on the * unused list move to the free list, optionally being discarded in the process. * * It's also important to ensure that gens don't wrap around - with respect to * either the oldest gen in the btree or the gen on disk. This is quite * difficult to do in practice, but we explicitly guard against it anyways - if * a bucket is in danger of wrapping around we simply skip invalidating it that * time around, and we garbage collect or rewrite the priorities sooner than we * would have otherwise. * * bch_bucket_alloc() allocates a single bucket from a specific cache. * * bch_bucket_alloc_set() allocates one or more buckets from different caches * out of a cache set. * * free_some_buckets() drives all the processes described above. It's called * from bch_bucket_alloc() and a few other places that need to make sure free * buckets are ready. * * invalidate_buckets_(lru|fifo)() find buckets that are available to be * invalidated, and then invalidate them and stick them on the free_inc list - * in either lru or fifo order. */ #include "bcache.h" #include "btree.h" #include #include #include #include #include /* Bucket heap / gen */ uint8_t bch_inc_gen(struct cache *ca, struct bucket *b) { uint8_t ret = ++b->gen; ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b)); WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX); if (CACHE_SYNC(&ca->set->sb)) { ca->need_save_prio = max(ca->need_save_prio, bucket_disk_gen(b)); WARN_ON_ONCE(ca->need_save_prio > BUCKET_DISK_GEN_MAX); } return ret; } void bch_rescale_priorities(struct cache_set *c, int sectors) { struct cache *ca; struct bucket *b; unsigned next = c->nbuckets * c->sb.bucket_size / 1024; unsigned i; int r; atomic_sub(sectors, &c->rescale); do { r = atomic_read(&c->rescale); if (r >= 0) return; } while (atomic_cmpxchg(&c->rescale, r, r + next) != r); mutex_lock(&c->bucket_lock); c->min_prio = USHRT_MAX; for_each_cache(ca, c, i) for_each_bucket(b, ca) if (b->prio && b->prio != BTREE_PRIO && !atomic_read(&b->pin)) { b->prio--; c->min_prio = min(c->min_prio, b->prio); } mutex_unlock(&c->bucket_lock); } /* Allocation */ static inline bool can_inc_bucket_gen(struct bucket *b) { return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX && bucket_disk_gen(b) < BUCKET_DISK_GEN_MAX; } bool bch_bucket_add_unused(struct cache *ca, struct bucket *b) { BUG_ON(GC_MARK(b) || GC_SECTORS_USED(b)); if (fifo_used(&ca->free) > ca->watermark[WATERMARK_MOVINGGC] && CACHE_REPLACEMENT(&ca->sb) == CACHE_REPLACEMENT_FIFO) return false; b->prio = 0; if (can_inc_bucket_gen(b) && fifo_push(&ca->unused, b - ca->buckets)) { atomic_inc(&b->pin); return true; } return false; } static bool can_invalidate_bucket(struct cache *ca, struct bucket *b) { return GC_MARK(b) == GC_MARK_RECLAIMABLE && !atomic_read(&b->pin) && can_inc_bucket_gen(b); } static void invalidate_one_bucket(struct cache *ca, struct bucket *b) { bch_inc_gen(ca, b); b->prio = INITIAL_PRIO; atomic_inc(&b->pin); fifo_push(&ca->free_inc, b - ca->buckets); } #define bucket_prio(b) \ (((unsigned) (b->prio - ca->set->min_prio)) * GC_SECTORS_USED(b)) #define bucket_max_cmp(l, r) (bucket_prio(l) < bucket_prio(r)) #define bucket_min_cmp(l, r) (bucket_prio(l) > bucket_prio(r)) static void invalidate_buckets_lru(struct cache *ca) { struct bucket *b; ssize_t i; ca->heap.used = 0; for_each_bucket(b, ca) { /* * If we fill up the unused list, if we then return before * adding anything to the free_inc list we'll skip writing * prios/gens and just go back to allocating from the unused * list: */ if (fifo_full(&ca->unused)) return; if (!can_invalidate_bucket(ca, b)) continue; if (!GC_SECTORS_USED(b) && bch_bucket_add_unused(ca, b)) continue; if (!heap_full(&ca->heap)) heap_add(&ca->heap, b, bucket_max_cmp); else if (bucket_max_cmp(b, heap_peek(&ca->heap))) { ca->heap.data[0] = b; heap_sift(&ca->heap, 0, bucket_max_cmp); } } for (i = ca->heap.used / 2 - 1; i >= 0; --i) heap_sift(&ca->heap, i, bucket_min_cmp); while (!fifo_full(&ca->free_inc)) { if (!heap_pop(&ca->heap, b, bucket_min_cmp)) { /* * We don't want to be calling invalidate_buckets() * multiple times when it can't do anything */ ca->invalidate_needs_gc = 1; bch_queue_gc(ca->set); return; } invalidate_one_bucket(ca, b); } } static void invalidate_buckets_fifo(struct cache *ca) { struct bucket *b; size_t checked = 0; while (!fifo_full(&ca->free_inc)) { if (ca->fifo_last_bucket < ca->sb.first_bucket || ca->fifo_last_bucket >= ca->sb.nbuckets) ca->fifo_last_bucket = ca->sb.first_bucket; b = ca->buckets + ca->fifo_last_bucket++; if (can_invalidate_bucket(ca, b)) invalidate_one_bucket(ca, b); if (++checked >= ca->sb.nbuckets) { ca->invalidate_needs_gc = 1; bch_queue_gc(ca->set); return; } } } static void invalidate_buckets_random(struct cache *ca) { struct bucket *b; size_t checked = 0; while (!fifo_full(&ca->free_inc)) { size_t n; get_random_bytes(&n, sizeof(n)); n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket); n += ca->sb.first_bucket; b = ca->buckets + n; if (can_invalidate_bucket(ca, b)) invalidate_one_bucket(ca, b); if (++checked >= ca->sb.nbuckets / 2) { ca->invalidate_needs_gc = 1; bch_queue_gc(ca->set); return; } } } static void invalidate_buckets(struct cache *ca) { if (ca->invalidate_needs_gc) return; switch (CACHE_REPLACEMENT(&ca->sb)) { case CACHE_REPLACEMENT_LRU: invalidate_buckets_lru(ca); break; case CACHE_REPLACEMENT_FIFO: invalidate_buckets_fifo(ca); break; case CACHE_REPLACEMENT_RANDOM: invalidate_buckets_random(ca); break; } trace_bcache_alloc_invalidate(ca); } #define allocator_wait(ca, cond) \ do { \ while (1) { \ set_current_state(TASK_INTERRUPTIBLE); \ if (cond) \ break; \ \ mutex_unlock(&(ca)->set->bucket_lock); \ if (kthread_should_stop()) \ return 0; \ \ try_to_freeze(); \ schedule(); \ mutex_lock(&(ca)->set->bucket_lock); \ } \ __set_current_state(TASK_RUNNING); \ } while (0) static int bch_allocator_thread(void *arg) { struct cache *ca = arg; mutex_lock(&ca->set->bucket_lock); while (1) { /* * First, we pull buckets off of the unused and free_inc lists, * possibly issue discards to them, then we add the bucket to * the free list: */ while (1) { long bucket; if ((!atomic_read(&ca->set->prio_blocked) || !CACHE_SYNC(&ca->set->sb)) && !fifo_empty(&ca->unused)) fifo_pop(&ca->unused, bucket); else if (!fifo_empty(&ca->free_inc)) fifo_pop(&ca->free_inc, bucket); else break; if (ca->discard) { mutex_unlock(&ca->set->bucket_lock); blkdev_issue_discard(ca->bdev, bucket_to_sector(ca->set, bucket), ca->sb.block_size, GFP_KERNEL, 0); mutex_lock(&ca->set->bucket_lock); } allocator_wait(ca, !fifo_full(&ca->free)); fifo_push(&ca->free, bucket); closure_wake_up(&ca->set->bucket_wait); } /* * We've run out of free buckets, we need to find some buckets * we can invalidate. First, invalidate them in memory and add * them to the free_inc list: */ allocator_wait(ca, ca->set->gc_mark_valid && (ca->need_save_prio > 64 || !ca->invalidate_needs_gc)); invalidate_buckets(ca); /* * Now, we write their new gens to disk so we can start writing * new stuff to them: */ allocator_wait(ca, !atomic_read(&ca->set->prio_blocked)); if (CACHE_SYNC(&ca->set->sb) && (!fifo_empty(&ca->free_inc) || ca->need_save_prio > 64)) bch_prio_write(ca); } } long bch_bucket_alloc(struct cache *ca, unsigned watermark, struct closure *cl) { long r = -1; again: wake_up_process(ca->alloc_thread); if (fifo_used(&ca->free) > ca->watermark[watermark] && fifo_pop(&ca->free, r)) { struct bucket *b = ca->buckets + r; #ifdef CONFIG_BCACHE_EDEBUG size_t iter; long i; for (iter = 0; iter < prio_buckets(ca) * 2; iter++) BUG_ON(ca->prio_buckets[iter] == (uint64_t) r); fifo_for_each(i, &ca->free, iter) BUG_ON(i == r); fifo_for_each(i, &ca->free_inc, iter) BUG_ON(i == r); fifo_for_each(i, &ca->unused, iter) BUG_ON(i == r); #endif BUG_ON(atomic_read(&b->pin) != 1); SET_GC_SECTORS_USED(b, ca->sb.bucket_size); if (watermark <= WATERMARK_METADATA) { SET_GC_MARK(b, GC_MARK_METADATA); b->prio = BTREE_PRIO; } else { SET_GC_MARK(b, GC_MARK_RECLAIMABLE); b->prio = INITIAL_PRIO; } return r; } trace_bcache_alloc_fail(ca); if (cl) { closure_wait(&ca->set->bucket_wait, cl); if (closure_blocking(cl)) { mutex_unlock(&ca->set->bucket_lock); closure_sync(cl); mutex_lock(&ca->set->bucket_lock); goto again; } } return -1; } void bch_bucket_free(struct cache_set *c, struct bkey *k) { unsigned i; for (i = 0; i < KEY_PTRS(k); i++) { struct bucket *b = PTR_BUCKET(c, k, i); SET_GC_MARK(b, GC_MARK_RECLAIMABLE); SET_GC_SECTORS_USED(b, 0); bch_bucket_add_unused(PTR_CACHE(c, k, i), b); } } int __bch_bucket_alloc_set(struct cache_set *c, unsigned watermark, struct bkey *k, int n, struct closure *cl) { int i; lockdep_assert_held(&c->bucket_lock); BUG_ON(!n || n > c->caches_loaded || n > 8); bkey_init(k); /* sort by free space/prio of oldest data in caches */ for (i = 0; i < n; i++) { struct cache *ca = c->cache_by_alloc[i]; long b = bch_bucket_alloc(ca, watermark, cl); if (b == -1) goto err; k->ptr[i] = PTR(ca->buckets[b].gen, bucket_to_sector(c, b), ca->sb.nr_this_dev); SET_KEY_PTRS(k, i + 1); } return 0; err: bch_bucket_free(c, k); __bkey_put(c, k); return -1; } int bch_bucket_alloc_set(struct cache_set *c, unsigned watermark, struct bkey *k, int n, struct closure *cl) { int ret; mutex_lock(&c->bucket_lock); ret = __bch_bucket_alloc_set(c, watermark, k, n, cl); mutex_unlock(&c->bucket_lock); return ret; } /* Init */ int bch_cache_allocator_start(struct cache *ca) { struct task_struct *k = kthread_run(bch_allocator_thread, ca, "bcache_allocator"); if (IS_ERR(k)) return PTR_ERR(k); ca->alloc_thread = k; return 0; } int bch_cache_allocator_init(struct cache *ca) { /* * Reserve: * Prio/gen writes first * Then 8 for btree allocations * Then half for the moving garbage collector */ ca->watermark[WATERMARK_PRIO] = 0; ca->watermark[WATERMARK_METADATA] = prio_buckets(ca); ca->watermark[WATERMARK_MOVINGGC] = 8 + ca->watermark[WATERMARK_METADATA]; ca->watermark[WATERMARK_NONE] = ca->free.size / 2 + ca->watermark[WATERMARK_MOVINGGC]; return 0; }