/* * Freescale Integrated Flash Controller NAND driver * * Copyright 2011-2012 Freescale Semiconductor, Inc * * Author: Dipen Dudhat * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include #include #include #include #include #define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */ #define IFC_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for IFC NAND Machine */ struct fsl_ifc_ctrl; /* mtd information per set */ struct fsl_ifc_mtd { struct mtd_info mtd; struct nand_chip chip; struct fsl_ifc_ctrl *ctrl; struct device *dev; int bank; /* Chip select bank number */ unsigned int bufnum_mask; /* bufnum = page & bufnum_mask */ u8 __iomem *vbase; /* Chip select base virtual address */ }; /* overview of the fsl ifc controller */ struct fsl_ifc_nand_ctrl { struct nand_hw_control controller; struct fsl_ifc_mtd *chips[FSL_IFC_BANK_COUNT]; u8 __iomem *addr; /* Address of assigned IFC buffer */ unsigned int page; /* Last page written to / read from */ unsigned int read_bytes;/* Number of bytes read during command */ unsigned int column; /* Saved column from SEQIN */ unsigned int index; /* Pointer to next byte to 'read' */ unsigned int oob; /* Non zero if operating on OOB data */ unsigned int eccread; /* Non zero for a full-page ECC read */ unsigned int counter; /* counter for the initializations */ }; static struct fsl_ifc_nand_ctrl *ifc_nand_ctrl; /* 512-byte page with 4-bit ECC, 8-bit */ static struct nand_ecclayout oob_512_8bit_ecc4 = { .eccbytes = 8, .eccpos = {8, 9, 10, 11, 12, 13, 14, 15}, .oobfree = { {0, 5}, {6, 2} }, }; /* 512-byte page with 4-bit ECC, 16-bit */ static struct nand_ecclayout oob_512_16bit_ecc4 = { .eccbytes = 8, .eccpos = {8, 9, 10, 11, 12, 13, 14, 15}, .oobfree = { {2, 6}, }, }; /* 2048-byte page size with 4-bit ECC */ static struct nand_ecclayout oob_2048_ecc4 = { .eccbytes = 32, .eccpos = { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, }, .oobfree = { {2, 6}, {40, 24} }, }; /* 4096-byte page size with 4-bit ECC */ static struct nand_ecclayout oob_4096_ecc4 = { .eccbytes = 64, .eccpos = { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, }, .oobfree = { {2, 6}, {72, 56} }, }; /* 4096-byte page size with 8-bit ECC -- requires 218-byte OOB */ static struct nand_ecclayout oob_4096_ecc8 = { .eccbytes = 128, .eccpos = { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, }, .oobfree = { {2, 6}, {136, 82} }, }; /* * Generic flash bbt descriptors */ static u8 bbt_pattern[] = {'B', 'b', 't', '0' }; static u8 mirror_pattern[] = {'1', 't', 'b', 'B' }; static struct nand_bbt_descr bbt_main_descr = { .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | NAND_BBT_2BIT | NAND_BBT_VERSION, .offs = 2, /* 0 on 8-bit small page */ .len = 4, .veroffs = 6, .maxblocks = 4, .pattern = bbt_pattern, }; static struct nand_bbt_descr bbt_mirror_descr = { .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | NAND_BBT_2BIT | NAND_BBT_VERSION, .offs = 2, /* 0 on 8-bit small page */ .len = 4, .veroffs = 6, .maxblocks = 4, .pattern = mirror_pattern, }; /* * Set up the IFC hardware block and page address fields, and the ifc nand * structure addr field to point to the correct IFC buffer in memory */ static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob) { struct nand_chip *chip = mtd->priv; struct fsl_ifc_mtd *priv = chip->priv; struct fsl_ifc_ctrl *ctrl = priv->ctrl; struct fsl_ifc_regs __iomem *ifc = ctrl->regs; int buf_num; ifc_nand_ctrl->page = page_addr; /* Program ROW0/COL0 */ out_be32(&ifc->ifc_nand.row0, page_addr); out_be32(&ifc->ifc_nand.col0, (oob ? IFC_NAND_COL_MS : 0) | column); buf_num = page_addr & priv->bufnum_mask; ifc_nand_ctrl->addr = priv->vbase + buf_num * (mtd->writesize * 2); ifc_nand_ctrl->index = column; /* for OOB data point to the second half of the buffer */ if (oob) ifc_nand_ctrl->index += mtd->writesize; } static int is_blank(struct mtd_info *mtd, unsigned int bufnum) { struct nand_chip *chip = mtd->priv; struct fsl_ifc_mtd *priv = chip->priv; u8 __iomem *addr = priv->vbase + bufnum * (mtd->writesize * 2); u32 __iomem *mainarea = (u32 *)addr; u8 __iomem *oob = addr + mtd->writesize; int i; for (i = 0; i < mtd->writesize / 4; i++) { if (__raw_readl(&mainarea[i]) != 0xffffffff) return 0; } for (i = 0; i < chip->ecc.layout->eccbytes; i++) { int pos = chip->ecc.layout->eccpos[i]; if (__raw_readb(&oob[pos]) != 0xff) return 0; } return 1; } /* returns nonzero if entire page is blank */ static int check_read_ecc(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl, u32 *eccstat, unsigned int bufnum) { u32 reg = eccstat[bufnum / 4]; int errors; errors = (reg >> ((3 - bufnum % 4) * 8)) & 15; return errors; } /* * execute IFC NAND command and wait for it to complete */ static void fsl_ifc_run_command(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; struct fsl_ifc_mtd *priv = chip->priv; struct fsl_ifc_ctrl *ctrl = priv->ctrl; struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl; struct fsl_ifc_regs __iomem *ifc = ctrl->regs; u32 eccstat[4]; int i; /* set the chip select for NAND Transaction */ out_be32(&ifc->ifc_nand.nand_csel, priv->bank << IFC_NAND_CSEL_SHIFT); dev_vdbg(priv->dev, "%s: fir0=%08x fcr0=%08x\n", __func__, in_be32(&ifc->ifc_nand.nand_fir0), in_be32(&ifc->ifc_nand.nand_fcr0)); ctrl->nand_stat = 0; /* start read/write seq */ out_be32(&ifc->ifc_nand.nandseq_strt, IFC_NAND_SEQ_STRT_FIR_STRT); /* wait for command complete flag or timeout */ wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat, IFC_TIMEOUT_MSECS * HZ/1000); /* ctrl->nand_stat will be updated from IRQ context */ if (!ctrl->nand_stat) dev_err(priv->dev, "Controller is not responding\n"); if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_FTOER) dev_err(priv->dev, "NAND Flash Timeout Error\n"); if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_WPER) dev_err(priv->dev, "NAND Flash Write Protect Error\n"); if (nctrl->eccread) { int errors; int bufnum = nctrl->page & priv->bufnum_mask; int sector = bufnum * chip->ecc.steps; int sector_end = sector + chip->ecc.steps - 1; for (i = sector / 4; i <= sector_end / 4; i++) eccstat[i] = in_be32(&ifc->ifc_nand.nand_eccstat[i]); for (i = sector; i <= sector_end; i++) { errors = check_read_ecc(mtd, ctrl, eccstat, i); if (errors == 15) { /* * Uncorrectable error. * OK only if the whole page is blank. * * We disable ECCER reporting due to... * erratum IFC-A002770 -- so report it now if we * see an uncorrectable error in ECCSTAT. */ if (!is_blank(mtd, bufnum)) ctrl->nand_stat |= IFC_NAND_EVTER_STAT_ECCER; break; } mtd->ecc_stats.corrected += errors; } nctrl->eccread = 0; } } static void fsl_ifc_do_read(struct nand_chip *chip, int oob, struct mtd_info *mtd) { struct fsl_ifc_mtd *priv = chip->priv; struct fsl_ifc_ctrl *ctrl = priv->ctrl; struct fsl_ifc_regs __iomem *ifc = ctrl->regs; /* Program FIR/IFC_NAND_FCR0 for Small/Large page */ if (mtd->writesize > 512) { out_be32(&ifc->ifc_nand.nand_fir0, (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) | (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP4_SHIFT)); out_be32(&ifc->ifc_nand.nand_fir1, 0x0); out_be32(&ifc->ifc_nand.nand_fcr0, (NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) | (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT)); } else { out_be32(&ifc->ifc_nand.nand_fir0, (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP3_SHIFT)); out_be32(&ifc->ifc_nand.nand_fir1, 0x0); if (oob) out_be32(&ifc->ifc_nand.nand_fcr0, NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT); else out_be32(&ifc->ifc_nand.nand_fcr0, NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT); } } /* cmdfunc send commands to the IFC NAND Machine */ static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command, int column, int page_addr) { struct nand_chip *chip = mtd->priv; struct fsl_ifc_mtd *priv = chip->priv; struct fsl_ifc_ctrl *ctrl = priv->ctrl; struct fsl_ifc_regs __iomem *ifc = ctrl->regs; /* clear the read buffer */ ifc_nand_ctrl->read_bytes = 0; if (command != NAND_CMD_PAGEPROG) ifc_nand_ctrl->index = 0; switch (command) { /* READ0 read the entire buffer to use hardware ECC. */ case NAND_CMD_READ0: out_be32(&ifc->ifc_nand.nand_fbcr, 0); set_addr(mtd, 0, page_addr, 0); ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize; ifc_nand_ctrl->index += column; if (chip->ecc.mode == NAND_ECC_HW) ifc_nand_ctrl->eccread = 1; fsl_ifc_do_read(chip, 0, mtd); fsl_ifc_run_command(mtd); return; /* READOOB reads only the OOB because no ECC is performed. */ case NAND_CMD_READOOB: out_be32(&ifc->ifc_nand.nand_fbcr, mtd->oobsize - column); set_addr(mtd, column, page_addr, 1); ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize; fsl_ifc_do_read(chip, 1, mtd); fsl_ifc_run_command(mtd); return; case NAND_CMD_READID: case NAND_CMD_PARAM: { int timing = IFC_FIR_OP_RB; if (command == NAND_CMD_PARAM) timing = IFC_FIR_OP_RBCD; out_be32(&ifc->ifc_nand.nand_fir0, (IFC_FIR_OP_CMD0 << IFC_NAND_FIR0_OP0_SHIFT) | (IFC_FIR_OP_UA << IFC_NAND_FIR0_OP1_SHIFT) | (timing << IFC_NAND_FIR0_OP2_SHIFT)); out_be32(&ifc->ifc_nand.nand_fcr0, command << IFC_NAND_FCR0_CMD0_SHIFT); out_be32(&ifc->ifc_nand.row3, column); /* * although currently it's 8 bytes for READID, we always read * the maximum 256 bytes(for PARAM) */ out_be32(&ifc->ifc_nand.nand_fbcr, 256); ifc_nand_ctrl->read_bytes = 256; set_addr(mtd, 0, 0, 0); fsl_ifc_run_command(mtd); return; } /* ERASE1 stores the block and page address */ case NAND_CMD_ERASE1: set_addr(mtd, 0, page_addr, 0); return; /* ERASE2 uses the block and page address from ERASE1 */ case NAND_CMD_ERASE2: out_be32(&ifc->ifc_nand.nand_fir0, (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP1_SHIFT) | (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP2_SHIFT)); out_be32(&ifc->ifc_nand.nand_fcr0, (NAND_CMD_ERASE1 << IFC_NAND_FCR0_CMD0_SHIFT) | (NAND_CMD_ERASE2 << IFC_NAND_FCR0_CMD1_SHIFT)); out_be32(&ifc->ifc_nand.nand_fbcr, 0); ifc_nand_ctrl->read_bytes = 0; fsl_ifc_run_command(mtd); return; /* SEQIN sets up the addr buffer and all registers except the length */ case NAND_CMD_SEQIN: { u32 nand_fcr0; ifc_nand_ctrl->column = column; ifc_nand_ctrl->oob = 0; if (mtd->writesize > 512) { nand_fcr0 = (NAND_CMD_SEQIN << IFC_NAND_FCR0_CMD0_SHIFT) | (NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD1_SHIFT); out_be32(&ifc->ifc_nand.nand_fir0, (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP3_SHIFT) | (IFC_FIR_OP_CW1 << IFC_NAND_FIR0_OP4_SHIFT)); } else { nand_fcr0 = ((NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD1_SHIFT) | (NAND_CMD_SEQIN << IFC_NAND_FCR0_CMD2_SHIFT)); out_be32(&ifc->ifc_nand.nand_fir0, (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP1_SHIFT) | (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP2_SHIFT) | (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP3_SHIFT) | (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP4_SHIFT)); out_be32(&ifc->ifc_nand.nand_fir1, (IFC_FIR_OP_CW1 << IFC_NAND_FIR1_OP5_SHIFT)); if (column >= mtd->writesize) nand_fcr0 |= NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT; else nand_fcr0 |= NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT; } if (column >= mtd->writesize) { /* OOB area --> READOOB */ column -= mtd->writesize; ifc_nand_ctrl->oob = 1; } out_be32(&ifc->ifc_nand.nand_fcr0, nand_fcr0); set_addr(mtd, column, page_addr, ifc_nand_ctrl->oob); return; } /* PAGEPROG reuses all of the setup from SEQIN and adds the length */ case NAND_CMD_PAGEPROG: { if (ifc_nand_ctrl->oob) { out_be32(&ifc->ifc_nand.nand_fbcr, ifc_nand_ctrl->index - ifc_nand_ctrl->column); } else { out_be32(&ifc->ifc_nand.nand_fbcr, 0); } fsl_ifc_run_command(mtd); return; } case NAND_CMD_STATUS: out_be32(&ifc->ifc_nand.nand_fir0, (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP1_SHIFT)); out_be32(&ifc->ifc_nand.nand_fcr0, NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT); out_be32(&ifc->ifc_nand.nand_fbcr, 1); set_addr(mtd, 0, 0, 0); ifc_nand_ctrl->read_bytes = 1; fsl_ifc_run_command(mtd); /* * The chip always seems to report that it is * write-protected, even when it is not. */ setbits8(ifc_nand_ctrl->addr, NAND_STATUS_WP); return; case NAND_CMD_RESET: out_be32(&ifc->ifc_nand.nand_fir0, IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT); out_be32(&ifc->ifc_nand.nand_fcr0, NAND_CMD_RESET << IFC_NAND_FCR0_CMD0_SHIFT); fsl_ifc_run_command(mtd); return; default: dev_err(priv->dev, "%s: error, unsupported command 0x%x.\n", __func__, command); } } static void fsl_ifc_select_chip(struct mtd_info *mtd, int chip) { /* The hardware does not seem to support multiple * chips per bank. */ } /* * Write buf to the IFC NAND Controller Data Buffer */ static void fsl_ifc_write_buf(struct mtd_info *mtd, const u8 *buf, int len) { struct nand_chip *chip = mtd->priv; struct fsl_ifc_mtd *priv = chip->priv; unsigned int bufsize = mtd->writesize + mtd->oobsize; if (len <= 0) { dev_err(priv->dev, "%s: len %d bytes", __func__, len); return; } if ((unsigned int)len > bufsize - ifc_nand_ctrl->index) { dev_err(priv->dev, "%s: beyond end of buffer (%d requested, %u available)\n", __func__, len, bufsize - ifc_nand_ctrl->index); len = bufsize - ifc_nand_ctrl->index; } memcpy_toio(&ifc_nand_ctrl->addr[ifc_nand_ctrl->index], buf, len); ifc_nand_ctrl->index += len; } /* * Read a byte from either the IFC hardware buffer * read function for 8-bit buswidth */ static uint8_t fsl_ifc_read_byte(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; struct fsl_ifc_mtd *priv = chip->priv; /* * If there are still bytes in the IFC buffer, then use the * next byte. */ if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) return in_8(&ifc_nand_ctrl->addr[ifc_nand_ctrl->index++]); dev_err(priv->dev, "%s: beyond end of buffer\n", __func__); return ERR_BYTE; } /* * Read two bytes from the IFC hardware buffer * read function for 16-bit buswith */ static uint8_t fsl_ifc_read_byte16(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; struct fsl_ifc_mtd *priv = chip->priv; uint16_t data; /* * If there are still bytes in the IFC buffer, then use the * next byte. */ if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) { data = in_be16((uint16_t *)&ifc_nand_ctrl-> addr[ifc_nand_ctrl->index]); ifc_nand_ctrl->index += 2; return (uint8_t) data; } dev_err(priv->dev, "%s: beyond end of buffer\n", __func__); return ERR_BYTE; } /* * Read from the IFC Controller Data Buffer */ static void fsl_ifc_read_buf(struct mtd_info *mtd, u8 *buf, int len) { struct nand_chip *chip = mtd->priv; struct fsl_ifc_mtd *priv = chip->priv; int avail; if (len < 0) { dev_err(priv->dev, "%s: len %d bytes", __func__, len); return; } avail = min((unsigned int)len, ifc_nand_ctrl->read_bytes - ifc_nand_ctrl->index); memcpy_fromio(buf, &ifc_nand_ctrl->addr[ifc_nand_ctrl->index], avail); ifc_nand_ctrl->index += avail; if (len > avail) dev_err(priv->dev, "%s: beyond end of buffer (%d requested, %d available)\n", __func__, len, avail); } /* * Verify buffer against the IFC Controller Data Buffer */ static int fsl_ifc_verify_buf(struct mtd_info *mtd, const u_char *buf, int len) { struct nand_chip *chip = mtd->priv; struct fsl_ifc_mtd *priv = chip->priv; struct fsl_ifc_ctrl *ctrl = priv->ctrl; struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl; int i; if (len < 0) { dev_err(priv->dev, "%s: write_buf of %d bytes", __func__, len); return -EINVAL; } if ((unsigned int)len > nctrl->read_bytes - nctrl->index) { dev_err(priv->dev, "%s: beyond end of buffer (%d requested, %u available)\n", __func__, len, nctrl->read_bytes - nctrl->index); nctrl->index = nctrl->read_bytes; return -EINVAL; } for (i = 0; i < len; i++) if (in_8(&nctrl->addr[nctrl->index + i]) != buf[i]) break; nctrl->index += len; if (i != len) return -EIO; if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC) return -EIO; return 0; } /* * This function is called after Program and Erase Operations to * check for success or failure. */ static int fsl_ifc_wait(struct mtd_info *mtd, struct nand_chip *chip) { struct fsl_ifc_mtd *priv = chip->priv; struct fsl_ifc_ctrl *ctrl = priv->ctrl; struct fsl_ifc_regs __iomem *ifc = ctrl->regs; u32 nand_fsr; /* Use READ_STATUS command, but wait for the device to be ready */ out_be32(&ifc->ifc_nand.nand_fir0, (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR0_OP1_SHIFT)); out_be32(&ifc->ifc_nand.nand_fcr0, NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT); out_be32(&ifc->ifc_nand.nand_fbcr, 1); set_addr(mtd, 0, 0, 0); ifc_nand_ctrl->read_bytes = 1; fsl_ifc_run_command(mtd); nand_fsr = in_be32(&ifc->ifc_nand.nand_fsr); /* * The chip always seems to report that it is * write-protected, even when it is not. */ return nand_fsr | NAND_STATUS_WP; } static int fsl_ifc_read_page(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int page) { struct fsl_ifc_mtd *priv = chip->priv; struct fsl_ifc_ctrl *ctrl = priv->ctrl; fsl_ifc_read_buf(mtd, buf, mtd->writesize); fsl_ifc_read_buf(mtd, chip->oob_poi, mtd->oobsize); if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_ECCER) dev_err(priv->dev, "NAND Flash ECC Uncorrectable Error\n"); if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC) mtd->ecc_stats.failed++; return 0; } /* ECC will be calculated automatically, and errors will be detected in * waitfunc. */ static void fsl_ifc_write_page(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf) { fsl_ifc_write_buf(mtd, buf, mtd->writesize); fsl_ifc_write_buf(mtd, chip->oob_poi, mtd->oobsize); } static int fsl_ifc_chip_init_tail(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; struct fsl_ifc_mtd *priv = chip->priv; dev_dbg(priv->dev, "%s: nand->numchips = %d\n", __func__, chip->numchips); dev_dbg(priv->dev, "%s: nand->chipsize = %lld\n", __func__, chip->chipsize); dev_dbg(priv->dev, "%s: nand->pagemask = %8x\n", __func__, chip->pagemask); dev_dbg(priv->dev, "%s: nand->chip_delay = %d\n", __func__, chip->chip_delay); dev_dbg(priv->dev, "%s: nand->badblockpos = %d\n", __func__, chip->badblockpos); dev_dbg(priv->dev, "%s: nand->chip_shift = %d\n", __func__, chip->chip_shift); dev_dbg(priv->dev, "%s: nand->page_shift = %d\n", __func__, chip->page_shift); dev_dbg(priv->dev, "%s: nand->phys_erase_shift = %d\n", __func__, chip->phys_erase_shift); dev_dbg(priv->dev, "%s: nand->ecclayout = %p\n", __func__, chip->ecclayout); dev_dbg(priv->dev, "%s: nand->ecc.mode = %d\n", __func__, chip->ecc.mode); dev_dbg(priv->dev, "%s: nand->ecc.steps = %d\n", __func__, chip->ecc.steps); dev_dbg(priv->dev, "%s: nand->ecc.bytes = %d\n", __func__, chip->ecc.bytes); dev_dbg(priv->dev, "%s: nand->ecc.total = %d\n", __func__, chip->ecc.total); dev_dbg(priv->dev, "%s: nand->ecc.layout = %p\n", __func__, chip->ecc.layout); dev_dbg(priv->dev, "%s: mtd->flags = %08x\n", __func__, mtd->flags); dev_dbg(priv->dev, "%s: mtd->size = %lld\n", __func__, mtd->size); dev_dbg(priv->dev, "%s: mtd->erasesize = %d\n", __func__, mtd->erasesize); dev_dbg(priv->dev, "%s: mtd->writesize = %d\n", __func__, mtd->writesize); dev_dbg(priv->dev, "%s: mtd->oobsize = %d\n", __func__, mtd->oobsize); return 0; } static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv) { struct fsl_ifc_ctrl *ctrl = priv->ctrl; struct fsl_ifc_regs __iomem *ifc = ctrl->regs; struct nand_chip *chip = &priv->chip; struct nand_ecclayout *layout; u32 csor; /* Fill in fsl_ifc_mtd structure */ priv->mtd.priv = chip; priv->mtd.owner = THIS_MODULE; /* fill in nand_chip structure */ /* set up function call table */ if ((in_be32(&ifc->cspr_cs[priv->bank].cspr)) & CSPR_PORT_SIZE_16) chip->read_byte = fsl_ifc_read_byte16; else chip->read_byte = fsl_ifc_read_byte; chip->write_buf = fsl_ifc_write_buf; chip->read_buf = fsl_ifc_read_buf; chip->verify_buf = fsl_ifc_verify_buf; chip->select_chip = fsl_ifc_select_chip; chip->cmdfunc = fsl_ifc_cmdfunc; chip->waitfunc = fsl_ifc_wait; chip->bbt_td = &bbt_main_descr; chip->bbt_md = &bbt_mirror_descr; out_be32(&ifc->ifc_nand.ncfgr, 0x0); /* set up nand options */ chip->options = NAND_NO_READRDY | NAND_NO_AUTOINCR; chip->bbt_options = NAND_BBT_USE_FLASH; if (in_be32(&ifc->cspr_cs[priv->bank].cspr) & CSPR_PORT_SIZE_16) { chip->read_byte = fsl_ifc_read_byte16; chip->options |= NAND_BUSWIDTH_16; } else { chip->read_byte = fsl_ifc_read_byte; } chip->controller = &ifc_nand_ctrl->controller; chip->priv = priv; chip->ecc.read_page = fsl_ifc_read_page; chip->ecc.write_page = fsl_ifc_write_page; csor = in_be32(&ifc->csor_cs[priv->bank].csor); /* Hardware generates ECC per 512 Bytes */ chip->ecc.size = 512; chip->ecc.bytes = 8; chip->ecc.strength = 4; switch (csor & CSOR_NAND_PGS_MASK) { case CSOR_NAND_PGS_512: if (chip->options & NAND_BUSWIDTH_16) { layout = &oob_512_16bit_ecc4; } else { layout = &oob_512_8bit_ecc4; /* Avoid conflict with bad block marker */ bbt_main_descr.offs = 0; bbt_mirror_descr.offs = 0; } priv->bufnum_mask = 15; break; case CSOR_NAND_PGS_2K: layout = &oob_2048_ecc4; priv->bufnum_mask = 3; break; case CSOR_NAND_PGS_4K: if ((csor & CSOR_NAND_ECC_MODE_MASK) == CSOR_NAND_ECC_MODE_4) { layout = &oob_4096_ecc4; } else { layout = &oob_4096_ecc8; chip->ecc.bytes = 16; } priv->bufnum_mask = 1; break; default: dev_err(priv->dev, "bad csor %#x: bad page size\n", csor); return -ENODEV; } /* Must also set CSOR_NAND_ECC_ENC_EN if DEC_EN set */ if (csor & CSOR_NAND_ECC_DEC_EN) { chip->ecc.mode = NAND_ECC_HW; chip->ecc.layout = layout; } else { chip->ecc.mode = NAND_ECC_SOFT; } return 0; } static int fsl_ifc_chip_remove(struct fsl_ifc_mtd *priv) { nand_release(&priv->mtd); kfree(priv->mtd.name); if (priv->vbase) iounmap(priv->vbase); ifc_nand_ctrl->chips[priv->bank] = NULL; dev_set_drvdata(priv->dev, NULL); kfree(priv); return 0; } static int match_bank(struct fsl_ifc_regs __iomem *ifc, int bank, phys_addr_t addr) { u32 cspr = in_be32(&ifc->cspr_cs[bank].cspr); if (!(cspr & CSPR_V)) return 0; if ((cspr & CSPR_MSEL) != CSPR_MSEL_NAND) return 0; return (cspr & CSPR_BA) == convert_ifc_address(addr); } static DEFINE_MUTEX(fsl_ifc_nand_mutex); static int __devinit fsl_ifc_nand_probe(struct platform_device *dev) { struct fsl_ifc_regs __iomem *ifc; struct fsl_ifc_mtd *priv; struct resource res; static const char *part_probe_types[] = { "cmdlinepart", "RedBoot", "ofpart", NULL }; int ret; int bank; struct device_node *node = dev->dev.of_node; struct mtd_part_parser_data ppdata; ppdata.of_node = dev->dev.of_node; if (!fsl_ifc_ctrl_dev || !fsl_ifc_ctrl_dev->regs) return -ENODEV; ifc = fsl_ifc_ctrl_dev->regs; /* get, allocate and map the memory resource */ ret = of_address_to_resource(node, 0, &res); if (ret) { dev_err(&dev->dev, "%s: failed to get resource\n", __func__); return ret; } /* find which chip select it is connected to */ for (bank = 0; bank < FSL_IFC_BANK_COUNT; bank++) { if (match_bank(ifc, bank, res.start)) break; } if (bank >= FSL_IFC_BANK_COUNT) { dev_err(&dev->dev, "%s: address did not match any chip selects\n", __func__); return -ENODEV; } priv = devm_kzalloc(&dev->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; mutex_lock(&fsl_ifc_nand_mutex); if (!fsl_ifc_ctrl_dev->nand) { ifc_nand_ctrl = kzalloc(sizeof(*ifc_nand_ctrl), GFP_KERNEL); if (!ifc_nand_ctrl) { dev_err(&dev->dev, "failed to allocate memory\n"); mutex_unlock(&fsl_ifc_nand_mutex); return -ENOMEM; } ifc_nand_ctrl->read_bytes = 0; ifc_nand_ctrl->index = 0; ifc_nand_ctrl->addr = NULL; fsl_ifc_ctrl_dev->nand = ifc_nand_ctrl; spin_lock_init(&ifc_nand_ctrl->controller.lock); init_waitqueue_head(&ifc_nand_ctrl->controller.wq); } else { ifc_nand_ctrl = fsl_ifc_ctrl_dev->nand; } mutex_unlock(&fsl_ifc_nand_mutex); ifc_nand_ctrl->chips[bank] = priv; priv->bank = bank; priv->ctrl = fsl_ifc_ctrl_dev; priv->dev = &dev->dev; priv->vbase = ioremap(res.start, resource_size(&res)); if (!priv->vbase) { dev_err(priv->dev, "%s: failed to map chip region\n", __func__); ret = -ENOMEM; goto err; } dev_set_drvdata(priv->dev, priv); out_be32(&ifc->ifc_nand.nand_evter_en, IFC_NAND_EVTER_EN_OPC_EN | IFC_NAND_EVTER_EN_FTOER_EN | IFC_NAND_EVTER_EN_WPER_EN); /* enable NAND Machine Interrupts */ out_be32(&ifc->ifc_nand.nand_evter_intr_en, IFC_NAND_EVTER_INTR_OPCIR_EN | IFC_NAND_EVTER_INTR_FTOERIR_EN | IFC_NAND_EVTER_INTR_WPERIR_EN); priv->mtd.name = kasprintf(GFP_KERNEL, "%x.flash", (unsigned)res.start); if (!priv->mtd.name) { ret = -ENOMEM; goto err; } ret = fsl_ifc_chip_init(priv); if (ret) goto err; ret = nand_scan_ident(&priv->mtd, 1, NULL); if (ret) goto err; ret = fsl_ifc_chip_init_tail(&priv->mtd); if (ret) goto err; ret = nand_scan_tail(&priv->mtd); if (ret) goto err; /* First look for RedBoot table or partitions on the command * line, these take precedence over device tree information */ mtd_device_parse_register(&priv->mtd, part_probe_types, &ppdata, NULL, 0); dev_info(priv->dev, "IFC NAND device at 0x%llx, bank %d\n", (unsigned long long)res.start, priv->bank); return 0; err: fsl_ifc_chip_remove(priv); return ret; } static int fsl_ifc_nand_remove(struct platform_device *dev) { struct fsl_ifc_mtd *priv = dev_get_drvdata(&dev->dev); fsl_ifc_chip_remove(priv); mutex_lock(&fsl_ifc_nand_mutex); ifc_nand_ctrl->counter--; if (!ifc_nand_ctrl->counter) { fsl_ifc_ctrl_dev->nand = NULL; kfree(ifc_nand_ctrl); } mutex_unlock(&fsl_ifc_nand_mutex); return 0; } static const struct of_device_id fsl_ifc_nand_match[] = { { .compatible = "fsl,ifc-nand", }, {} }; static struct platform_driver fsl_ifc_nand_driver = { .driver = { .name = "fsl,ifc-nand", .owner = THIS_MODULE, .of_match_table = fsl_ifc_nand_match, }, .probe = fsl_ifc_nand_probe, .remove = fsl_ifc_nand_remove, }; static int __init fsl_ifc_nand_init(void) { int ret; ret = platform_driver_register(&fsl_ifc_nand_driver); if (ret) printk(KERN_ERR "fsl-ifc: Failed to register platform" "driver\n"); return ret; } static void __exit fsl_ifc_nand_exit(void) { platform_driver_unregister(&fsl_ifc_nand_driver); } module_init(fsl_ifc_nand_init); module_exit(fsl_ifc_nand_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Freescale"); MODULE_DESCRIPTION("Freescale Integrated Flash Controller MTD NAND driver");