#include #include #include #include #include #include "perf_event.h" /* The size of a BTS record in bytes: */ #define BTS_RECORD_SIZE 24 #define BTS_BUFFER_SIZE (PAGE_SIZE << 4) #define PEBS_BUFFER_SIZE PAGE_SIZE #define PEBS_FIXUP_SIZE PAGE_SIZE /* * pebs_record_32 for p4 and core not supported struct pebs_record_32 { u32 flags, ip; u32 ax, bc, cx, dx; u32 si, di, bp, sp; }; */ union intel_x86_pebs_dse { u64 val; struct { unsigned int ld_dse:4; unsigned int ld_stlb_miss:1; unsigned int ld_locked:1; unsigned int ld_reserved:26; }; struct { unsigned int st_l1d_hit:1; unsigned int st_reserved1:3; unsigned int st_stlb_miss:1; unsigned int st_locked:1; unsigned int st_reserved2:26; }; }; /* * Map PEBS Load Latency Data Source encodings to generic * memory data source information */ #define P(a, b) PERF_MEM_S(a, b) #define OP_LH (P(OP, LOAD) | P(LVL, HIT)) #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS)) static const u64 pebs_data_source[] = { P(OP, LOAD) | P(LVL, MISS) | P(LVL, L3) | P(SNOOP, NA),/* 0x00:ukn L3 */ OP_LH | P(LVL, L1) | P(SNOOP, NONE), /* 0x01: L1 local */ OP_LH | P(LVL, LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */ OP_LH | P(LVL, L2) | P(SNOOP, NONE), /* 0x03: L2 hit */ OP_LH | P(LVL, L3) | P(SNOOP, NONE), /* 0x04: L3 hit */ OP_LH | P(LVL, L3) | P(SNOOP, MISS), /* 0x05: L3 hit, snoop miss */ OP_LH | P(LVL, L3) | P(SNOOP, HIT), /* 0x06: L3 hit, snoop hit */ OP_LH | P(LVL, L3) | P(SNOOP, HITM), /* 0x07: L3 hit, snoop hitm */ OP_LH | P(LVL, REM_CCE1) | P(SNOOP, HIT), /* 0x08: L3 miss snoop hit */ OP_LH | P(LVL, REM_CCE1) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/ OP_LH | P(LVL, LOC_RAM) | P(SNOOP, HIT), /* 0x0a: L3 miss, shared */ OP_LH | P(LVL, REM_RAM1) | P(SNOOP, HIT), /* 0x0b: L3 miss, shared */ OP_LH | P(LVL, LOC_RAM) | SNOOP_NONE_MISS,/* 0x0c: L3 miss, excl */ OP_LH | P(LVL, REM_RAM1) | SNOOP_NONE_MISS,/* 0x0d: L3 miss, excl */ OP_LH | P(LVL, IO) | P(SNOOP, NONE), /* 0x0e: I/O */ OP_LH | P(LVL, UNC) | P(SNOOP, NONE), /* 0x0f: uncached */ }; static u64 precise_store_data(u64 status) { union intel_x86_pebs_dse dse; u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2); dse.val = status; /* * bit 4: TLB access * 1 = stored missed 2nd level TLB * * so it either hit the walker or the OS * otherwise hit 2nd level TLB */ if (dse.st_stlb_miss) val |= P(TLB, MISS); else val |= P(TLB, HIT); /* * bit 0: hit L1 data cache * if not set, then all we know is that * it missed L1D */ if (dse.st_l1d_hit) val |= P(LVL, HIT); else val |= P(LVL, MISS); /* * bit 5: Locked prefix */ if (dse.st_locked) val |= P(LOCK, LOCKED); return val; } static u64 precise_datala_hsw(struct perf_event *event, u64 status) { union perf_mem_data_src dse; dse.val = PERF_MEM_NA; if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) dse.mem_op = PERF_MEM_OP_STORE; else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW) dse.mem_op = PERF_MEM_OP_LOAD; /* * L1 info only valid for following events: * * MEM_UOPS_RETIRED.STLB_MISS_STORES * MEM_UOPS_RETIRED.LOCK_STORES * MEM_UOPS_RETIRED.SPLIT_STORES * MEM_UOPS_RETIRED.ALL_STORES */ if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) { if (status & 1) dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT; else dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS; } return dse.val; } static u64 load_latency_data(u64 status) { union intel_x86_pebs_dse dse; u64 val; int model = boot_cpu_data.x86_model; int fam = boot_cpu_data.x86; dse.val = status; /* * use the mapping table for bit 0-3 */ val = pebs_data_source[dse.ld_dse]; /* * Nehalem models do not support TLB, Lock infos */ if (fam == 0x6 && (model == 26 || model == 30 || model == 31 || model == 46)) { val |= P(TLB, NA) | P(LOCK, NA); return val; } /* * bit 4: TLB access * 0 = did not miss 2nd level TLB * 1 = missed 2nd level TLB */ if (dse.ld_stlb_miss) val |= P(TLB, MISS) | P(TLB, L2); else val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2); /* * bit 5: locked prefix */ if (dse.ld_locked) val |= P(LOCK, LOCKED); return val; } struct pebs_record_core { u64 flags, ip; u64 ax, bx, cx, dx; u64 si, di, bp, sp; u64 r8, r9, r10, r11; u64 r12, r13, r14, r15; }; struct pebs_record_nhm { u64 flags, ip; u64 ax, bx, cx, dx; u64 si, di, bp, sp; u64 r8, r9, r10, r11; u64 r12, r13, r14, r15; u64 status, dla, dse, lat; }; /* * Same as pebs_record_nhm, with two additional fields. */ struct pebs_record_hsw { u64 flags, ip; u64 ax, bx, cx, dx; u64 si, di, bp, sp; u64 r8, r9, r10, r11; u64 r12, r13, r14, r15; u64 status, dla, dse, lat; u64 real_ip, tsx_tuning; }; union hsw_tsx_tuning { struct { u32 cycles_last_block : 32, hle_abort : 1, rtm_abort : 1, instruction_abort : 1, non_instruction_abort : 1, retry : 1, data_conflict : 1, capacity_writes : 1, capacity_reads : 1; }; u64 value; }; #define PEBS_HSW_TSX_FLAGS 0xff00000000ULL void init_debug_store_on_cpu(int cpu) { struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds; if (!ds) return; wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, (u32)((u64)(unsigned long)ds), (u32)((u64)(unsigned long)ds >> 32)); } void fini_debug_store_on_cpu(int cpu) { if (!per_cpu(cpu_hw_events, cpu).ds) return; wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0); } static DEFINE_PER_CPU(void *, insn_buffer); static int alloc_pebs_buffer(int cpu) { struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds; int node = cpu_to_node(cpu); int max, thresh = 1; /* always use a single PEBS record */ void *buffer, *ibuffer; if (!x86_pmu.pebs) return 0; buffer = kzalloc_node(PEBS_BUFFER_SIZE, GFP_KERNEL, node); if (unlikely(!buffer)) return -ENOMEM; /* * HSW+ already provides us the eventing ip; no need to allocate this * buffer then. */ if (x86_pmu.intel_cap.pebs_format < 2) { ibuffer = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node); if (!ibuffer) { kfree(buffer); return -ENOMEM; } per_cpu(insn_buffer, cpu) = ibuffer; } max = PEBS_BUFFER_SIZE / x86_pmu.pebs_record_size; ds->pebs_buffer_base = (u64)(unsigned long)buffer; ds->pebs_index = ds->pebs_buffer_base; ds->pebs_absolute_maximum = ds->pebs_buffer_base + max * x86_pmu.pebs_record_size; ds->pebs_interrupt_threshold = ds->pebs_buffer_base + thresh * x86_pmu.pebs_record_size; return 0; } static void release_pebs_buffer(int cpu) { struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds; if (!ds || !x86_pmu.pebs) return; kfree(per_cpu(insn_buffer, cpu)); per_cpu(insn_buffer, cpu) = NULL; kfree((void *)(unsigned long)ds->pebs_buffer_base); ds->pebs_buffer_base = 0; } static int alloc_bts_buffer(int cpu) { struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds; int node = cpu_to_node(cpu); int max, thresh; void *buffer; if (!x86_pmu.bts) return 0; buffer = kzalloc_node(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, node); if (unlikely(!buffer)) { WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__); return -ENOMEM; } max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE; thresh = max / 16; ds->bts_buffer_base = (u64)(unsigned long)buffer; ds->bts_index = ds->bts_buffer_base; ds->bts_absolute_maximum = ds->bts_buffer_base + max * BTS_RECORD_SIZE; ds->bts_interrupt_threshold = ds->bts_absolute_maximum - thresh * BTS_RECORD_SIZE; return 0; } static void release_bts_buffer(int cpu) { struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds; if (!ds || !x86_pmu.bts) return; kfree((void *)(unsigned long)ds->bts_buffer_base); ds->bts_buffer_base = 0; } static int alloc_ds_buffer(int cpu) { int node = cpu_to_node(cpu); struct debug_store *ds; ds = kzalloc_node(sizeof(*ds), GFP_KERNEL, node); if (unlikely(!ds)) return -ENOMEM; per_cpu(cpu_hw_events, cpu).ds = ds; return 0; } static void release_ds_buffer(int cpu) { struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds; if (!ds) return; per_cpu(cpu_hw_events, cpu).ds = NULL; kfree(ds); } void release_ds_buffers(void) { int cpu; if (!x86_pmu.bts && !x86_pmu.pebs) return; get_online_cpus(); for_each_online_cpu(cpu) fini_debug_store_on_cpu(cpu); for_each_possible_cpu(cpu) { release_pebs_buffer(cpu); release_bts_buffer(cpu); release_ds_buffer(cpu); } put_online_cpus(); } void reserve_ds_buffers(void) { int bts_err = 0, pebs_err = 0; int cpu; x86_pmu.bts_active = 0; x86_pmu.pebs_active = 0; if (!x86_pmu.bts && !x86_pmu.pebs) return; if (!x86_pmu.bts) bts_err = 1; if (!x86_pmu.pebs) pebs_err = 1; get_online_cpus(); for_each_possible_cpu(cpu) { if (alloc_ds_buffer(cpu)) { bts_err = 1; pebs_err = 1; } if (!bts_err && alloc_bts_buffer(cpu)) bts_err = 1; if (!pebs_err && alloc_pebs_buffer(cpu)) pebs_err = 1; if (bts_err && pebs_err) break; } if (bts_err) { for_each_possible_cpu(cpu) release_bts_buffer(cpu); } if (pebs_err) { for_each_possible_cpu(cpu) release_pebs_buffer(cpu); } if (bts_err && pebs_err) { for_each_possible_cpu(cpu) release_ds_buffer(cpu); } else { if (x86_pmu.bts && !bts_err) x86_pmu.bts_active = 1; if (x86_pmu.pebs && !pebs_err) x86_pmu.pebs_active = 1; for_each_online_cpu(cpu) init_debug_store_on_cpu(cpu); } put_online_cpus(); } /* * BTS */ struct event_constraint bts_constraint = EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0); void intel_pmu_enable_bts(u64 config) { unsigned long debugctlmsr; debugctlmsr = get_debugctlmsr(); debugctlmsr |= DEBUGCTLMSR_TR; debugctlmsr |= DEBUGCTLMSR_BTS; if (config & ARCH_PERFMON_EVENTSEL_INT) debugctlmsr |= DEBUGCTLMSR_BTINT; if (!(config & ARCH_PERFMON_EVENTSEL_OS)) debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS; if (!(config & ARCH_PERFMON_EVENTSEL_USR)) debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR; update_debugctlmsr(debugctlmsr); } void intel_pmu_disable_bts(void) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); unsigned long debugctlmsr; if (!cpuc->ds) return; debugctlmsr = get_debugctlmsr(); debugctlmsr &= ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT | DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR); update_debugctlmsr(debugctlmsr); } int intel_pmu_drain_bts_buffer(void) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); struct debug_store *ds = cpuc->ds; struct bts_record { u64 from; u64 to; u64 flags; }; struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS]; struct bts_record *at, *top; struct perf_output_handle handle; struct perf_event_header header; struct perf_sample_data data; struct pt_regs regs; if (!event) return 0; if (!x86_pmu.bts_active) return 0; at = (struct bts_record *)(unsigned long)ds->bts_buffer_base; top = (struct bts_record *)(unsigned long)ds->bts_index; if (top <= at) return 0; memset(®s, 0, sizeof(regs)); ds->bts_index = ds->bts_buffer_base; perf_sample_data_init(&data, 0, event->hw.last_period); /* * Prepare a generic sample, i.e. fill in the invariant fields. * We will overwrite the from and to address before we output * the sample. */ perf_prepare_sample(&header, &data, event, ®s); if (perf_output_begin(&handle, event, header.size * (top - at))) return 1; for (; at < top; at++) { data.ip = at->from; data.addr = at->to; perf_output_sample(&handle, &header, &data, event); } perf_output_end(&handle); /* There's new data available. */ event->hw.interrupts++; event->pending_kill = POLL_IN; return 1; } /* * PEBS */ struct event_constraint intel_core2_pebs_event_constraints[] = { INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */ INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */ INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */ INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */ INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */ /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01), EVENT_CONSTRAINT_END }; struct event_constraint intel_atom_pebs_event_constraints[] = { INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */ INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */ INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */ /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01), EVENT_CONSTRAINT_END }; struct event_constraint intel_slm_pebs_event_constraints[] = { /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x1), /* Allow all events as PEBS with no flags */ INTEL_ALL_EVENT_CONSTRAINT(0, 0x1), EVENT_CONSTRAINT_END }; struct event_constraint intel_nehalem_pebs_event_constraints[] = { INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */ INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */ INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */ INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INST_RETIRED.ANY */ INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */ INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */ INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */ INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */ INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */ INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */ INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */ /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f), EVENT_CONSTRAINT_END }; struct event_constraint intel_westmere_pebs_event_constraints[] = { INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */ INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */ INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */ INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INSTR_RETIRED.* */ INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */ INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */ INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf), /* BR_MISP_RETIRED.* */ INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */ INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */ INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */ INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */ /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f), EVENT_CONSTRAINT_END }; struct event_constraint intel_snb_pebs_event_constraints[] = { INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */ INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */ /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf), INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */ INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ /* Allow all events as PEBS with no flags */ INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), EVENT_CONSTRAINT_END }; struct event_constraint intel_ivb_pebs_event_constraints[] = { INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */ INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */ /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf), INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */ INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ /* Allow all events as PEBS with no flags */ INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), EVENT_CONSTRAINT_END }; struct event_constraint intel_hsw_pebs_event_constraints[] = { INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */ /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf), INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */ INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */ INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */ INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */ INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */ INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */ INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */ INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */ INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */ INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */ /* Allow all events as PEBS with no flags */ INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), EVENT_CONSTRAINT_END }; struct event_constraint *intel_pebs_constraints(struct perf_event *event) { struct event_constraint *c; if (!event->attr.precise_ip) return NULL; if (x86_pmu.pebs_constraints) { for_each_event_constraint(c, x86_pmu.pebs_constraints) { if ((event->hw.config & c->cmask) == c->code) { event->hw.flags |= c->flags; return c; } } } return &emptyconstraint; } void intel_pmu_pebs_enable(struct perf_event *event) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); struct hw_perf_event *hwc = &event->hw; struct debug_store *ds = cpuc->ds; hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT; cpuc->pebs_enabled |= 1ULL << hwc->idx; if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32); else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST) cpuc->pebs_enabled |= 1ULL << 63; /* Use auto-reload if possible to save a MSR write in the PMI */ if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) { ds->pebs_event_reset[hwc->idx] = (u64)(-hwc->sample_period) & x86_pmu.cntval_mask; } } void intel_pmu_pebs_disable(struct perf_event *event) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); struct hw_perf_event *hwc = &event->hw; cpuc->pebs_enabled &= ~(1ULL << hwc->idx); if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32)); else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST) cpuc->pebs_enabled &= ~(1ULL << 63); if (cpuc->enabled) wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled); hwc->config |= ARCH_PERFMON_EVENTSEL_INT; } void intel_pmu_pebs_enable_all(void) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); if (cpuc->pebs_enabled) wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled); } void intel_pmu_pebs_disable_all(void) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); if (cpuc->pebs_enabled) wrmsrl(MSR_IA32_PEBS_ENABLE, 0); } static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); unsigned long from = cpuc->lbr_entries[0].from; unsigned long old_to, to = cpuc->lbr_entries[0].to; unsigned long ip = regs->ip; int is_64bit = 0; void *kaddr; int size; /* * We don't need to fixup if the PEBS assist is fault like */ if (!x86_pmu.intel_cap.pebs_trap) return 1; /* * No LBR entry, no basic block, no rewinding */ if (!cpuc->lbr_stack.nr || !from || !to) return 0; /* * Basic blocks should never cross user/kernel boundaries */ if (kernel_ip(ip) != kernel_ip(to)) return 0; /* * unsigned math, either ip is before the start (impossible) or * the basic block is larger than 1 page (sanity) */ if ((ip - to) > PEBS_FIXUP_SIZE) return 0; /* * We sampled a branch insn, rewind using the LBR stack */ if (ip == to) { set_linear_ip(regs, from); return 1; } size = ip - to; if (!kernel_ip(ip)) { int bytes; u8 *buf = this_cpu_read(insn_buffer); /* 'size' must fit our buffer, see above */ bytes = copy_from_user_nmi(buf, (void __user *)to, size); if (bytes != 0) return 0; kaddr = buf; } else { kaddr = (void *)to; } do { struct insn insn; old_to = to; #ifdef CONFIG_X86_64 is_64bit = kernel_ip(to) || !test_thread_flag(TIF_IA32); #endif insn_init(&insn, kaddr, size, is_64bit); insn_get_length(&insn); /* * Make sure there was not a problem decoding the * instruction and getting the length. This is * doubly important because we have an infinite * loop if insn.length=0. */ if (!insn.length) break; to += insn.length; kaddr += insn.length; size -= insn.length; } while (to < ip); if (to == ip) { set_linear_ip(regs, old_to); return 1; } /* * Even though we decoded the basic block, the instruction stream * never matched the given IP, either the TO or the IP got corrupted. */ return 0; } static inline u64 intel_hsw_weight(struct pebs_record_hsw *pebs) { if (pebs->tsx_tuning) { union hsw_tsx_tuning tsx = { .value = pebs->tsx_tuning }; return tsx.cycles_last_block; } return 0; } static inline u64 intel_hsw_transaction(struct pebs_record_hsw *pebs) { u64 txn = (pebs->tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32; /* For RTM XABORTs also log the abort code from AX */ if ((txn & PERF_TXN_TRANSACTION) && (pebs->ax & 1)) txn |= ((pebs->ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT; return txn; } static void setup_pebs_sample_data(struct perf_event *event, struct pt_regs *iregs, void *__pebs, struct perf_sample_data *data, struct pt_regs *regs) { #define PERF_X86_EVENT_PEBS_HSW_PREC \ (PERF_X86_EVENT_PEBS_ST_HSW | \ PERF_X86_EVENT_PEBS_LD_HSW | \ PERF_X86_EVENT_PEBS_NA_HSW) /* * We cast to the biggest pebs_record but are careful not to * unconditionally access the 'extra' entries. */ struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); struct pebs_record_hsw *pebs = __pebs; u64 sample_type; int fll, fst, dsrc; int fl = event->hw.flags; sample_type = event->attr.sample_type; dsrc = sample_type & PERF_SAMPLE_DATA_SRC; fll = fl & PERF_X86_EVENT_PEBS_LDLAT; fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC); perf_sample_data_init(data, 0, event->hw.last_period); data->period = event->hw.last_period; /* * Use latency for weight (only avail with PEBS-LL) */ if (fll && (sample_type & PERF_SAMPLE_WEIGHT)) data->weight = pebs->lat; /* * data.data_src encodes the data source */ if (dsrc) { u64 val = PERF_MEM_NA; if (fll) val = load_latency_data(pebs->dse); else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC)) val = precise_datala_hsw(event, pebs->dse); else if (fst) val = precise_store_data(pebs->dse); data->data_src.val = val; } /* * We use the interrupt regs as a base because the PEBS record * does not contain a full regs set, specifically it seems to * lack segment descriptors, which get used by things like * user_mode(). * * In the simple case fix up only the IP and BP,SP regs, for * PERF_SAMPLE_IP and PERF_SAMPLE_CALLCHAIN to function properly. * A possible PERF_SAMPLE_REGS will have to transfer all regs. */ *regs = *iregs; regs->flags = pebs->flags; set_linear_ip(regs, pebs->ip); regs->bp = pebs->bp; regs->sp = pebs->sp; if (sample_type & PERF_SAMPLE_REGS_INTR) { regs->ax = pebs->ax; regs->bx = pebs->bx; regs->cx = pebs->cx; regs->dx = pebs->dx; regs->si = pebs->si; regs->di = pebs->di; regs->bp = pebs->bp; regs->sp = pebs->sp; regs->flags = pebs->flags; #ifndef CONFIG_X86_32 regs->r8 = pebs->r8; regs->r9 = pebs->r9; regs->r10 = pebs->r10; regs->r11 = pebs->r11; regs->r12 = pebs->r12; regs->r13 = pebs->r13; regs->r14 = pebs->r14; regs->r15 = pebs->r15; #endif } if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format >= 2) { regs->ip = pebs->real_ip; regs->flags |= PERF_EFLAGS_EXACT; } else if (event->attr.precise_ip > 1 && intel_pmu_pebs_fixup_ip(regs)) regs->flags |= PERF_EFLAGS_EXACT; else regs->flags &= ~PERF_EFLAGS_EXACT; if ((sample_type & PERF_SAMPLE_ADDR) && x86_pmu.intel_cap.pebs_format >= 1) data->addr = pebs->dla; if (x86_pmu.intel_cap.pebs_format >= 2) { /* Only set the TSX weight when no memory weight. */ if ((sample_type & PERF_SAMPLE_WEIGHT) && !fll) data->weight = intel_hsw_weight(pebs); if (sample_type & PERF_SAMPLE_TRANSACTION) data->txn = intel_hsw_transaction(pebs); } if (has_branch_stack(event)) data->br_stack = &cpuc->lbr_stack; } static void __intel_pmu_pebs_event(struct perf_event *event, struct pt_regs *iregs, void *__pebs) { struct perf_sample_data data; struct pt_regs regs; if (!intel_pmu_save_and_restart(event)) return; setup_pebs_sample_data(event, iregs, __pebs, &data, ®s); if (perf_event_overflow(event, &data, ®s)) x86_pmu_stop(event, 0); } static void intel_pmu_drain_pebs_core(struct pt_regs *iregs) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); struct debug_store *ds = cpuc->ds; struct perf_event *event = cpuc->events[0]; /* PMC0 only */ struct pebs_record_core *at, *top; int n; if (!x86_pmu.pebs_active) return; at = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base; top = (struct pebs_record_core *)(unsigned long)ds->pebs_index; /* * Whatever else happens, drain the thing */ ds->pebs_index = ds->pebs_buffer_base; if (!test_bit(0, cpuc->active_mask)) return; WARN_ON_ONCE(!event); if (!event->attr.precise_ip) return; n = top - at; if (n <= 0) return; /* * Should not happen, we program the threshold at 1 and do not * set a reset value. */ WARN_ONCE(n > 1, "bad leftover pebs %d\n", n); at += n - 1; __intel_pmu_pebs_event(event, iregs, at); } static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); struct debug_store *ds = cpuc->ds; struct perf_event *event = NULL; void *at, *top; u64 status = 0; int bit; if (!x86_pmu.pebs_active) return; at = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base; top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index; ds->pebs_index = ds->pebs_buffer_base; if (unlikely(at > top)) return; /* * Should not happen, we program the threshold at 1 and do not * set a reset value. */ WARN_ONCE(top - at > x86_pmu.max_pebs_events * x86_pmu.pebs_record_size, "Unexpected number of pebs records %ld\n", (long)(top - at) / x86_pmu.pebs_record_size); for (; at < top; at += x86_pmu.pebs_record_size) { struct pebs_record_nhm *p = at; for_each_set_bit(bit, (unsigned long *)&p->status, x86_pmu.max_pebs_events) { event = cpuc->events[bit]; if (!test_bit(bit, cpuc->active_mask)) continue; WARN_ON_ONCE(!event); if (!event->attr.precise_ip) continue; if (__test_and_set_bit(bit, (unsigned long *)&status)) continue; break; } if (!event || bit >= x86_pmu.max_pebs_events) continue; __intel_pmu_pebs_event(event, iregs, at); } } /* * BTS, PEBS probe and setup */ void __init intel_ds_init(void) { /* * No support for 32bit formats */ if (!boot_cpu_has(X86_FEATURE_DTES64)) return; x86_pmu.bts = boot_cpu_has(X86_FEATURE_BTS); x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS); if (x86_pmu.pebs) { char pebs_type = x86_pmu.intel_cap.pebs_trap ? '+' : '-'; int format = x86_pmu.intel_cap.pebs_format; switch (format) { case 0: printk(KERN_CONT "PEBS fmt0%c, ", pebs_type); x86_pmu.pebs_record_size = sizeof(struct pebs_record_core); x86_pmu.drain_pebs = intel_pmu_drain_pebs_core; break; case 1: printk(KERN_CONT "PEBS fmt1%c, ", pebs_type); x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm); x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm; break; case 2: pr_cont("PEBS fmt2%c, ", pebs_type); x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw); x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm; break; default: printk(KERN_CONT "no PEBS fmt%d%c, ", format, pebs_type); x86_pmu.pebs = 0; } } } void perf_restore_debug_store(void) { struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds); if (!x86_pmu.bts && !x86_pmu.pebs) return; wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds); }