/* * vsp1_video.c -- R-Car VSP1 Video Node * * Copyright (C) 2013-2015 Renesas Electronics Corporation * * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "vsp1.h" #include "vsp1_bru.h" #include "vsp1_dl.h" #include "vsp1_entity.h" #include "vsp1_pipe.h" #include "vsp1_rwpf.h" #include "vsp1_uds.h" #include "vsp1_video.h" #define VSP1_VIDEO_DEF_FORMAT V4L2_PIX_FMT_YUYV #define VSP1_VIDEO_DEF_WIDTH 1024 #define VSP1_VIDEO_DEF_HEIGHT 768 #define VSP1_VIDEO_MIN_WIDTH 2U #define VSP1_VIDEO_MAX_WIDTH 8190U #define VSP1_VIDEO_MIN_HEIGHT 2U #define VSP1_VIDEO_MAX_HEIGHT 8190U /* ----------------------------------------------------------------------------- * Helper functions */ static struct v4l2_subdev * vsp1_video_remote_subdev(struct media_pad *local, u32 *pad) { struct media_pad *remote; remote = media_entity_remote_pad(local); if (!remote || !is_media_entity_v4l2_subdev(remote->entity)) return NULL; if (pad) *pad = remote->index; return media_entity_to_v4l2_subdev(remote->entity); } static int vsp1_video_verify_format(struct vsp1_video *video) { struct v4l2_subdev_format fmt; struct v4l2_subdev *subdev; int ret; subdev = vsp1_video_remote_subdev(&video->pad, &fmt.pad); if (subdev == NULL) return -EINVAL; fmt.which = V4L2_SUBDEV_FORMAT_ACTIVE; ret = v4l2_subdev_call(subdev, pad, get_fmt, NULL, &fmt); if (ret < 0) return ret == -ENOIOCTLCMD ? -EINVAL : ret; if (video->rwpf->fmtinfo->mbus != fmt.format.code || video->rwpf->format.height != fmt.format.height || video->rwpf->format.width != fmt.format.width) return -EINVAL; return 0; } static int __vsp1_video_try_format(struct vsp1_video *video, struct v4l2_pix_format_mplane *pix, const struct vsp1_format_info **fmtinfo) { static const u32 xrgb_formats[][2] = { { V4L2_PIX_FMT_RGB444, V4L2_PIX_FMT_XRGB444 }, { V4L2_PIX_FMT_RGB555, V4L2_PIX_FMT_XRGB555 }, { V4L2_PIX_FMT_BGR32, V4L2_PIX_FMT_XBGR32 }, { V4L2_PIX_FMT_RGB32, V4L2_PIX_FMT_XRGB32 }, }; const struct vsp1_format_info *info; unsigned int width = pix->width; unsigned int height = pix->height; unsigned int i; /* Backward compatibility: replace deprecated RGB formats by their XRGB * equivalent. This selects the format older userspace applications want * while still exposing the new format. */ for (i = 0; i < ARRAY_SIZE(xrgb_formats); ++i) { if (xrgb_formats[i][0] == pix->pixelformat) { pix->pixelformat = xrgb_formats[i][1]; break; } } /* Retrieve format information and select the default format if the * requested format isn't supported. */ info = vsp1_get_format_info(video->vsp1, pix->pixelformat); if (info == NULL) info = vsp1_get_format_info(video->vsp1, VSP1_VIDEO_DEF_FORMAT); pix->pixelformat = info->fourcc; pix->colorspace = V4L2_COLORSPACE_SRGB; pix->field = V4L2_FIELD_NONE; if (info->fourcc == V4L2_PIX_FMT_HSV24 || info->fourcc == V4L2_PIX_FMT_HSV32) pix->hsv_enc = V4L2_HSV_ENC_256; memset(pix->reserved, 0, sizeof(pix->reserved)); /* Align the width and height for YUV 4:2:2 and 4:2:0 formats. */ width = round_down(width, info->hsub); height = round_down(height, info->vsub); /* Clamp the width and height. */ pix->width = clamp(width, VSP1_VIDEO_MIN_WIDTH, VSP1_VIDEO_MAX_WIDTH); pix->height = clamp(height, VSP1_VIDEO_MIN_HEIGHT, VSP1_VIDEO_MAX_HEIGHT); /* Compute and clamp the stride and image size. While not documented in * the datasheet, strides not aligned to a multiple of 128 bytes result * in image corruption. */ for (i = 0; i < min(info->planes, 2U); ++i) { unsigned int hsub = i > 0 ? info->hsub : 1; unsigned int vsub = i > 0 ? info->vsub : 1; unsigned int align = 128; unsigned int bpl; bpl = clamp_t(unsigned int, pix->plane_fmt[i].bytesperline, pix->width / hsub * info->bpp[i] / 8, round_down(65535U, align)); pix->plane_fmt[i].bytesperline = round_up(bpl, align); pix->plane_fmt[i].sizeimage = pix->plane_fmt[i].bytesperline * pix->height / vsub; } if (info->planes == 3) { /* The second and third planes must have the same stride. */ pix->plane_fmt[2].bytesperline = pix->plane_fmt[1].bytesperline; pix->plane_fmt[2].sizeimage = pix->plane_fmt[1].sizeimage; } pix->num_planes = info->planes; if (fmtinfo) *fmtinfo = info; return 0; } /* ----------------------------------------------------------------------------- * VSP1 Partition Algorithm support */ static void vsp1_video_pipeline_setup_partitions(struct vsp1_pipeline *pipe) { struct vsp1_device *vsp1 = pipe->output->entity.vsp1; const struct v4l2_mbus_framefmt *format; struct vsp1_entity *entity; unsigned int div_size; format = vsp1_entity_get_pad_format(&pipe->output->entity, pipe->output->entity.config, RWPF_PAD_SOURCE); div_size = format->width; /* Gen2 hardware doesn't require image partitioning. */ if (vsp1->info->gen == 2) { pipe->div_size = div_size; pipe->partitions = 1; return; } list_for_each_entry(entity, &pipe->entities, list_pipe) { unsigned int entity_max = VSP1_VIDEO_MAX_WIDTH; if (entity->ops->max_width) { entity_max = entity->ops->max_width(entity, pipe); if (entity_max) div_size = min(div_size, entity_max); } } pipe->div_size = div_size; pipe->partitions = DIV_ROUND_UP(format->width, div_size); } /** * vsp1_video_partition - Calculate the active partition output window * * @div_size: pre-determined maximum partition division size * @index: partition index * * Returns a v4l2_rect describing the partition window. */ static struct v4l2_rect vsp1_video_partition(struct vsp1_pipeline *pipe, unsigned int div_size, unsigned int index) { const struct v4l2_mbus_framefmt *format; struct v4l2_rect partition; unsigned int modulus; format = vsp1_entity_get_pad_format(&pipe->output->entity, pipe->output->entity.config, RWPF_PAD_SOURCE); /* A single partition simply processes the output size in full. */ if (pipe->partitions <= 1) { partition.left = 0; partition.top = 0; partition.width = format->width; partition.height = format->height; return partition; } /* Initialise the partition with sane starting conditions. */ partition.left = index * div_size; partition.top = 0; partition.width = div_size; partition.height = format->height; modulus = format->width % div_size; /* * We need to prevent the last partition from being smaller than the * *minimum* width of the hardware capabilities. * * If the modulus is less than half of the partition size, * the penultimate partition is reduced to half, which is added * to the final partition: |1234|1234|1234|12|341| * to prevents this: |1234|1234|1234|1234|1|. */ if (modulus) { /* * pipe->partitions is 1 based, whilst index is a 0 based index. * Normalise this locally. */ unsigned int partitions = pipe->partitions - 1; if (modulus < div_size / 2) { if (index == partitions - 1) { /* Halve the penultimate partition. */ partition.width = div_size / 2; } else if (index == partitions) { /* Increase the final partition. */ partition.width = (div_size / 2) + modulus; partition.left -= div_size / 2; } } else if (index == partitions) { partition.width = modulus; } } return partition; } /* ----------------------------------------------------------------------------- * Pipeline Management */ /* * vsp1_video_complete_buffer - Complete the current buffer * @video: the video node * * This function completes the current buffer by filling its sequence number, * time stamp and payload size, and hands it back to the videobuf core. * * When operating in DU output mode (deep pipeline to the DU through the LIF), * the VSP1 needs to constantly supply frames to the display. In that case, if * no other buffer is queued, reuse the one that has just been processed instead * of handing it back to the videobuf core. * * Return the next queued buffer or NULL if the queue is empty. */ static struct vsp1_vb2_buffer * vsp1_video_complete_buffer(struct vsp1_video *video) { struct vsp1_pipeline *pipe = video->rwpf->pipe; struct vsp1_vb2_buffer *next = NULL; struct vsp1_vb2_buffer *done; unsigned long flags; unsigned int i; spin_lock_irqsave(&video->irqlock, flags); if (list_empty(&video->irqqueue)) { spin_unlock_irqrestore(&video->irqlock, flags); return NULL; } done = list_first_entry(&video->irqqueue, struct vsp1_vb2_buffer, queue); /* In DU output mode reuse the buffer if the list is singular. */ if (pipe->lif && list_is_singular(&video->irqqueue)) { spin_unlock_irqrestore(&video->irqlock, flags); return done; } list_del(&done->queue); if (!list_empty(&video->irqqueue)) next = list_first_entry(&video->irqqueue, struct vsp1_vb2_buffer, queue); spin_unlock_irqrestore(&video->irqlock, flags); done->buf.sequence = pipe->sequence; done->buf.vb2_buf.timestamp = ktime_get_ns(); for (i = 0; i < done->buf.vb2_buf.num_planes; ++i) vb2_set_plane_payload(&done->buf.vb2_buf, i, vb2_plane_size(&done->buf.vb2_buf, i)); vb2_buffer_done(&done->buf.vb2_buf, VB2_BUF_STATE_DONE); return next; } static void vsp1_video_frame_end(struct vsp1_pipeline *pipe, struct vsp1_rwpf *rwpf) { struct vsp1_video *video = rwpf->video; struct vsp1_vb2_buffer *buf; buf = vsp1_video_complete_buffer(video); if (buf == NULL) return; video->rwpf->mem = buf->mem; pipe->buffers_ready |= 1 << video->pipe_index; } static void vsp1_video_pipeline_run_partition(struct vsp1_pipeline *pipe, struct vsp1_dl_list *dl) { struct vsp1_entity *entity; pipe->partition = vsp1_video_partition(pipe, pipe->div_size, pipe->current_partition); list_for_each_entry(entity, &pipe->entities, list_pipe) { if (entity->ops->configure) entity->ops->configure(entity, pipe, dl, VSP1_ENTITY_PARAMS_PARTITION); } } static void vsp1_video_pipeline_run(struct vsp1_pipeline *pipe) { struct vsp1_device *vsp1 = pipe->output->entity.vsp1; struct vsp1_entity *entity; if (!pipe->dl) pipe->dl = vsp1_dl_list_get(pipe->output->dlm); /* * Start with the runtime parameters as the configure operation can * compute/cache information needed when configuring partitions. This * is the case with flipping in the WPF. */ list_for_each_entry(entity, &pipe->entities, list_pipe) { if (entity->ops->configure) entity->ops->configure(entity, pipe, pipe->dl, VSP1_ENTITY_PARAMS_RUNTIME); } /* Run the first partition */ pipe->current_partition = 0; vsp1_video_pipeline_run_partition(pipe, pipe->dl); /* Process consecutive partitions as necessary */ for (pipe->current_partition = 1; pipe->current_partition < pipe->partitions; pipe->current_partition++) { struct vsp1_dl_list *dl; /* * Partition configuration operations will utilise * the pipe->current_partition variable to determine * the work they should complete. */ dl = vsp1_dl_list_get(pipe->output->dlm); /* * An incomplete chain will still function, but output only * the partitions that had a dl available. The frame end * interrupt will be marked on the last dl in the chain. */ if (!dl) { dev_err(vsp1->dev, "Failed to obtain a dl list. Frame will be incomplete\n"); break; } vsp1_video_pipeline_run_partition(pipe, dl); vsp1_dl_list_add_chain(pipe->dl, dl); } /* Complete, and commit the head display list. */ vsp1_dl_list_commit(pipe->dl); pipe->dl = NULL; vsp1_pipeline_run(pipe); } static void vsp1_video_pipeline_frame_end(struct vsp1_pipeline *pipe) { struct vsp1_device *vsp1 = pipe->output->entity.vsp1; enum vsp1_pipeline_state state; unsigned long flags; unsigned int i; spin_lock_irqsave(&pipe->irqlock, flags); /* Complete buffers on all video nodes. */ for (i = 0; i < vsp1->info->rpf_count; ++i) { if (!pipe->inputs[i]) continue; vsp1_video_frame_end(pipe, pipe->inputs[i]); } vsp1_video_frame_end(pipe, pipe->output); state = pipe->state; pipe->state = VSP1_PIPELINE_STOPPED; /* If a stop has been requested, mark the pipeline as stopped and * return. Otherwise restart the pipeline if ready. */ if (state == VSP1_PIPELINE_STOPPING) wake_up(&pipe->wq); else if (vsp1_pipeline_ready(pipe)) vsp1_video_pipeline_run(pipe); spin_unlock_irqrestore(&pipe->irqlock, flags); } static int vsp1_video_pipeline_build_branch(struct vsp1_pipeline *pipe, struct vsp1_rwpf *input, struct vsp1_rwpf *output) { struct media_entity_enum ent_enum; struct vsp1_entity *entity; struct media_pad *pad; bool bru_found = false; int ret; ret = media_entity_enum_init(&ent_enum, &input->entity.vsp1->media_dev); if (ret < 0) return ret; pad = media_entity_remote_pad(&input->entity.pads[RWPF_PAD_SOURCE]); while (1) { if (pad == NULL) { ret = -EPIPE; goto out; } /* We've reached a video node, that shouldn't have happened. */ if (!is_media_entity_v4l2_subdev(pad->entity)) { ret = -EPIPE; goto out; } entity = to_vsp1_entity( media_entity_to_v4l2_subdev(pad->entity)); /* A BRU is present in the pipeline, store the BRU input pad * number in the input RPF for use when configuring the RPF. */ if (entity->type == VSP1_ENTITY_BRU) { struct vsp1_bru *bru = to_bru(&entity->subdev); bru->inputs[pad->index].rpf = input; input->bru_input = pad->index; bru_found = true; } /* We've reached the WPF, we're done. */ if (entity->type == VSP1_ENTITY_WPF) break; /* Ensure the branch has no loop. */ if (media_entity_enum_test_and_set(&ent_enum, &entity->subdev.entity)) { ret = -EPIPE; goto out; } /* UDS can't be chained. */ if (entity->type == VSP1_ENTITY_UDS) { if (pipe->uds) { ret = -EPIPE; goto out; } pipe->uds = entity; pipe->uds_input = bru_found ? pipe->bru : &input->entity; } /* Follow the source link. The link setup operations ensure * that the output fan-out can't be more than one, there is thus * no need to verify here that only a single source link is * activated. */ pad = &entity->pads[entity->source_pad]; pad = media_entity_remote_pad(pad); } /* The last entity must be the output WPF. */ if (entity != &output->entity) ret = -EPIPE; out: media_entity_enum_cleanup(&ent_enum); return ret; } static int vsp1_video_pipeline_build(struct vsp1_pipeline *pipe, struct vsp1_video *video) { struct media_graph graph; struct media_entity *entity = &video->video.entity; struct media_device *mdev = entity->graph_obj.mdev; unsigned int i; int ret; /* Walk the graph to locate the entities and video nodes. */ ret = media_graph_walk_init(&graph, mdev); if (ret) return ret; media_graph_walk_start(&graph, entity); while ((entity = media_graph_walk_next(&graph))) { struct v4l2_subdev *subdev; struct vsp1_rwpf *rwpf; struct vsp1_entity *e; if (!is_media_entity_v4l2_subdev(entity)) continue; subdev = media_entity_to_v4l2_subdev(entity); e = to_vsp1_entity(subdev); list_add_tail(&e->list_pipe, &pipe->entities); if (e->type == VSP1_ENTITY_RPF) { rwpf = to_rwpf(subdev); pipe->inputs[rwpf->entity.index] = rwpf; rwpf->video->pipe_index = ++pipe->num_inputs; rwpf->pipe = pipe; } else if (e->type == VSP1_ENTITY_WPF) { rwpf = to_rwpf(subdev); pipe->output = rwpf; rwpf->video->pipe_index = 0; rwpf->pipe = pipe; } else if (e->type == VSP1_ENTITY_LIF) { pipe->lif = e; } else if (e->type == VSP1_ENTITY_BRU) { pipe->bru = e; } } media_graph_walk_cleanup(&graph); /* We need one output and at least one input. */ if (pipe->num_inputs == 0 || !pipe->output) return -EPIPE; /* Follow links downstream for each input and make sure the graph * contains no loop and that all branches end at the output WPF. */ for (i = 0; i < video->vsp1->info->rpf_count; ++i) { if (!pipe->inputs[i]) continue; ret = vsp1_video_pipeline_build_branch(pipe, pipe->inputs[i], pipe->output); if (ret < 0) return ret; } return 0; } static int vsp1_video_pipeline_init(struct vsp1_pipeline *pipe, struct vsp1_video *video) { vsp1_pipeline_init(pipe); pipe->frame_end = vsp1_video_pipeline_frame_end; return vsp1_video_pipeline_build(pipe, video); } static struct vsp1_pipeline *vsp1_video_pipeline_get(struct vsp1_video *video) { struct vsp1_pipeline *pipe; int ret; /* Get a pipeline object for the video node. If a pipeline has already * been allocated just increment its reference count and return it. * Otherwise allocate a new pipeline and initialize it, it will be freed * when the last reference is released. */ if (!video->rwpf->pipe) { pipe = kzalloc(sizeof(*pipe), GFP_KERNEL); if (!pipe) return ERR_PTR(-ENOMEM); ret = vsp1_video_pipeline_init(pipe, video); if (ret < 0) { vsp1_pipeline_reset(pipe); kfree(pipe); return ERR_PTR(ret); } } else { pipe = video->rwpf->pipe; kref_get(&pipe->kref); } return pipe; } static void vsp1_video_pipeline_release(struct kref *kref) { struct vsp1_pipeline *pipe = container_of(kref, typeof(*pipe), kref); vsp1_pipeline_reset(pipe); kfree(pipe); } static void vsp1_video_pipeline_put(struct vsp1_pipeline *pipe) { struct media_device *mdev = &pipe->output->entity.vsp1->media_dev; mutex_lock(&mdev->graph_mutex); kref_put(&pipe->kref, vsp1_video_pipeline_release); mutex_unlock(&mdev->graph_mutex); } /* ----------------------------------------------------------------------------- * videobuf2 Queue Operations */ static int vsp1_video_queue_setup(struct vb2_queue *vq, unsigned int *nbuffers, unsigned int *nplanes, unsigned int sizes[], struct device *alloc_devs[]) { struct vsp1_video *video = vb2_get_drv_priv(vq); const struct v4l2_pix_format_mplane *format = &video->rwpf->format; unsigned int i; if (*nplanes) { if (*nplanes != format->num_planes) return -EINVAL; for (i = 0; i < *nplanes; i++) if (sizes[i] < format->plane_fmt[i].sizeimage) return -EINVAL; return 0; } *nplanes = format->num_planes; for (i = 0; i < format->num_planes; ++i) sizes[i] = format->plane_fmt[i].sizeimage; return 0; } static int vsp1_video_buffer_prepare(struct vb2_buffer *vb) { struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); struct vsp1_video *video = vb2_get_drv_priv(vb->vb2_queue); struct vsp1_vb2_buffer *buf = to_vsp1_vb2_buffer(vbuf); const struct v4l2_pix_format_mplane *format = &video->rwpf->format; unsigned int i; if (vb->num_planes < format->num_planes) return -EINVAL; for (i = 0; i < vb->num_planes; ++i) { buf->mem.addr[i] = vb2_dma_contig_plane_dma_addr(vb, i); if (vb2_plane_size(vb, i) < format->plane_fmt[i].sizeimage) return -EINVAL; } for ( ; i < 3; ++i) buf->mem.addr[i] = 0; return 0; } static void vsp1_video_buffer_queue(struct vb2_buffer *vb) { struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); struct vsp1_video *video = vb2_get_drv_priv(vb->vb2_queue); struct vsp1_pipeline *pipe = video->rwpf->pipe; struct vsp1_vb2_buffer *buf = to_vsp1_vb2_buffer(vbuf); unsigned long flags; bool empty; spin_lock_irqsave(&video->irqlock, flags); empty = list_empty(&video->irqqueue); list_add_tail(&buf->queue, &video->irqqueue); spin_unlock_irqrestore(&video->irqlock, flags); if (!empty) return; spin_lock_irqsave(&pipe->irqlock, flags); video->rwpf->mem = buf->mem; pipe->buffers_ready |= 1 << video->pipe_index; if (vb2_is_streaming(&video->queue) && vsp1_pipeline_ready(pipe)) vsp1_video_pipeline_run(pipe); spin_unlock_irqrestore(&pipe->irqlock, flags); } static int vsp1_video_setup_pipeline(struct vsp1_pipeline *pipe) { struct vsp1_entity *entity; /* Determine this pipelines sizes for image partitioning support. */ vsp1_video_pipeline_setup_partitions(pipe); /* Prepare the display list. */ pipe->dl = vsp1_dl_list_get(pipe->output->dlm); if (!pipe->dl) return -ENOMEM; if (pipe->uds) { struct vsp1_uds *uds = to_uds(&pipe->uds->subdev); /* If a BRU is present in the pipeline before the UDS, the alpha * component doesn't need to be scaled as the BRU output alpha * value is fixed to 255. Otherwise we need to scale the alpha * component only when available at the input RPF. */ if (pipe->uds_input->type == VSP1_ENTITY_BRU) { uds->scale_alpha = false; } else { struct vsp1_rwpf *rpf = to_rwpf(&pipe->uds_input->subdev); uds->scale_alpha = rpf->fmtinfo->alpha; } } list_for_each_entry(entity, &pipe->entities, list_pipe) { vsp1_entity_route_setup(entity, pipe->dl); if (entity->ops->configure) entity->ops->configure(entity, pipe, pipe->dl, VSP1_ENTITY_PARAMS_INIT); } return 0; } static int vsp1_video_start_streaming(struct vb2_queue *vq, unsigned int count) { struct vsp1_video *video = vb2_get_drv_priv(vq); struct vsp1_pipeline *pipe = video->rwpf->pipe; bool start_pipeline = false; unsigned long flags; int ret; mutex_lock(&pipe->lock); if (pipe->stream_count == pipe->num_inputs) { ret = vsp1_video_setup_pipeline(pipe); if (ret < 0) { mutex_unlock(&pipe->lock); return ret; } start_pipeline = true; } pipe->stream_count++; mutex_unlock(&pipe->lock); /* * vsp1_pipeline_ready() is not sufficient to establish that all streams * are prepared and the pipeline is configured, as multiple streams * can race through streamon with buffers already queued; Therefore we * don't even attempt to start the pipeline until the last stream has * called through here. */ if (!start_pipeline) return 0; spin_lock_irqsave(&pipe->irqlock, flags); if (vsp1_pipeline_ready(pipe)) vsp1_video_pipeline_run(pipe); spin_unlock_irqrestore(&pipe->irqlock, flags); return 0; } static void vsp1_video_stop_streaming(struct vb2_queue *vq) { struct vsp1_video *video = vb2_get_drv_priv(vq); struct vsp1_pipeline *pipe = video->rwpf->pipe; struct vsp1_vb2_buffer *buffer; unsigned long flags; int ret; /* * Clear the buffers ready flag to make sure the device won't be started * by a QBUF on the video node on the other side of the pipeline. */ spin_lock_irqsave(&video->irqlock, flags); pipe->buffers_ready &= ~(1 << video->pipe_index); spin_unlock_irqrestore(&video->irqlock, flags); mutex_lock(&pipe->lock); if (--pipe->stream_count == pipe->num_inputs) { /* Stop the pipeline. */ ret = vsp1_pipeline_stop(pipe); if (ret == -ETIMEDOUT) dev_err(video->vsp1->dev, "pipeline stop timeout\n"); vsp1_dl_list_put(pipe->dl); pipe->dl = NULL; } mutex_unlock(&pipe->lock); media_pipeline_stop(&video->video.entity); vsp1_video_pipeline_put(pipe); /* Remove all buffers from the IRQ queue. */ spin_lock_irqsave(&video->irqlock, flags); list_for_each_entry(buffer, &video->irqqueue, queue) vb2_buffer_done(&buffer->buf.vb2_buf, VB2_BUF_STATE_ERROR); INIT_LIST_HEAD(&video->irqqueue); spin_unlock_irqrestore(&video->irqlock, flags); } static const struct vb2_ops vsp1_video_queue_qops = { .queue_setup = vsp1_video_queue_setup, .buf_prepare = vsp1_video_buffer_prepare, .buf_queue = vsp1_video_buffer_queue, .wait_prepare = vb2_ops_wait_prepare, .wait_finish = vb2_ops_wait_finish, .start_streaming = vsp1_video_start_streaming, .stop_streaming = vsp1_video_stop_streaming, }; /* ----------------------------------------------------------------------------- * V4L2 ioctls */ static int vsp1_video_querycap(struct file *file, void *fh, struct v4l2_capability *cap) { struct v4l2_fh *vfh = file->private_data; struct vsp1_video *video = to_vsp1_video(vfh->vdev); cap->capabilities = V4L2_CAP_DEVICE_CAPS | V4L2_CAP_STREAMING | V4L2_CAP_VIDEO_CAPTURE_MPLANE | V4L2_CAP_VIDEO_OUTPUT_MPLANE; if (video->type == V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE) cap->device_caps = V4L2_CAP_VIDEO_CAPTURE_MPLANE | V4L2_CAP_STREAMING; else cap->device_caps = V4L2_CAP_VIDEO_OUTPUT_MPLANE | V4L2_CAP_STREAMING; strlcpy(cap->driver, "vsp1", sizeof(cap->driver)); strlcpy(cap->card, video->video.name, sizeof(cap->card)); snprintf(cap->bus_info, sizeof(cap->bus_info), "platform:%s", dev_name(video->vsp1->dev)); return 0; } static int vsp1_video_get_format(struct file *file, void *fh, struct v4l2_format *format) { struct v4l2_fh *vfh = file->private_data; struct vsp1_video *video = to_vsp1_video(vfh->vdev); if (format->type != video->queue.type) return -EINVAL; mutex_lock(&video->lock); format->fmt.pix_mp = video->rwpf->format; mutex_unlock(&video->lock); return 0; } static int vsp1_video_try_format(struct file *file, void *fh, struct v4l2_format *format) { struct v4l2_fh *vfh = file->private_data; struct vsp1_video *video = to_vsp1_video(vfh->vdev); if (format->type != video->queue.type) return -EINVAL; return __vsp1_video_try_format(video, &format->fmt.pix_mp, NULL); } static int vsp1_video_set_format(struct file *file, void *fh, struct v4l2_format *format) { struct v4l2_fh *vfh = file->private_data; struct vsp1_video *video = to_vsp1_video(vfh->vdev); const struct vsp1_format_info *info; int ret; if (format->type != video->queue.type) return -EINVAL; ret = __vsp1_video_try_format(video, &format->fmt.pix_mp, &info); if (ret < 0) return ret; mutex_lock(&video->lock); if (vb2_is_busy(&video->queue)) { ret = -EBUSY; goto done; } video->rwpf->format = format->fmt.pix_mp; video->rwpf->fmtinfo = info; done: mutex_unlock(&video->lock); return ret; } static int vsp1_video_streamon(struct file *file, void *fh, enum v4l2_buf_type type) { struct v4l2_fh *vfh = file->private_data; struct vsp1_video *video = to_vsp1_video(vfh->vdev); struct media_device *mdev = &video->vsp1->media_dev; struct vsp1_pipeline *pipe; int ret; if (video->queue.owner && video->queue.owner != file->private_data) return -EBUSY; /* Get a pipeline for the video node and start streaming on it. No link * touching an entity in the pipeline can be activated or deactivated * once streaming is started. */ mutex_lock(&mdev->graph_mutex); pipe = vsp1_video_pipeline_get(video); if (IS_ERR(pipe)) { mutex_unlock(&mdev->graph_mutex); return PTR_ERR(pipe); } ret = __media_pipeline_start(&video->video.entity, &pipe->pipe); if (ret < 0) { mutex_unlock(&mdev->graph_mutex); goto err_pipe; } mutex_unlock(&mdev->graph_mutex); /* Verify that the configured format matches the output of the connected * subdev. */ ret = vsp1_video_verify_format(video); if (ret < 0) goto err_stop; /* Start the queue. */ ret = vb2_streamon(&video->queue, type); if (ret < 0) goto err_stop; return 0; err_stop: media_pipeline_stop(&video->video.entity); err_pipe: vsp1_video_pipeline_put(pipe); return ret; } static const struct v4l2_ioctl_ops vsp1_video_ioctl_ops = { .vidioc_querycap = vsp1_video_querycap, .vidioc_g_fmt_vid_cap_mplane = vsp1_video_get_format, .vidioc_s_fmt_vid_cap_mplane = vsp1_video_set_format, .vidioc_try_fmt_vid_cap_mplane = vsp1_video_try_format, .vidioc_g_fmt_vid_out_mplane = vsp1_video_get_format, .vidioc_s_fmt_vid_out_mplane = vsp1_video_set_format, .vidioc_try_fmt_vid_out_mplane = vsp1_video_try_format, .vidioc_reqbufs = vb2_ioctl_reqbufs, .vidioc_querybuf = vb2_ioctl_querybuf, .vidioc_qbuf = vb2_ioctl_qbuf, .vidioc_dqbuf = vb2_ioctl_dqbuf, .vidioc_expbuf = vb2_ioctl_expbuf, .vidioc_create_bufs = vb2_ioctl_create_bufs, .vidioc_prepare_buf = vb2_ioctl_prepare_buf, .vidioc_streamon = vsp1_video_streamon, .vidioc_streamoff = vb2_ioctl_streamoff, }; /* ----------------------------------------------------------------------------- * V4L2 File Operations */ static int vsp1_video_open(struct file *file) { struct vsp1_video *video = video_drvdata(file); struct v4l2_fh *vfh; int ret = 0; vfh = kzalloc(sizeof(*vfh), GFP_KERNEL); if (vfh == NULL) return -ENOMEM; v4l2_fh_init(vfh, &video->video); v4l2_fh_add(vfh); file->private_data = vfh; ret = vsp1_device_get(video->vsp1); if (ret < 0) { v4l2_fh_del(vfh); v4l2_fh_exit(vfh); kfree(vfh); } return ret; } static int vsp1_video_release(struct file *file) { struct vsp1_video *video = video_drvdata(file); struct v4l2_fh *vfh = file->private_data; mutex_lock(&video->lock); if (video->queue.owner == vfh) { vb2_queue_release(&video->queue); video->queue.owner = NULL; } mutex_unlock(&video->lock); vsp1_device_put(video->vsp1); v4l2_fh_release(file); file->private_data = NULL; return 0; } static const struct v4l2_file_operations vsp1_video_fops = { .owner = THIS_MODULE, .unlocked_ioctl = video_ioctl2, .open = vsp1_video_open, .release = vsp1_video_release, .poll = vb2_fop_poll, .mmap = vb2_fop_mmap, }; /* ----------------------------------------------------------------------------- * Initialization and Cleanup */ struct vsp1_video *vsp1_video_create(struct vsp1_device *vsp1, struct vsp1_rwpf *rwpf) { struct vsp1_video *video; const char *direction; int ret; video = devm_kzalloc(vsp1->dev, sizeof(*video), GFP_KERNEL); if (!video) return ERR_PTR(-ENOMEM); rwpf->video = video; video->vsp1 = vsp1; video->rwpf = rwpf; if (rwpf->entity.type == VSP1_ENTITY_RPF) { direction = "input"; video->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE; video->pad.flags = MEDIA_PAD_FL_SOURCE; video->video.vfl_dir = VFL_DIR_TX; } else { direction = "output"; video->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE; video->pad.flags = MEDIA_PAD_FL_SINK; video->video.vfl_dir = VFL_DIR_RX; } mutex_init(&video->lock); spin_lock_init(&video->irqlock); INIT_LIST_HEAD(&video->irqqueue); /* Initialize the media entity... */ ret = media_entity_pads_init(&video->video.entity, 1, &video->pad); if (ret < 0) return ERR_PTR(ret); /* ... and the format ... */ rwpf->format.pixelformat = VSP1_VIDEO_DEF_FORMAT; rwpf->format.width = VSP1_VIDEO_DEF_WIDTH; rwpf->format.height = VSP1_VIDEO_DEF_HEIGHT; __vsp1_video_try_format(video, &rwpf->format, &rwpf->fmtinfo); /* ... and the video node... */ video->video.v4l2_dev = &video->vsp1->v4l2_dev; video->video.fops = &vsp1_video_fops; snprintf(video->video.name, sizeof(video->video.name), "%s %s", rwpf->entity.subdev.name, direction); video->video.vfl_type = VFL_TYPE_GRABBER; video->video.release = video_device_release_empty; video->video.ioctl_ops = &vsp1_video_ioctl_ops; video_set_drvdata(&video->video, video); video->queue.type = video->type; video->queue.io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF; video->queue.lock = &video->lock; video->queue.drv_priv = video; video->queue.buf_struct_size = sizeof(struct vsp1_vb2_buffer); video->queue.ops = &vsp1_video_queue_qops; video->queue.mem_ops = &vb2_dma_contig_memops; video->queue.timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY; video->queue.dev = video->vsp1->dev; ret = vb2_queue_init(&video->queue); if (ret < 0) { dev_err(video->vsp1->dev, "failed to initialize vb2 queue\n"); goto error; } /* ... and register the video device. */ video->video.queue = &video->queue; ret = video_register_device(&video->video, VFL_TYPE_GRABBER, -1); if (ret < 0) { dev_err(video->vsp1->dev, "failed to register video device\n"); goto error; } return video; error: vsp1_video_cleanup(video); return ERR_PTR(ret); } void vsp1_video_cleanup(struct vsp1_video *video) { if (video_is_registered(&video->video)) video_unregister_device(&video->video); media_entity_cleanup(&video->video.entity); }