/* * Copyright 2014 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include #include "drmP.h" #include "amdgpu.h" #include "gmc_v8_0.h" #include "amdgpu_ucode.h" #include "gmc/gmc_8_1_d.h" #include "gmc/gmc_8_1_sh_mask.h" #include "bif/bif_5_0_d.h" #include "bif/bif_5_0_sh_mask.h" #include "oss/oss_3_0_d.h" #include "oss/oss_3_0_sh_mask.h" #include "vid.h" #include "vi.h" static void gmc_v8_0_set_gart_funcs(struct amdgpu_device *adev); static void gmc_v8_0_set_irq_funcs(struct amdgpu_device *adev); static int gmc_v8_0_wait_for_idle(void *handle); MODULE_FIRMWARE("amdgpu/tonga_mc.bin"); MODULE_FIRMWARE("amdgpu/polaris11_mc.bin"); MODULE_FIRMWARE("amdgpu/polaris10_mc.bin"); MODULE_FIRMWARE("amdgpu/polaris12_mc.bin"); static const u32 golden_settings_tonga_a11[] = { mmMC_ARB_WTM_GRPWT_RD, 0x00000003, 0x00000000, mmMC_HUB_RDREQ_DMIF_LIMIT, 0x0000007f, 0x00000028, mmMC_HUB_WDP_UMC, 0x00007fb6, 0x00000991, mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff, mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff, mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff, mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff, }; static const u32 tonga_mgcg_cgcg_init[] = { mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104 }; static const u32 golden_settings_fiji_a10[] = { mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff, mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff, mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff, mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff, }; static const u32 fiji_mgcg_cgcg_init[] = { mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104 }; static const u32 golden_settings_polaris11_a11[] = { mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff, mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff, mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff, mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff }; static const u32 golden_settings_polaris10_a11[] = { mmMC_ARB_WTM_GRPWT_RD, 0x00000003, 0x00000000, mmVM_PRT_APERTURE0_LOW_ADDR, 0x0fffffff, 0x0fffffff, mmVM_PRT_APERTURE1_LOW_ADDR, 0x0fffffff, 0x0fffffff, mmVM_PRT_APERTURE2_LOW_ADDR, 0x0fffffff, 0x0fffffff, mmVM_PRT_APERTURE3_LOW_ADDR, 0x0fffffff, 0x0fffffff }; static const u32 cz_mgcg_cgcg_init[] = { mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104 }; static const u32 stoney_mgcg_cgcg_init[] = { mmATC_MISC_CG, 0xffffffff, 0x000c0200, mmMC_MEM_POWER_LS, 0xffffffff, 0x00000104 }; static const u32 golden_settings_stoney_common[] = { mmMC_HUB_RDREQ_UVD, MC_HUB_RDREQ_UVD__PRESCALE_MASK, 0x00000004, mmMC_RD_GRP_OTH, MC_RD_GRP_OTH__UVD_MASK, 0x00600000 }; static void gmc_v8_0_init_golden_registers(struct amdgpu_device *adev) { switch (adev->asic_type) { case CHIP_FIJI: amdgpu_program_register_sequence(adev, fiji_mgcg_cgcg_init, (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init)); amdgpu_program_register_sequence(adev, golden_settings_fiji_a10, (const u32)ARRAY_SIZE(golden_settings_fiji_a10)); break; case CHIP_TONGA: amdgpu_program_register_sequence(adev, tonga_mgcg_cgcg_init, (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init)); amdgpu_program_register_sequence(adev, golden_settings_tonga_a11, (const u32)ARRAY_SIZE(golden_settings_tonga_a11)); break; case CHIP_POLARIS11: case CHIP_POLARIS12: amdgpu_program_register_sequence(adev, golden_settings_polaris11_a11, (const u32)ARRAY_SIZE(golden_settings_polaris11_a11)); break; case CHIP_POLARIS10: amdgpu_program_register_sequence(adev, golden_settings_polaris10_a11, (const u32)ARRAY_SIZE(golden_settings_polaris10_a11)); break; case CHIP_CARRIZO: amdgpu_program_register_sequence(adev, cz_mgcg_cgcg_init, (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init)); break; case CHIP_STONEY: amdgpu_program_register_sequence(adev, stoney_mgcg_cgcg_init, (const u32)ARRAY_SIZE(stoney_mgcg_cgcg_init)); amdgpu_program_register_sequence(adev, golden_settings_stoney_common, (const u32)ARRAY_SIZE(golden_settings_stoney_common)); break; default: break; } } static void gmc_v8_0_mc_stop(struct amdgpu_device *adev, struct amdgpu_mode_mc_save *save) { u32 blackout; if (adev->mode_info.num_crtc) amdgpu_display_stop_mc_access(adev, save); gmc_v8_0_wait_for_idle(adev); blackout = RREG32(mmMC_SHARED_BLACKOUT_CNTL); if (REG_GET_FIELD(blackout, MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE) != 1) { /* Block CPU access */ WREG32(mmBIF_FB_EN, 0); /* blackout the MC */ blackout = REG_SET_FIELD(blackout, MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE, 1); WREG32(mmMC_SHARED_BLACKOUT_CNTL, blackout); } /* wait for the MC to settle */ udelay(100); } static void gmc_v8_0_mc_resume(struct amdgpu_device *adev, struct amdgpu_mode_mc_save *save) { u32 tmp; /* unblackout the MC */ tmp = RREG32(mmMC_SHARED_BLACKOUT_CNTL); tmp = REG_SET_FIELD(tmp, MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE, 0); WREG32(mmMC_SHARED_BLACKOUT_CNTL, tmp); /* allow CPU access */ tmp = REG_SET_FIELD(0, BIF_FB_EN, FB_READ_EN, 1); tmp = REG_SET_FIELD(tmp, BIF_FB_EN, FB_WRITE_EN, 1); WREG32(mmBIF_FB_EN, tmp); if (adev->mode_info.num_crtc) amdgpu_display_resume_mc_access(adev, save); } /** * gmc_v8_0_init_microcode - load ucode images from disk * * @adev: amdgpu_device pointer * * Use the firmware interface to load the ucode images into * the driver (not loaded into hw). * Returns 0 on success, error on failure. */ static int gmc_v8_0_init_microcode(struct amdgpu_device *adev) { const char *chip_name; char fw_name[30]; int err; DRM_DEBUG("\n"); switch (adev->asic_type) { case CHIP_TONGA: chip_name = "tonga"; break; case CHIP_POLARIS11: chip_name = "polaris11"; break; case CHIP_POLARIS10: chip_name = "polaris10"; break; case CHIP_POLARIS12: chip_name = "polaris12"; break; case CHIP_FIJI: case CHIP_CARRIZO: case CHIP_STONEY: return 0; default: BUG(); } snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_mc.bin", chip_name); err = request_firmware(&adev->mc.fw, fw_name, adev->dev); if (err) goto out; err = amdgpu_ucode_validate(adev->mc.fw); out: if (err) { pr_err("mc: Failed to load firmware \"%s\"\n", fw_name); release_firmware(adev->mc.fw); adev->mc.fw = NULL; } return err; } /** * gmc_v8_0_tonga_mc_load_microcode - load tonga MC ucode into the hw * * @adev: amdgpu_device pointer * * Load the GDDR MC ucode into the hw (CIK). * Returns 0 on success, error on failure. */ static int gmc_v8_0_tonga_mc_load_microcode(struct amdgpu_device *adev) { const struct mc_firmware_header_v1_0 *hdr; const __le32 *fw_data = NULL; const __le32 *io_mc_regs = NULL; u32 running; int i, ucode_size, regs_size; /* Skip MC ucode loading on SR-IOV capable boards. * vbios does this for us in asic_init in that case. * Skip MC ucode loading on VF, because hypervisor will do that * for this adaptor. */ if (amdgpu_sriov_bios(adev)) return 0; if (!adev->mc.fw) return -EINVAL; hdr = (const struct mc_firmware_header_v1_0 *)adev->mc.fw->data; amdgpu_ucode_print_mc_hdr(&hdr->header); adev->mc.fw_version = le32_to_cpu(hdr->header.ucode_version); regs_size = le32_to_cpu(hdr->io_debug_size_bytes) / (4 * 2); io_mc_regs = (const __le32 *) (adev->mc.fw->data + le32_to_cpu(hdr->io_debug_array_offset_bytes)); ucode_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4; fw_data = (const __le32 *) (adev->mc.fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes)); running = REG_GET_FIELD(RREG32(mmMC_SEQ_SUP_CNTL), MC_SEQ_SUP_CNTL, RUN); if (running == 0) { /* reset the engine and set to writable */ WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008); WREG32(mmMC_SEQ_SUP_CNTL, 0x00000010); /* load mc io regs */ for (i = 0; i < regs_size; i++) { WREG32(mmMC_SEQ_IO_DEBUG_INDEX, le32_to_cpup(io_mc_regs++)); WREG32(mmMC_SEQ_IO_DEBUG_DATA, le32_to_cpup(io_mc_regs++)); } /* load the MC ucode */ for (i = 0; i < ucode_size; i++) WREG32(mmMC_SEQ_SUP_PGM, le32_to_cpup(fw_data++)); /* put the engine back into the active state */ WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008); WREG32(mmMC_SEQ_SUP_CNTL, 0x00000004); WREG32(mmMC_SEQ_SUP_CNTL, 0x00000001); /* wait for training to complete */ for (i = 0; i < adev->usec_timeout; i++) { if (REG_GET_FIELD(RREG32(mmMC_SEQ_TRAIN_WAKEUP_CNTL), MC_SEQ_TRAIN_WAKEUP_CNTL, TRAIN_DONE_D0)) break; udelay(1); } for (i = 0; i < adev->usec_timeout; i++) { if (REG_GET_FIELD(RREG32(mmMC_SEQ_TRAIN_WAKEUP_CNTL), MC_SEQ_TRAIN_WAKEUP_CNTL, TRAIN_DONE_D1)) break; udelay(1); } } return 0; } static int gmc_v8_0_polaris_mc_load_microcode(struct amdgpu_device *adev) { const struct mc_firmware_header_v1_0 *hdr; const __le32 *fw_data = NULL; const __le32 *io_mc_regs = NULL; u32 data, vbios_version; int i, ucode_size, regs_size; /* Skip MC ucode loading on SR-IOV capable boards. * vbios does this for us in asic_init in that case. * Skip MC ucode loading on VF, because hypervisor will do that * for this adaptor. */ if (amdgpu_sriov_bios(adev)) return 0; WREG32(mmMC_SEQ_IO_DEBUG_INDEX, 0x9F); data = RREG32(mmMC_SEQ_IO_DEBUG_DATA); vbios_version = data & 0xf; if (vbios_version == 0) return 0; if (!adev->mc.fw) return -EINVAL; hdr = (const struct mc_firmware_header_v1_0 *)adev->mc.fw->data; amdgpu_ucode_print_mc_hdr(&hdr->header); adev->mc.fw_version = le32_to_cpu(hdr->header.ucode_version); regs_size = le32_to_cpu(hdr->io_debug_size_bytes) / (4 * 2); io_mc_regs = (const __le32 *) (adev->mc.fw->data + le32_to_cpu(hdr->io_debug_array_offset_bytes)); ucode_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4; fw_data = (const __le32 *) (adev->mc.fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes)); data = RREG32(mmMC_SEQ_MISC0); data &= ~(0x40); WREG32(mmMC_SEQ_MISC0, data); /* load mc io regs */ for (i = 0; i < regs_size; i++) { WREG32(mmMC_SEQ_IO_DEBUG_INDEX, le32_to_cpup(io_mc_regs++)); WREG32(mmMC_SEQ_IO_DEBUG_DATA, le32_to_cpup(io_mc_regs++)); } WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008); WREG32(mmMC_SEQ_SUP_CNTL, 0x00000010); /* load the MC ucode */ for (i = 0; i < ucode_size; i++) WREG32(mmMC_SEQ_SUP_PGM, le32_to_cpup(fw_data++)); /* put the engine back into the active state */ WREG32(mmMC_SEQ_SUP_CNTL, 0x00000008); WREG32(mmMC_SEQ_SUP_CNTL, 0x00000004); WREG32(mmMC_SEQ_SUP_CNTL, 0x00000001); /* wait for training to complete */ for (i = 0; i < adev->usec_timeout; i++) { data = RREG32(mmMC_SEQ_MISC0); if (data & 0x80) break; udelay(1); } return 0; } static void gmc_v8_0_vram_gtt_location(struct amdgpu_device *adev, struct amdgpu_mc *mc) { if (mc->mc_vram_size > 0xFFC0000000ULL) { /* leave room for at least 1024M GTT */ dev_warn(adev->dev, "limiting VRAM\n"); mc->real_vram_size = 0xFFC0000000ULL; mc->mc_vram_size = 0xFFC0000000ULL; } amdgpu_vram_location(adev, &adev->mc, 0); adev->mc.gtt_base_align = 0; amdgpu_gtt_location(adev, mc); } /** * gmc_v8_0_mc_program - program the GPU memory controller * * @adev: amdgpu_device pointer * * Set the location of vram, gart, and AGP in the GPU's * physical address space (CIK). */ static void gmc_v8_0_mc_program(struct amdgpu_device *adev) { struct amdgpu_mode_mc_save save; u32 tmp; int i, j; /* Initialize HDP */ for (i = 0, j = 0; i < 32; i++, j += 0x6) { WREG32((0xb05 + j), 0x00000000); WREG32((0xb06 + j), 0x00000000); WREG32((0xb07 + j), 0x00000000); WREG32((0xb08 + j), 0x00000000); WREG32((0xb09 + j), 0x00000000); } WREG32(mmHDP_REG_COHERENCY_FLUSH_CNTL, 0); if (adev->mode_info.num_crtc) amdgpu_display_set_vga_render_state(adev, false); gmc_v8_0_mc_stop(adev, &save); if (gmc_v8_0_wait_for_idle((void *)adev)) { dev_warn(adev->dev, "Wait for MC idle timedout !\n"); } /* Update configuration */ WREG32(mmMC_VM_SYSTEM_APERTURE_LOW_ADDR, adev->mc.vram_start >> 12); WREG32(mmMC_VM_SYSTEM_APERTURE_HIGH_ADDR, adev->mc.vram_end >> 12); WREG32(mmMC_VM_SYSTEM_APERTURE_DEFAULT_ADDR, adev->vram_scratch.gpu_addr >> 12); tmp = ((adev->mc.vram_end >> 24) & 0xFFFF) << 16; tmp |= ((adev->mc.vram_start >> 24) & 0xFFFF); WREG32(mmMC_VM_FB_LOCATION, tmp); /* XXX double check these! */ WREG32(mmHDP_NONSURFACE_BASE, (adev->mc.vram_start >> 8)); WREG32(mmHDP_NONSURFACE_INFO, (2 << 7) | (1 << 30)); WREG32(mmHDP_NONSURFACE_SIZE, 0x3FFFFFFF); WREG32(mmMC_VM_AGP_BASE, 0); WREG32(mmMC_VM_AGP_TOP, 0x0FFFFFFF); WREG32(mmMC_VM_AGP_BOT, 0x0FFFFFFF); if (gmc_v8_0_wait_for_idle((void *)adev)) { dev_warn(adev->dev, "Wait for MC idle timedout !\n"); } gmc_v8_0_mc_resume(adev, &save); WREG32(mmBIF_FB_EN, BIF_FB_EN__FB_READ_EN_MASK | BIF_FB_EN__FB_WRITE_EN_MASK); tmp = RREG32(mmHDP_MISC_CNTL); tmp = REG_SET_FIELD(tmp, HDP_MISC_CNTL, FLUSH_INVALIDATE_CACHE, 0); WREG32(mmHDP_MISC_CNTL, tmp); tmp = RREG32(mmHDP_HOST_PATH_CNTL); WREG32(mmHDP_HOST_PATH_CNTL, tmp); } /** * gmc_v8_0_mc_init - initialize the memory controller driver params * * @adev: amdgpu_device pointer * * Look up the amount of vram, vram width, and decide how to place * vram and gart within the GPU's physical address space (CIK). * Returns 0 for success. */ static int gmc_v8_0_mc_init(struct amdgpu_device *adev) { u32 tmp; int chansize, numchan; /* Get VRAM informations */ tmp = RREG32(mmMC_ARB_RAMCFG); if (REG_GET_FIELD(tmp, MC_ARB_RAMCFG, CHANSIZE)) { chansize = 64; } else { chansize = 32; } tmp = RREG32(mmMC_SHARED_CHMAP); switch (REG_GET_FIELD(tmp, MC_SHARED_CHMAP, NOOFCHAN)) { case 0: default: numchan = 1; break; case 1: numchan = 2; break; case 2: numchan = 4; break; case 3: numchan = 8; break; case 4: numchan = 3; break; case 5: numchan = 6; break; case 6: numchan = 10; break; case 7: numchan = 12; break; case 8: numchan = 16; break; } adev->mc.vram_width = numchan * chansize; /* Could aper size report 0 ? */ adev->mc.aper_base = pci_resource_start(adev->pdev, 0); adev->mc.aper_size = pci_resource_len(adev->pdev, 0); /* size in MB on si */ adev->mc.mc_vram_size = RREG32(mmCONFIG_MEMSIZE) * 1024ULL * 1024ULL; adev->mc.real_vram_size = RREG32(mmCONFIG_MEMSIZE) * 1024ULL * 1024ULL; #ifdef CONFIG_X86_64 if (adev->flags & AMD_IS_APU) { adev->mc.aper_base = ((u64)RREG32(mmMC_VM_FB_OFFSET)) << 22; adev->mc.aper_size = adev->mc.real_vram_size; } #endif /* In case the PCI BAR is larger than the actual amount of vram */ adev->mc.visible_vram_size = adev->mc.aper_size; if (adev->mc.visible_vram_size > adev->mc.real_vram_size) adev->mc.visible_vram_size = adev->mc.real_vram_size; /* unless the user had overridden it, set the gart * size equal to the 1024 or vram, whichever is larger. */ if (amdgpu_gart_size == -1) adev->mc.gtt_size = max((1024ULL << 20), adev->mc.mc_vram_size); else adev->mc.gtt_size = (uint64_t)amdgpu_gart_size << 20; gmc_v8_0_vram_gtt_location(adev, &adev->mc); return 0; } /* * GART * VMID 0 is the physical GPU addresses as used by the kernel. * VMIDs 1-15 are used for userspace clients and are handled * by the amdgpu vm/hsa code. */ /** * gmc_v8_0_gart_flush_gpu_tlb - gart tlb flush callback * * @adev: amdgpu_device pointer * @vmid: vm instance to flush * * Flush the TLB for the requested page table (CIK). */ static void gmc_v8_0_gart_flush_gpu_tlb(struct amdgpu_device *adev, uint32_t vmid) { /* flush hdp cache */ WREG32(mmHDP_MEM_COHERENCY_FLUSH_CNTL, 0); /* bits 0-15 are the VM contexts0-15 */ WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid); } /** * gmc_v8_0_gart_set_pte_pde - update the page tables using MMIO * * @adev: amdgpu_device pointer * @cpu_pt_addr: cpu address of the page table * @gpu_page_idx: entry in the page table to update * @addr: dst addr to write into pte/pde * @flags: access flags * * Update the page tables using the CPU. */ static int gmc_v8_0_gart_set_pte_pde(struct amdgpu_device *adev, void *cpu_pt_addr, uint32_t gpu_page_idx, uint64_t addr, uint64_t flags) { void __iomem *ptr = (void *)cpu_pt_addr; uint64_t value; /* * PTE format on VI: * 63:40 reserved * 39:12 4k physical page base address * 11:7 fragment * 6 write * 5 read * 4 exe * 3 reserved * 2 snooped * 1 system * 0 valid * * PDE format on VI: * 63:59 block fragment size * 58:40 reserved * 39:1 physical base address of PTE * bits 5:1 must be 0. * 0 valid */ value = addr & 0x000000FFFFFFF000ULL; value |= flags; writeq(value, ptr + (gpu_page_idx * 8)); return 0; } static uint64_t gmc_v8_0_get_vm_pte_flags(struct amdgpu_device *adev, uint32_t flags) { uint64_t pte_flag = 0; if (flags & AMDGPU_VM_PAGE_EXECUTABLE) pte_flag |= AMDGPU_PTE_EXECUTABLE; if (flags & AMDGPU_VM_PAGE_READABLE) pte_flag |= AMDGPU_PTE_READABLE; if (flags & AMDGPU_VM_PAGE_WRITEABLE) pte_flag |= AMDGPU_PTE_WRITEABLE; if (flags & AMDGPU_VM_PAGE_PRT) pte_flag |= AMDGPU_PTE_PRT; return pte_flag; } /** * gmc_v8_0_set_fault_enable_default - update VM fault handling * * @adev: amdgpu_device pointer * @value: true redirects VM faults to the default page */ static void gmc_v8_0_set_fault_enable_default(struct amdgpu_device *adev, bool value) { u32 tmp; tmp = RREG32(mmVM_CONTEXT1_CNTL); tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, value); tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, DUMMY_PAGE_PROTECTION_FAULT_ENABLE_DEFAULT, value); tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PDE0_PROTECTION_FAULT_ENABLE_DEFAULT, value); tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, VALID_PROTECTION_FAULT_ENABLE_DEFAULT, value); tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, READ_PROTECTION_FAULT_ENABLE_DEFAULT, value); tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, WRITE_PROTECTION_FAULT_ENABLE_DEFAULT, value); tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, EXECUTE_PROTECTION_FAULT_ENABLE_DEFAULT, value); WREG32(mmVM_CONTEXT1_CNTL, tmp); } /** * gmc_v8_0_set_prt - set PRT VM fault * * @adev: amdgpu_device pointer * @enable: enable/disable VM fault handling for PRT */ static void gmc_v8_0_set_prt(struct amdgpu_device *adev, bool enable) { u32 tmp; if (enable && !adev->mc.prt_warning) { dev_warn(adev->dev, "Disabling VM faults because of PRT request!\n"); adev->mc.prt_warning = true; } tmp = RREG32(mmVM_PRT_CNTL); tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL, CB_DISABLE_READ_FAULT_ON_UNMAPPED_ACCESS, enable); tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL, CB_DISABLE_WRITE_FAULT_ON_UNMAPPED_ACCESS, enable); tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL, TC_DISABLE_READ_FAULT_ON_UNMAPPED_ACCESS, enable); tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL, TC_DISABLE_WRITE_FAULT_ON_UNMAPPED_ACCESS, enable); tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL, L2_CACHE_STORE_INVALID_ENTRIES, enable); tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL, L1_TLB_STORE_INVALID_ENTRIES, enable); tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL, MASK_PDE0_FAULT, enable); WREG32(mmVM_PRT_CNTL, tmp); if (enable) { uint32_t low = AMDGPU_VA_RESERVED_SIZE >> AMDGPU_GPU_PAGE_SHIFT; uint32_t high = adev->vm_manager.max_pfn; WREG32(mmVM_PRT_APERTURE0_LOW_ADDR, low); WREG32(mmVM_PRT_APERTURE1_LOW_ADDR, low); WREG32(mmVM_PRT_APERTURE2_LOW_ADDR, low); WREG32(mmVM_PRT_APERTURE3_LOW_ADDR, low); WREG32(mmVM_PRT_APERTURE0_HIGH_ADDR, high); WREG32(mmVM_PRT_APERTURE1_HIGH_ADDR, high); WREG32(mmVM_PRT_APERTURE2_HIGH_ADDR, high); WREG32(mmVM_PRT_APERTURE3_HIGH_ADDR, high); } else { WREG32(mmVM_PRT_APERTURE0_LOW_ADDR, 0xfffffff); WREG32(mmVM_PRT_APERTURE1_LOW_ADDR, 0xfffffff); WREG32(mmVM_PRT_APERTURE2_LOW_ADDR, 0xfffffff); WREG32(mmVM_PRT_APERTURE3_LOW_ADDR, 0xfffffff); WREG32(mmVM_PRT_APERTURE0_HIGH_ADDR, 0x0); WREG32(mmVM_PRT_APERTURE1_HIGH_ADDR, 0x0); WREG32(mmVM_PRT_APERTURE2_HIGH_ADDR, 0x0); WREG32(mmVM_PRT_APERTURE3_HIGH_ADDR, 0x0); } } /** * gmc_v8_0_gart_enable - gart enable * * @adev: amdgpu_device pointer * * This sets up the TLBs, programs the page tables for VMID0, * sets up the hw for VMIDs 1-15 which are allocated on * demand, and sets up the global locations for the LDS, GDS, * and GPUVM for FSA64 clients (CIK). * Returns 0 for success, errors for failure. */ static int gmc_v8_0_gart_enable(struct amdgpu_device *adev) { int r, i; u32 tmp; if (adev->gart.robj == NULL) { dev_err(adev->dev, "No VRAM object for PCIE GART.\n"); return -EINVAL; } r = amdgpu_gart_table_vram_pin(adev); if (r) return r; /* Setup TLB control */ tmp = RREG32(mmMC_VM_MX_L1_TLB_CNTL); tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_TLB, 1); tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_FRAGMENT_PROCESSING, 1); tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, SYSTEM_ACCESS_MODE, 3); tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_ADVANCED_DRIVER_MODEL, 1); tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, SYSTEM_APERTURE_UNMAPPED_ACCESS, 0); WREG32(mmMC_VM_MX_L1_TLB_CNTL, tmp); /* Setup L2 cache */ tmp = RREG32(mmVM_L2_CNTL); tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_CACHE, 1); tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_FRAGMENT_PROCESSING, 1); tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE, 1); tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_PDE0_CACHE_LRU_UPDATE_BY_WRITE, 1); tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, EFFECTIVE_L2_QUEUE_SIZE, 7); tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, CONTEXT1_IDENTITY_ACCESS_MODE, 1); tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_DEFAULT_PAGE_OUT_TO_SYSTEM_MEMORY, 1); WREG32(mmVM_L2_CNTL, tmp); tmp = RREG32(mmVM_L2_CNTL2); tmp = REG_SET_FIELD(tmp, VM_L2_CNTL2, INVALIDATE_ALL_L1_TLBS, 1); tmp = REG_SET_FIELD(tmp, VM_L2_CNTL2, INVALIDATE_L2_CACHE, 1); WREG32(mmVM_L2_CNTL2, tmp); tmp = RREG32(mmVM_L2_CNTL3); tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, L2_CACHE_BIGK_ASSOCIATIVITY, 1); tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, BANK_SELECT, 4); tmp = REG_SET_FIELD(tmp, VM_L2_CNTL3, L2_CACHE_BIGK_FRAGMENT_SIZE, 4); WREG32(mmVM_L2_CNTL3, tmp); /* XXX: set to enable PTE/PDE in system memory */ tmp = RREG32(mmVM_L2_CNTL4); tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_PHYSICAL, 0); tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_SHARED, 0); tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PDE_REQUEST_SNOOP, 0); tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_PHYSICAL, 0); tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_SHARED, 0); tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT0_PTE_REQUEST_SNOOP, 0); tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_PHYSICAL, 0); tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_SHARED, 0); tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PDE_REQUEST_SNOOP, 0); tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_PHYSICAL, 0); tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_SHARED, 0); tmp = REG_SET_FIELD(tmp, VM_L2_CNTL4, VMC_TAP_CONTEXT1_PTE_REQUEST_SNOOP, 0); WREG32(mmVM_L2_CNTL4, tmp); /* setup context0 */ WREG32(mmVM_CONTEXT0_PAGE_TABLE_START_ADDR, adev->mc.gtt_start >> 12); WREG32(mmVM_CONTEXT0_PAGE_TABLE_END_ADDR, adev->mc.gtt_end >> 12); WREG32(mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR, adev->gart.table_addr >> 12); WREG32(mmVM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR, (u32)(adev->dummy_page.addr >> 12)); WREG32(mmVM_CONTEXT0_CNTL2, 0); tmp = RREG32(mmVM_CONTEXT0_CNTL); tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, ENABLE_CONTEXT, 1); tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, PAGE_TABLE_DEPTH, 0); tmp = REG_SET_FIELD(tmp, VM_CONTEXT0_CNTL, RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1); WREG32(mmVM_CONTEXT0_CNTL, tmp); WREG32(mmVM_L2_CONTEXT1_IDENTITY_APERTURE_LOW_ADDR, 0); WREG32(mmVM_L2_CONTEXT1_IDENTITY_APERTURE_HIGH_ADDR, 0); WREG32(mmVM_L2_CONTEXT_IDENTITY_PHYSICAL_OFFSET, 0); /* empty context1-15 */ /* FIXME start with 4G, once using 2 level pt switch to full * vm size space */ /* set vm size, must be a multiple of 4 */ WREG32(mmVM_CONTEXT1_PAGE_TABLE_START_ADDR, 0); WREG32(mmVM_CONTEXT1_PAGE_TABLE_END_ADDR, adev->vm_manager.max_pfn - 1); for (i = 1; i < 16; i++) { if (i < 8) WREG32(mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + i, adev->gart.table_addr >> 12); else WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + i - 8, adev->gart.table_addr >> 12); } /* enable context1-15 */ WREG32(mmVM_CONTEXT1_PROTECTION_FAULT_DEFAULT_ADDR, (u32)(adev->dummy_page.addr >> 12)); WREG32(mmVM_CONTEXT1_CNTL2, 4); tmp = RREG32(mmVM_CONTEXT1_CNTL); tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, ENABLE_CONTEXT, 1); tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PAGE_TABLE_DEPTH, 1); tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1); tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, DUMMY_PAGE_PROTECTION_FAULT_ENABLE_DEFAULT, 1); tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PDE0_PROTECTION_FAULT_ENABLE_DEFAULT, 1); tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, VALID_PROTECTION_FAULT_ENABLE_DEFAULT, 1); tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, READ_PROTECTION_FAULT_ENABLE_DEFAULT, 1); tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, WRITE_PROTECTION_FAULT_ENABLE_DEFAULT, 1); tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, EXECUTE_PROTECTION_FAULT_ENABLE_DEFAULT, 1); tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL, PAGE_TABLE_BLOCK_SIZE, amdgpu_vm_block_size - 9); WREG32(mmVM_CONTEXT1_CNTL, tmp); if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_ALWAYS) gmc_v8_0_set_fault_enable_default(adev, false); else gmc_v8_0_set_fault_enable_default(adev, true); gmc_v8_0_gart_flush_gpu_tlb(adev, 0); DRM_INFO("PCIE GART of %uM enabled (table at 0x%016llX).\n", (unsigned)(adev->mc.gtt_size >> 20), (unsigned long long)adev->gart.table_addr); adev->gart.ready = true; return 0; } static int gmc_v8_0_gart_init(struct amdgpu_device *adev) { int r; if (adev->gart.robj) { WARN(1, "R600 PCIE GART already initialized\n"); return 0; } /* Initialize common gart structure */ r = amdgpu_gart_init(adev); if (r) return r; adev->gart.table_size = adev->gart.num_gpu_pages * 8; adev->gart.gart_pte_flags = AMDGPU_PTE_EXECUTABLE; return amdgpu_gart_table_vram_alloc(adev); } /** * gmc_v8_0_gart_disable - gart disable * * @adev: amdgpu_device pointer * * This disables all VM page table (CIK). */ static void gmc_v8_0_gart_disable(struct amdgpu_device *adev) { u32 tmp; /* Disable all tables */ WREG32(mmVM_CONTEXT0_CNTL, 0); WREG32(mmVM_CONTEXT1_CNTL, 0); /* Setup TLB control */ tmp = RREG32(mmMC_VM_MX_L1_TLB_CNTL); tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_TLB, 0); tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_L1_FRAGMENT_PROCESSING, 0); tmp = REG_SET_FIELD(tmp, MC_VM_MX_L1_TLB_CNTL, ENABLE_ADVANCED_DRIVER_MODEL, 0); WREG32(mmMC_VM_MX_L1_TLB_CNTL, tmp); /* Setup L2 cache */ tmp = RREG32(mmVM_L2_CNTL); tmp = REG_SET_FIELD(tmp, VM_L2_CNTL, ENABLE_L2_CACHE, 0); WREG32(mmVM_L2_CNTL, tmp); WREG32(mmVM_L2_CNTL2, 0); amdgpu_gart_table_vram_unpin(adev); } /** * gmc_v8_0_gart_fini - vm fini callback * * @adev: amdgpu_device pointer * * Tears down the driver GART/VM setup (CIK). */ static void gmc_v8_0_gart_fini(struct amdgpu_device *adev) { amdgpu_gart_table_vram_free(adev); amdgpu_gart_fini(adev); } /* * vm * VMID 0 is the physical GPU addresses as used by the kernel. * VMIDs 1-15 are used for userspace clients and are handled * by the amdgpu vm/hsa code. */ /** * gmc_v8_0_vm_init - cik vm init callback * * @adev: amdgpu_device pointer * * Inits cik specific vm parameters (number of VMs, base of vram for * VMIDs 1-15) (CIK). * Returns 0 for success. */ static int gmc_v8_0_vm_init(struct amdgpu_device *adev) { /* * number of VMs * VMID 0 is reserved for System * amdgpu graphics/compute will use VMIDs 1-7 * amdkfd will use VMIDs 8-15 */ adev->vm_manager.num_ids = AMDGPU_NUM_OF_VMIDS; amdgpu_vm_manager_init(adev); /* base offset of vram pages */ if (adev->flags & AMD_IS_APU) { u64 tmp = RREG32(mmMC_VM_FB_OFFSET); tmp <<= 22; adev->vm_manager.vram_base_offset = tmp; } else adev->vm_manager.vram_base_offset = 0; return 0; } /** * gmc_v8_0_vm_fini - cik vm fini callback * * @adev: amdgpu_device pointer * * Tear down any asic specific VM setup (CIK). */ static void gmc_v8_0_vm_fini(struct amdgpu_device *adev) { } /** * gmc_v8_0_vm_decode_fault - print human readable fault info * * @adev: amdgpu_device pointer * @status: VM_CONTEXT1_PROTECTION_FAULT_STATUS register value * @addr: VM_CONTEXT1_PROTECTION_FAULT_ADDR register value * * Print human readable fault information (CIK). */ static void gmc_v8_0_vm_decode_fault(struct amdgpu_device *adev, u32 status, u32 addr, u32 mc_client) { u32 mc_id; u32 vmid = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, VMID); u32 protections = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, PROTECTIONS); char block[5] = { mc_client >> 24, (mc_client >> 16) & 0xff, (mc_client >> 8) & 0xff, mc_client & 0xff, 0 }; mc_id = REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, MEMORY_CLIENT_ID); dev_err(adev->dev, "VM fault (0x%02x, vmid %d) at page %u, %s from '%s' (0x%08x) (%d)\n", protections, vmid, addr, REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, MEMORY_CLIENT_RW) ? "write" : "read", block, mc_client, mc_id); } static int gmc_v8_0_convert_vram_type(int mc_seq_vram_type) { switch (mc_seq_vram_type) { case MC_SEQ_MISC0__MT__GDDR1: return AMDGPU_VRAM_TYPE_GDDR1; case MC_SEQ_MISC0__MT__DDR2: return AMDGPU_VRAM_TYPE_DDR2; case MC_SEQ_MISC0__MT__GDDR3: return AMDGPU_VRAM_TYPE_GDDR3; case MC_SEQ_MISC0__MT__GDDR4: return AMDGPU_VRAM_TYPE_GDDR4; case MC_SEQ_MISC0__MT__GDDR5: return AMDGPU_VRAM_TYPE_GDDR5; case MC_SEQ_MISC0__MT__HBM: return AMDGPU_VRAM_TYPE_HBM; case MC_SEQ_MISC0__MT__DDR3: return AMDGPU_VRAM_TYPE_DDR3; default: return AMDGPU_VRAM_TYPE_UNKNOWN; } } static int gmc_v8_0_early_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; gmc_v8_0_set_gart_funcs(adev); gmc_v8_0_set_irq_funcs(adev); adev->mc.shared_aperture_start = 0x2000000000000000ULL; adev->mc.shared_aperture_end = adev->mc.shared_aperture_start + (4ULL << 30) - 1; adev->mc.private_aperture_start = adev->mc.shared_aperture_end + 1; adev->mc.private_aperture_end = adev->mc.private_aperture_start + (4ULL << 30) - 1; return 0; } static int gmc_v8_0_late_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (amdgpu_vm_fault_stop != AMDGPU_VM_FAULT_STOP_ALWAYS) return amdgpu_irq_get(adev, &adev->mc.vm_fault, 0); else return 0; } #define mmMC_SEQ_MISC0_FIJI 0xA71 static int gmc_v8_0_sw_init(void *handle) { int r; int dma_bits; struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (adev->flags & AMD_IS_APU) { adev->mc.vram_type = AMDGPU_VRAM_TYPE_UNKNOWN; } else { u32 tmp; if (adev->asic_type == CHIP_FIJI) tmp = RREG32(mmMC_SEQ_MISC0_FIJI); else tmp = RREG32(mmMC_SEQ_MISC0); tmp &= MC_SEQ_MISC0__MT__MASK; adev->mc.vram_type = gmc_v8_0_convert_vram_type(tmp); } r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 146, &adev->mc.vm_fault); if (r) return r; r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 147, &adev->mc.vm_fault); if (r) return r; /* Adjust VM size here. * Currently set to 4GB ((1 << 20) 4k pages). * Max GPUVM size for cayman and SI is 40 bits. */ adev->vm_manager.max_pfn = amdgpu_vm_size << 18; /* Set the internal MC address mask * This is the max address of the GPU's * internal address space. */ adev->mc.mc_mask = 0xffffffffffULL; /* 40 bit MC */ /* set DMA mask + need_dma32 flags. * PCIE - can handle 40-bits. * IGP - can handle 40-bits * PCI - dma32 for legacy pci gart, 40 bits on newer asics */ adev->need_dma32 = false; dma_bits = adev->need_dma32 ? 32 : 40; r = pci_set_dma_mask(adev->pdev, DMA_BIT_MASK(dma_bits)); if (r) { adev->need_dma32 = true; dma_bits = 32; pr_warn("amdgpu: No suitable DMA available\n"); } r = pci_set_consistent_dma_mask(adev->pdev, DMA_BIT_MASK(dma_bits)); if (r) { pci_set_consistent_dma_mask(adev->pdev, DMA_BIT_MASK(32)); pr_warn("amdgpu: No coherent DMA available\n"); } r = gmc_v8_0_init_microcode(adev); if (r) { DRM_ERROR("Failed to load mc firmware!\n"); return r; } r = gmc_v8_0_mc_init(adev); if (r) return r; /* Memory manager */ r = amdgpu_bo_init(adev); if (r) return r; r = gmc_v8_0_gart_init(adev); if (r) return r; if (!adev->vm_manager.enabled) { r = gmc_v8_0_vm_init(adev); if (r) { dev_err(adev->dev, "vm manager initialization failed (%d).\n", r); return r; } adev->vm_manager.enabled = true; } return r; } static int gmc_v8_0_sw_fini(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (adev->vm_manager.enabled) { amdgpu_vm_manager_fini(adev); gmc_v8_0_vm_fini(adev); adev->vm_manager.enabled = false; } gmc_v8_0_gart_fini(adev); amdgpu_gem_force_release(adev); amdgpu_bo_fini(adev); return 0; } static int gmc_v8_0_hw_init(void *handle) { int r; struct amdgpu_device *adev = (struct amdgpu_device *)handle; gmc_v8_0_init_golden_registers(adev); gmc_v8_0_mc_program(adev); if (adev->asic_type == CHIP_TONGA) { r = gmc_v8_0_tonga_mc_load_microcode(adev); if (r) { DRM_ERROR("Failed to load MC firmware!\n"); return r; } } else if (adev->asic_type == CHIP_POLARIS11 || adev->asic_type == CHIP_POLARIS10 || adev->asic_type == CHIP_POLARIS12) { r = gmc_v8_0_polaris_mc_load_microcode(adev); if (r) { DRM_ERROR("Failed to load MC firmware!\n"); return r; } } r = gmc_v8_0_gart_enable(adev); if (r) return r; return r; } static int gmc_v8_0_hw_fini(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; amdgpu_irq_put(adev, &adev->mc.vm_fault, 0); gmc_v8_0_gart_disable(adev); return 0; } static int gmc_v8_0_suspend(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (adev->vm_manager.enabled) { gmc_v8_0_vm_fini(adev); adev->vm_manager.enabled = false; } gmc_v8_0_hw_fini(adev); return 0; } static int gmc_v8_0_resume(void *handle) { int r; struct amdgpu_device *adev = (struct amdgpu_device *)handle; r = gmc_v8_0_hw_init(adev); if (r) return r; if (!adev->vm_manager.enabled) { r = gmc_v8_0_vm_init(adev); if (r) { dev_err(adev->dev, "vm manager initialization failed (%d).\n", r); return r; } adev->vm_manager.enabled = true; } return r; } static bool gmc_v8_0_is_idle(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; u32 tmp = RREG32(mmSRBM_STATUS); if (tmp & (SRBM_STATUS__MCB_BUSY_MASK | SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK | SRBM_STATUS__MCC_BUSY_MASK | SRBM_STATUS__MCD_BUSY_MASK | SRBM_STATUS__VMC_BUSY_MASK)) return false; return true; } static int gmc_v8_0_wait_for_idle(void *handle) { unsigned i; u32 tmp; struct amdgpu_device *adev = (struct amdgpu_device *)handle; for (i = 0; i < adev->usec_timeout; i++) { /* read MC_STATUS */ tmp = RREG32(mmSRBM_STATUS) & (SRBM_STATUS__MCB_BUSY_MASK | SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK | SRBM_STATUS__MCC_BUSY_MASK | SRBM_STATUS__MCD_BUSY_MASK | SRBM_STATUS__VMC_BUSY_MASK | SRBM_STATUS__VMC1_BUSY_MASK); if (!tmp) return 0; udelay(1); } return -ETIMEDOUT; } static bool gmc_v8_0_check_soft_reset(void *handle) { u32 srbm_soft_reset = 0; struct amdgpu_device *adev = (struct amdgpu_device *)handle; u32 tmp = RREG32(mmSRBM_STATUS); if (tmp & SRBM_STATUS__VMC_BUSY_MASK) srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_VMC, 1); if (tmp & (SRBM_STATUS__MCB_BUSY_MASK | SRBM_STATUS__MCB_NON_DISPLAY_BUSY_MASK | SRBM_STATUS__MCC_BUSY_MASK | SRBM_STATUS__MCD_BUSY_MASK)) { if (!(adev->flags & AMD_IS_APU)) srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_MC, 1); } if (srbm_soft_reset) { adev->mc.srbm_soft_reset = srbm_soft_reset; return true; } else { adev->mc.srbm_soft_reset = 0; return false; } } static int gmc_v8_0_pre_soft_reset(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (!adev->mc.srbm_soft_reset) return 0; gmc_v8_0_mc_stop(adev, &adev->mc.save); if (gmc_v8_0_wait_for_idle(adev)) { dev_warn(adev->dev, "Wait for GMC idle timed out !\n"); } return 0; } static int gmc_v8_0_soft_reset(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; u32 srbm_soft_reset; if (!adev->mc.srbm_soft_reset) return 0; srbm_soft_reset = adev->mc.srbm_soft_reset; if (srbm_soft_reset) { u32 tmp; tmp = RREG32(mmSRBM_SOFT_RESET); tmp |= srbm_soft_reset; dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp); WREG32(mmSRBM_SOFT_RESET, tmp); tmp = RREG32(mmSRBM_SOFT_RESET); udelay(50); tmp &= ~srbm_soft_reset; WREG32(mmSRBM_SOFT_RESET, tmp); tmp = RREG32(mmSRBM_SOFT_RESET); /* Wait a little for things to settle down */ udelay(50); } return 0; } static int gmc_v8_0_post_soft_reset(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (!adev->mc.srbm_soft_reset) return 0; gmc_v8_0_mc_resume(adev, &adev->mc.save); return 0; } static int gmc_v8_0_vm_fault_interrupt_state(struct amdgpu_device *adev, struct amdgpu_irq_src *src, unsigned type, enum amdgpu_interrupt_state state) { u32 tmp; u32 bits = (VM_CONTEXT1_CNTL__RANGE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK | VM_CONTEXT1_CNTL__DUMMY_PAGE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK | VM_CONTEXT1_CNTL__PDE0_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK | VM_CONTEXT1_CNTL__VALID_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK | VM_CONTEXT1_CNTL__READ_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK | VM_CONTEXT1_CNTL__WRITE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK | VM_CONTEXT1_CNTL__EXECUTE_PROTECTION_FAULT_ENABLE_INTERRUPT_MASK); switch (state) { case AMDGPU_IRQ_STATE_DISABLE: /* system context */ tmp = RREG32(mmVM_CONTEXT0_CNTL); tmp &= ~bits; WREG32(mmVM_CONTEXT0_CNTL, tmp); /* VMs */ tmp = RREG32(mmVM_CONTEXT1_CNTL); tmp &= ~bits; WREG32(mmVM_CONTEXT1_CNTL, tmp); break; case AMDGPU_IRQ_STATE_ENABLE: /* system context */ tmp = RREG32(mmVM_CONTEXT0_CNTL); tmp |= bits; WREG32(mmVM_CONTEXT0_CNTL, tmp); /* VMs */ tmp = RREG32(mmVM_CONTEXT1_CNTL); tmp |= bits; WREG32(mmVM_CONTEXT1_CNTL, tmp); break; default: break; } return 0; } static int gmc_v8_0_process_interrupt(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { u32 addr, status, mc_client; if (amdgpu_sriov_vf(adev)) { dev_err(adev->dev, "GPU fault detected: %d 0x%08x\n", entry->src_id, entry->src_data[0]); dev_err(adev->dev, " Can't decode VM fault info here on SRIOV VF\n"); return 0; } addr = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_ADDR); status = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_STATUS); mc_client = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_MCCLIENT); /* reset addr and status */ WREG32_P(mmVM_CONTEXT1_CNTL2, 1, ~1); if (!addr && !status) return 0; if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_FIRST) gmc_v8_0_set_fault_enable_default(adev, false); if (printk_ratelimit()) { dev_err(adev->dev, "GPU fault detected: %d 0x%08x\n", entry->src_id, entry->src_data[0]); dev_err(adev->dev, " VM_CONTEXT1_PROTECTION_FAULT_ADDR 0x%08X\n", addr); dev_err(adev->dev, " VM_CONTEXT1_PROTECTION_FAULT_STATUS 0x%08X\n", status); gmc_v8_0_vm_decode_fault(adev, status, addr, mc_client); } return 0; } static void fiji_update_mc_medium_grain_clock_gating(struct amdgpu_device *adev, bool enable) { uint32_t data; if (enable && (adev->cg_flags & AMD_CG_SUPPORT_MC_MGCG)) { data = RREG32(mmMC_HUB_MISC_HUB_CG); data |= MC_HUB_MISC_HUB_CG__ENABLE_MASK; WREG32(mmMC_HUB_MISC_HUB_CG, data); data = RREG32(mmMC_HUB_MISC_SIP_CG); data |= MC_HUB_MISC_SIP_CG__ENABLE_MASK; WREG32(mmMC_HUB_MISC_SIP_CG, data); data = RREG32(mmMC_HUB_MISC_VM_CG); data |= MC_HUB_MISC_VM_CG__ENABLE_MASK; WREG32(mmMC_HUB_MISC_VM_CG, data); data = RREG32(mmMC_XPB_CLK_GAT); data |= MC_XPB_CLK_GAT__ENABLE_MASK; WREG32(mmMC_XPB_CLK_GAT, data); data = RREG32(mmATC_MISC_CG); data |= ATC_MISC_CG__ENABLE_MASK; WREG32(mmATC_MISC_CG, data); data = RREG32(mmMC_CITF_MISC_WR_CG); data |= MC_CITF_MISC_WR_CG__ENABLE_MASK; WREG32(mmMC_CITF_MISC_WR_CG, data); data = RREG32(mmMC_CITF_MISC_RD_CG); data |= MC_CITF_MISC_RD_CG__ENABLE_MASK; WREG32(mmMC_CITF_MISC_RD_CG, data); data = RREG32(mmMC_CITF_MISC_VM_CG); data |= MC_CITF_MISC_VM_CG__ENABLE_MASK; WREG32(mmMC_CITF_MISC_VM_CG, data); data = RREG32(mmVM_L2_CG); data |= VM_L2_CG__ENABLE_MASK; WREG32(mmVM_L2_CG, data); } else { data = RREG32(mmMC_HUB_MISC_HUB_CG); data &= ~MC_HUB_MISC_HUB_CG__ENABLE_MASK; WREG32(mmMC_HUB_MISC_HUB_CG, data); data = RREG32(mmMC_HUB_MISC_SIP_CG); data &= ~MC_HUB_MISC_SIP_CG__ENABLE_MASK; WREG32(mmMC_HUB_MISC_SIP_CG, data); data = RREG32(mmMC_HUB_MISC_VM_CG); data &= ~MC_HUB_MISC_VM_CG__ENABLE_MASK; WREG32(mmMC_HUB_MISC_VM_CG, data); data = RREG32(mmMC_XPB_CLK_GAT); data &= ~MC_XPB_CLK_GAT__ENABLE_MASK; WREG32(mmMC_XPB_CLK_GAT, data); data = RREG32(mmATC_MISC_CG); data &= ~ATC_MISC_CG__ENABLE_MASK; WREG32(mmATC_MISC_CG, data); data = RREG32(mmMC_CITF_MISC_WR_CG); data &= ~MC_CITF_MISC_WR_CG__ENABLE_MASK; WREG32(mmMC_CITF_MISC_WR_CG, data); data = RREG32(mmMC_CITF_MISC_RD_CG); data &= ~MC_CITF_MISC_RD_CG__ENABLE_MASK; WREG32(mmMC_CITF_MISC_RD_CG, data); data = RREG32(mmMC_CITF_MISC_VM_CG); data &= ~MC_CITF_MISC_VM_CG__ENABLE_MASK; WREG32(mmMC_CITF_MISC_VM_CG, data); data = RREG32(mmVM_L2_CG); data &= ~VM_L2_CG__ENABLE_MASK; WREG32(mmVM_L2_CG, data); } } static void fiji_update_mc_light_sleep(struct amdgpu_device *adev, bool enable) { uint32_t data; if (enable && (adev->cg_flags & AMD_CG_SUPPORT_MC_LS)) { data = RREG32(mmMC_HUB_MISC_HUB_CG); data |= MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK; WREG32(mmMC_HUB_MISC_HUB_CG, data); data = RREG32(mmMC_HUB_MISC_SIP_CG); data |= MC_HUB_MISC_SIP_CG__MEM_LS_ENABLE_MASK; WREG32(mmMC_HUB_MISC_SIP_CG, data); data = RREG32(mmMC_HUB_MISC_VM_CG); data |= MC_HUB_MISC_VM_CG__MEM_LS_ENABLE_MASK; WREG32(mmMC_HUB_MISC_VM_CG, data); data = RREG32(mmMC_XPB_CLK_GAT); data |= MC_XPB_CLK_GAT__MEM_LS_ENABLE_MASK; WREG32(mmMC_XPB_CLK_GAT, data); data = RREG32(mmATC_MISC_CG); data |= ATC_MISC_CG__MEM_LS_ENABLE_MASK; WREG32(mmATC_MISC_CG, data); data = RREG32(mmMC_CITF_MISC_WR_CG); data |= MC_CITF_MISC_WR_CG__MEM_LS_ENABLE_MASK; WREG32(mmMC_CITF_MISC_WR_CG, data); data = RREG32(mmMC_CITF_MISC_RD_CG); data |= MC_CITF_MISC_RD_CG__MEM_LS_ENABLE_MASK; WREG32(mmMC_CITF_MISC_RD_CG, data); data = RREG32(mmMC_CITF_MISC_VM_CG); data |= MC_CITF_MISC_VM_CG__MEM_LS_ENABLE_MASK; WREG32(mmMC_CITF_MISC_VM_CG, data); data = RREG32(mmVM_L2_CG); data |= VM_L2_CG__MEM_LS_ENABLE_MASK; WREG32(mmVM_L2_CG, data); } else { data = RREG32(mmMC_HUB_MISC_HUB_CG); data &= ~MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK; WREG32(mmMC_HUB_MISC_HUB_CG, data); data = RREG32(mmMC_HUB_MISC_SIP_CG); data &= ~MC_HUB_MISC_SIP_CG__MEM_LS_ENABLE_MASK; WREG32(mmMC_HUB_MISC_SIP_CG, data); data = RREG32(mmMC_HUB_MISC_VM_CG); data &= ~MC_HUB_MISC_VM_CG__MEM_LS_ENABLE_MASK; WREG32(mmMC_HUB_MISC_VM_CG, data); data = RREG32(mmMC_XPB_CLK_GAT); data &= ~MC_XPB_CLK_GAT__MEM_LS_ENABLE_MASK; WREG32(mmMC_XPB_CLK_GAT, data); data = RREG32(mmATC_MISC_CG); data &= ~ATC_MISC_CG__MEM_LS_ENABLE_MASK; WREG32(mmATC_MISC_CG, data); data = RREG32(mmMC_CITF_MISC_WR_CG); data &= ~MC_CITF_MISC_WR_CG__MEM_LS_ENABLE_MASK; WREG32(mmMC_CITF_MISC_WR_CG, data); data = RREG32(mmMC_CITF_MISC_RD_CG); data &= ~MC_CITF_MISC_RD_CG__MEM_LS_ENABLE_MASK; WREG32(mmMC_CITF_MISC_RD_CG, data); data = RREG32(mmMC_CITF_MISC_VM_CG); data &= ~MC_CITF_MISC_VM_CG__MEM_LS_ENABLE_MASK; WREG32(mmMC_CITF_MISC_VM_CG, data); data = RREG32(mmVM_L2_CG); data &= ~VM_L2_CG__MEM_LS_ENABLE_MASK; WREG32(mmVM_L2_CG, data); } } static int gmc_v8_0_set_clockgating_state(void *handle, enum amd_clockgating_state state) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (amdgpu_sriov_vf(adev)) return 0; switch (adev->asic_type) { case CHIP_FIJI: fiji_update_mc_medium_grain_clock_gating(adev, state == AMD_CG_STATE_GATE); fiji_update_mc_light_sleep(adev, state == AMD_CG_STATE_GATE); break; default: break; } return 0; } static int gmc_v8_0_set_powergating_state(void *handle, enum amd_powergating_state state) { return 0; } static void gmc_v8_0_get_clockgating_state(void *handle, u32 *flags) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; int data; if (amdgpu_sriov_vf(adev)) *flags = 0; /* AMD_CG_SUPPORT_MC_MGCG */ data = RREG32(mmMC_HUB_MISC_HUB_CG); if (data & MC_HUB_MISC_HUB_CG__ENABLE_MASK) *flags |= AMD_CG_SUPPORT_MC_MGCG; /* AMD_CG_SUPPORT_MC_LS */ if (data & MC_HUB_MISC_HUB_CG__MEM_LS_ENABLE_MASK) *flags |= AMD_CG_SUPPORT_MC_LS; } static const struct amd_ip_funcs gmc_v8_0_ip_funcs = { .name = "gmc_v8_0", .early_init = gmc_v8_0_early_init, .late_init = gmc_v8_0_late_init, .sw_init = gmc_v8_0_sw_init, .sw_fini = gmc_v8_0_sw_fini, .hw_init = gmc_v8_0_hw_init, .hw_fini = gmc_v8_0_hw_fini, .suspend = gmc_v8_0_suspend, .resume = gmc_v8_0_resume, .is_idle = gmc_v8_0_is_idle, .wait_for_idle = gmc_v8_0_wait_for_idle, .check_soft_reset = gmc_v8_0_check_soft_reset, .pre_soft_reset = gmc_v8_0_pre_soft_reset, .soft_reset = gmc_v8_0_soft_reset, .post_soft_reset = gmc_v8_0_post_soft_reset, .set_clockgating_state = gmc_v8_0_set_clockgating_state, .set_powergating_state = gmc_v8_0_set_powergating_state, .get_clockgating_state = gmc_v8_0_get_clockgating_state, }; static const struct amdgpu_gart_funcs gmc_v8_0_gart_funcs = { .flush_gpu_tlb = gmc_v8_0_gart_flush_gpu_tlb, .set_pte_pde = gmc_v8_0_gart_set_pte_pde, .set_prt = gmc_v8_0_set_prt, .get_vm_pte_flags = gmc_v8_0_get_vm_pte_flags }; static const struct amdgpu_irq_src_funcs gmc_v8_0_irq_funcs = { .set = gmc_v8_0_vm_fault_interrupt_state, .process = gmc_v8_0_process_interrupt, }; static void gmc_v8_0_set_gart_funcs(struct amdgpu_device *adev) { if (adev->gart.gart_funcs == NULL) adev->gart.gart_funcs = &gmc_v8_0_gart_funcs; } static void gmc_v8_0_set_irq_funcs(struct amdgpu_device *adev) { adev->mc.vm_fault.num_types = 1; adev->mc.vm_fault.funcs = &gmc_v8_0_irq_funcs; } const struct amdgpu_ip_block_version gmc_v8_0_ip_block = { .type = AMD_IP_BLOCK_TYPE_GMC, .major = 8, .minor = 0, .rev = 0, .funcs = &gmc_v8_0_ip_funcs, }; const struct amdgpu_ip_block_version gmc_v8_1_ip_block = { .type = AMD_IP_BLOCK_TYPE_GMC, .major = 8, .minor = 1, .rev = 0, .funcs = &gmc_v8_0_ip_funcs, }; const struct amdgpu_ip_block_version gmc_v8_5_ip_block = { .type = AMD_IP_BLOCK_TYPE_GMC, .major = 8, .minor = 5, .rev = 0, .funcs = &gmc_v8_0_ip_funcs, };