/* * Thermal throttle event support code (such as syslog messaging and rate * limiting) that was factored out from x86_64 (mce_intel.c) and i386 (p4.c). * * This allows consistent reporting of CPU thermal throttle events. * * Maintains a counter in /sys that keeps track of the number of thermal * events, such that the user knows how bad the thermal problem might be * (since the logging to syslog and mcelog is rate limited). * * Author: Dmitriy Zavin (dmitriyz@google.com) * * Credits: Adapted from Zwane Mwaikambo's original code in mce_intel.c. * Inspired by Ross Biro's and Al Borchers' counter code. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* How long to wait between reporting thermal events */ #define CHECK_INTERVAL (300 * HZ) /* * Current thermal throttling state: */ struct thermal_state { bool is_throttled; u64 next_check; unsigned long throttle_count; unsigned long last_throttle_count; }; static DEFINE_PER_CPU(struct thermal_state, thermal_state); static atomic_t therm_throt_en = ATOMIC_INIT(0); static u32 lvtthmr_init __read_mostly; #ifdef CONFIG_SYSFS #define define_therm_throt_sysdev_one_ro(_name) \ static SYSDEV_ATTR(_name, 0444, therm_throt_sysdev_show_##_name, NULL) #define define_therm_throt_sysdev_show_func(name) \ \ static ssize_t therm_throt_sysdev_show_##name( \ struct sys_device *dev, \ struct sysdev_attribute *attr, \ char *buf) \ { \ unsigned int cpu = dev->id; \ ssize_t ret; \ \ preempt_disable(); /* CPU hotplug */ \ if (cpu_online(cpu)) \ ret = sprintf(buf, "%lu\n", \ per_cpu(thermal_state, cpu).name); \ else \ ret = 0; \ preempt_enable(); \ \ return ret; \ } define_therm_throt_sysdev_show_func(throttle_count); define_therm_throt_sysdev_one_ro(throttle_count); static struct attribute *thermal_throttle_attrs[] = { &attr_throttle_count.attr, NULL }; static struct attribute_group thermal_throttle_attr_group = { .attrs = thermal_throttle_attrs, .name = "thermal_throttle" }; #endif /* CONFIG_SYSFS */ /*** * therm_throt_process - Process thermal throttling event from interrupt * @curr: Whether the condition is current or not (boolean), since the * thermal interrupt normally gets called both when the thermal * event begins and once the event has ended. * * This function is called by the thermal interrupt after the * IRQ has been acknowledged. * * It will take care of rate limiting and printing messages to the syslog. * * Returns: 0 : Event should NOT be further logged, i.e. still in * "timeout" from previous log message. * 1 : Event should be logged further, and a message has been * printed to the syslog. */ static int therm_throt_process(bool is_throttled) { struct thermal_state *state; unsigned int this_cpu; bool was_throttled; u64 now; this_cpu = smp_processor_id(); now = get_jiffies_64(); state = &per_cpu(thermal_state, this_cpu); was_throttled = state->is_throttled; state->is_throttled = is_throttled; if (is_throttled) state->throttle_count++; if (time_before64(now, state->next_check) && state->throttle_count != state->last_throttle_count) return 0; state->next_check = now + CHECK_INTERVAL; state->last_throttle_count = state->throttle_count; /* if we just entered the thermal event */ if (is_throttled) { printk(KERN_CRIT "CPU%d: Temperature above threshold, cpu clock throttled (total events = %lu)\n", this_cpu, state->throttle_count); add_taint(TAINT_MACHINE_CHECK); return 1; } if (was_throttled) { printk(KERN_INFO "CPU%d: Temperature/speed normal\n", this_cpu); return 1; } return 0; } #ifdef CONFIG_SYSFS /* Add/Remove thermal_throttle interface for CPU device: */ static __cpuinit int thermal_throttle_add_dev(struct sys_device *sys_dev) { return sysfs_create_group(&sys_dev->kobj, &thermal_throttle_attr_group); } static __cpuinit void thermal_throttle_remove_dev(struct sys_device *sys_dev) { sysfs_remove_group(&sys_dev->kobj, &thermal_throttle_attr_group); } /* Mutex protecting device creation against CPU hotplug: */ static DEFINE_MUTEX(therm_cpu_lock); /* Get notified when a cpu comes on/off. Be hotplug friendly. */ static __cpuinit int thermal_throttle_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu) { unsigned int cpu = (unsigned long)hcpu; struct sys_device *sys_dev; int err = 0; sys_dev = get_cpu_sysdev(cpu); switch (action) { case CPU_UP_PREPARE: case CPU_UP_PREPARE_FROZEN: mutex_lock(&therm_cpu_lock); err = thermal_throttle_add_dev(sys_dev); mutex_unlock(&therm_cpu_lock); WARN_ON(err); break; case CPU_UP_CANCELED: case CPU_UP_CANCELED_FROZEN: case CPU_DEAD: case CPU_DEAD_FROZEN: mutex_lock(&therm_cpu_lock); thermal_throttle_remove_dev(sys_dev); mutex_unlock(&therm_cpu_lock); break; } return err ? NOTIFY_BAD : NOTIFY_OK; } static struct notifier_block thermal_throttle_cpu_notifier __cpuinitdata = { .notifier_call = thermal_throttle_cpu_callback, }; static __init int thermal_throttle_init_device(void) { unsigned int cpu = 0; int err; if (!atomic_read(&therm_throt_en)) return 0; register_hotcpu_notifier(&thermal_throttle_cpu_notifier); #ifdef CONFIG_HOTPLUG_CPU mutex_lock(&therm_cpu_lock); #endif /* connect live CPUs to sysfs */ for_each_online_cpu(cpu) { err = thermal_throttle_add_dev(get_cpu_sysdev(cpu)); WARN_ON(err); } #ifdef CONFIG_HOTPLUG_CPU mutex_unlock(&therm_cpu_lock); #endif return 0; } device_initcall(thermal_throttle_init_device); #endif /* CONFIG_SYSFS */ /* Thermal transition interrupt handler */ static void intel_thermal_interrupt(void) { __u64 msr_val; rdmsrl(MSR_IA32_THERM_STATUS, msr_val); if (therm_throt_process((msr_val & THERM_STATUS_PROCHOT) != 0)) mce_log_therm_throt_event(msr_val); } static void unexpected_thermal_interrupt(void) { printk(KERN_ERR "CPU%d: Unexpected LVT TMR interrupt!\n", smp_processor_id()); add_taint(TAINT_MACHINE_CHECK); } static void (*smp_thermal_vector)(void) = unexpected_thermal_interrupt; asmlinkage void smp_thermal_interrupt(struct pt_regs *regs) { exit_idle(); irq_enter(); inc_irq_stat(irq_thermal_count); smp_thermal_vector(); irq_exit(); /* Ack only at the end to avoid potential reentry */ ack_APIC_irq(); } void __init mcheck_intel_therm_init(void) { /* * This function is only called on boot CPU. Save the init thermal * LVT value on BSP and use that value to restore APs' thermal LVT * entry BIOS programmed later */ if (cpu_has(&boot_cpu_data, X86_FEATURE_ACPI) && cpu_has(&boot_cpu_data, X86_FEATURE_ACC)) lvtthmr_init = apic_read(APIC_LVTTHMR); } void intel_init_thermal(struct cpuinfo_x86 *c) { unsigned int cpu = smp_processor_id(); int tm2 = 0; u32 l, h; /* Thermal monitoring depends on APIC, ACPI and clock modulation */ if (!cpu_has_apic || !cpu_has(c, X86_FEATURE_ACPI) || !cpu_has(c, X86_FEATURE_ACC)) return; /* * First check if its enabled already, in which case there might * be some SMM goo which handles it, so we can't even put a handler * since it might be delivered via SMI already: */ rdmsr(MSR_IA32_MISC_ENABLE, l, h); /* * The initial value of thermal LVT entries on all APs always reads * 0x10000 because APs are woken up by BSP issuing INIT-SIPI-SIPI * sequence to them and LVT registers are reset to 0s except for * the mask bits which are set to 1s when APs receive INIT IPI. * Always restore the value that BIOS has programmed on AP based on * BSP's info we saved since BIOS is always setting the same value * for all threads/cores */ apic_write(APIC_LVTTHMR, lvtthmr_init); h = lvtthmr_init; if ((l & MSR_IA32_MISC_ENABLE_TM1) && (h & APIC_DM_SMI)) { printk(KERN_DEBUG "CPU%d: Thermal monitoring handled by SMI\n", cpu); return; } /* Check whether a vector already exists */ if (h & APIC_VECTOR_MASK) { printk(KERN_DEBUG "CPU%d: Thermal LVT vector (%#x) already installed\n", cpu, (h & APIC_VECTOR_MASK)); return; } /* early Pentium M models use different method for enabling TM2 */ if (cpu_has(c, X86_FEATURE_TM2)) { if (c->x86 == 6 && (c->x86_model == 9 || c->x86_model == 13)) { rdmsr(MSR_THERM2_CTL, l, h); if (l & MSR_THERM2_CTL_TM_SELECT) tm2 = 1; } else if (l & MSR_IA32_MISC_ENABLE_TM2) tm2 = 1; } /* We'll mask the thermal vector in the lapic till we're ready: */ h = THERMAL_APIC_VECTOR | APIC_DM_FIXED | APIC_LVT_MASKED; apic_write(APIC_LVTTHMR, h); rdmsr(MSR_IA32_THERM_INTERRUPT, l, h); wrmsr(MSR_IA32_THERM_INTERRUPT, l | (THERM_INT_LOW_ENABLE | THERM_INT_HIGH_ENABLE), h); smp_thermal_vector = intel_thermal_interrupt; rdmsr(MSR_IA32_MISC_ENABLE, l, h); wrmsr(MSR_IA32_MISC_ENABLE, l | MSR_IA32_MISC_ENABLE_TM1, h); /* Unmask the thermal vector: */ l = apic_read(APIC_LVTTHMR); apic_write(APIC_LVTTHMR, l & ~APIC_LVT_MASKED); printk_once(KERN_INFO "CPU0: Thermal monitoring enabled (%s)\n", tm2 ? "TM2" : "TM1"); /* enable thermal throttle processing */ atomic_set(&therm_throt_en, 1); }