/* * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver * * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved. * Copyright (C) 2010 ST-Ericsson SA * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mmci.h" #define DRIVER_NAME "mmci-pl18x" static unsigned int fmax = 515633; /** * struct variant_data - MMCI variant-specific quirks * @clkreg: default value for MCICLOCK register * @clkreg_enable: enable value for MMCICLOCK register * @datalength_bits: number of bits in the MMCIDATALENGTH register * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY * is asserted (likewise for RX) * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY * is asserted (likewise for RX) * @sdio: variant supports SDIO * @st_clkdiv: true if using a ST-specific clock divider algorithm * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register * @pwrreg_powerup: power up value for MMCIPOWER register * @signal_direction: input/out direction of bus signals can be indicated * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock * @busy_detect: true if busy detection on dat0 is supported * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply */ struct variant_data { unsigned int clkreg; unsigned int clkreg_enable; unsigned int datalength_bits; unsigned int fifosize; unsigned int fifohalfsize; bool sdio; bool st_clkdiv; bool blksz_datactrl16; u32 pwrreg_powerup; bool signal_direction; bool pwrreg_clkgate; bool busy_detect; bool pwrreg_nopower; }; static struct variant_data variant_arm = { .fifosize = 16 * 4, .fifohalfsize = 8 * 4, .datalength_bits = 16, .pwrreg_powerup = MCI_PWR_UP, }; static struct variant_data variant_arm_extended_fifo = { .fifosize = 128 * 4, .fifohalfsize = 64 * 4, .datalength_bits = 16, .pwrreg_powerup = MCI_PWR_UP, }; static struct variant_data variant_arm_extended_fifo_hwfc = { .fifosize = 128 * 4, .fifohalfsize = 64 * 4, .clkreg_enable = MCI_ARM_HWFCEN, .datalength_bits = 16, .pwrreg_powerup = MCI_PWR_UP, }; static struct variant_data variant_u300 = { .fifosize = 16 * 4, .fifohalfsize = 8 * 4, .clkreg_enable = MCI_ST_U300_HWFCEN, .datalength_bits = 16, .sdio = true, .pwrreg_powerup = MCI_PWR_ON, .signal_direction = true, .pwrreg_clkgate = true, .pwrreg_nopower = true, }; static struct variant_data variant_nomadik = { .fifosize = 16 * 4, .fifohalfsize = 8 * 4, .clkreg = MCI_CLK_ENABLE, .datalength_bits = 24, .sdio = true, .st_clkdiv = true, .pwrreg_powerup = MCI_PWR_ON, .signal_direction = true, .pwrreg_clkgate = true, .pwrreg_nopower = true, }; static struct variant_data variant_ux500 = { .fifosize = 30 * 4, .fifohalfsize = 8 * 4, .clkreg = MCI_CLK_ENABLE, .clkreg_enable = MCI_ST_UX500_HWFCEN, .datalength_bits = 24, .sdio = true, .st_clkdiv = true, .pwrreg_powerup = MCI_PWR_ON, .signal_direction = true, .pwrreg_clkgate = true, .busy_detect = true, .pwrreg_nopower = true, }; static struct variant_data variant_ux500v2 = { .fifosize = 30 * 4, .fifohalfsize = 8 * 4, .clkreg = MCI_CLK_ENABLE, .clkreg_enable = MCI_ST_UX500_HWFCEN, .datalength_bits = 24, .sdio = true, .st_clkdiv = true, .blksz_datactrl16 = true, .pwrreg_powerup = MCI_PWR_ON, .signal_direction = true, .pwrreg_clkgate = true, .busy_detect = true, .pwrreg_nopower = true, }; static int mmci_card_busy(struct mmc_host *mmc) { struct mmci_host *host = mmc_priv(mmc); unsigned long flags; int busy = 0; pm_runtime_get_sync(mmc_dev(mmc)); spin_lock_irqsave(&host->lock, flags); if (readl(host->base + MMCISTATUS) & MCI_ST_CARDBUSY) busy = 1; spin_unlock_irqrestore(&host->lock, flags); pm_runtime_mark_last_busy(mmc_dev(mmc)); pm_runtime_put_autosuspend(mmc_dev(mmc)); return busy; } /* * Validate mmc prerequisites */ static int mmci_validate_data(struct mmci_host *host, struct mmc_data *data) { if (!data) return 0; if (!is_power_of_2(data->blksz)) { dev_err(mmc_dev(host->mmc), "unsupported block size (%d bytes)\n", data->blksz); return -EINVAL; } return 0; } static void mmci_reg_delay(struct mmci_host *host) { /* * According to the spec, at least three feedback clock cycles * of max 52 MHz must pass between two writes to the MMCICLOCK reg. * Three MCLK clock cycles must pass between two MMCIPOWER reg writes. * Worst delay time during card init is at 100 kHz => 30 us. * Worst delay time when up and running is at 25 MHz => 120 ns. */ if (host->cclk < 25000000) udelay(30); else ndelay(120); } /* * This must be called with host->lock held */ static void mmci_write_clkreg(struct mmci_host *host, u32 clk) { if (host->clk_reg != clk) { host->clk_reg = clk; writel(clk, host->base + MMCICLOCK); } } /* * This must be called with host->lock held */ static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr) { if (host->pwr_reg != pwr) { host->pwr_reg = pwr; writel(pwr, host->base + MMCIPOWER); } } /* * This must be called with host->lock held */ static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl) { /* Keep ST Micro busy mode if enabled */ datactrl |= host->datactrl_reg & MCI_ST_DPSM_BUSYMODE; if (host->datactrl_reg != datactrl) { host->datactrl_reg = datactrl; writel(datactrl, host->base + MMCIDATACTRL); } } /* * This must be called with host->lock held */ static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired) { struct variant_data *variant = host->variant; u32 clk = variant->clkreg; /* Make sure cclk reflects the current calculated clock */ host->cclk = 0; if (desired) { if (desired >= host->mclk) { clk = MCI_CLK_BYPASS; if (variant->st_clkdiv) clk |= MCI_ST_UX500_NEG_EDGE; host->cclk = host->mclk; } else if (variant->st_clkdiv) { /* * DB8500 TRM says f = mclk / (clkdiv + 2) * => clkdiv = (mclk / f) - 2 * Round the divider up so we don't exceed the max * frequency */ clk = DIV_ROUND_UP(host->mclk, desired) - 2; if (clk >= 256) clk = 255; host->cclk = host->mclk / (clk + 2); } else { /* * PL180 TRM says f = mclk / (2 * (clkdiv + 1)) * => clkdiv = mclk / (2 * f) - 1 */ clk = host->mclk / (2 * desired) - 1; if (clk >= 256) clk = 255; host->cclk = host->mclk / (2 * (clk + 1)); } clk |= variant->clkreg_enable; clk |= MCI_CLK_ENABLE; /* This hasn't proven to be worthwhile */ /* clk |= MCI_CLK_PWRSAVE; */ } /* Set actual clock for debug */ host->mmc->actual_clock = host->cclk; if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4) clk |= MCI_4BIT_BUS; if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8) clk |= MCI_ST_8BIT_BUS; if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50) clk |= MCI_ST_UX500_NEG_EDGE; mmci_write_clkreg(host, clk); } static void mmci_request_end(struct mmci_host *host, struct mmc_request *mrq) { writel(0, host->base + MMCICOMMAND); BUG_ON(host->data); host->mrq = NULL; host->cmd = NULL; mmc_request_done(host->mmc, mrq); pm_runtime_mark_last_busy(mmc_dev(host->mmc)); pm_runtime_put_autosuspend(mmc_dev(host->mmc)); } static void mmci_set_mask1(struct mmci_host *host, unsigned int mask) { void __iomem *base = host->base; if (host->singleirq) { unsigned int mask0 = readl(base + MMCIMASK0); mask0 &= ~MCI_IRQ1MASK; mask0 |= mask; writel(mask0, base + MMCIMASK0); } writel(mask, base + MMCIMASK1); } static void mmci_stop_data(struct mmci_host *host) { mmci_write_datactrlreg(host, 0); mmci_set_mask1(host, 0); host->data = NULL; } static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data) { unsigned int flags = SG_MITER_ATOMIC; if (data->flags & MMC_DATA_READ) flags |= SG_MITER_TO_SG; else flags |= SG_MITER_FROM_SG; sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags); } /* * All the DMA operation mode stuff goes inside this ifdef. * This assumes that you have a generic DMA device interface, * no custom DMA interfaces are supported. */ #ifdef CONFIG_DMA_ENGINE static void mmci_dma_setup(struct mmci_host *host) { struct mmci_platform_data *plat = host->plat; const char *rxname, *txname; dma_cap_mask_t mask; host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx"); host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx"); /* initialize pre request cookie */ host->next_data.cookie = 1; /* Try to acquire a generic DMA engine slave channel */ dma_cap_zero(mask); dma_cap_set(DMA_SLAVE, mask); if (plat && plat->dma_filter) { if (!host->dma_rx_channel && plat->dma_rx_param) { host->dma_rx_channel = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param); /* E.g if no DMA hardware is present */ if (!host->dma_rx_channel) dev_err(mmc_dev(host->mmc), "no RX DMA channel\n"); } if (!host->dma_tx_channel && plat->dma_tx_param) { host->dma_tx_channel = dma_request_channel(mask, plat->dma_filter, plat->dma_tx_param); if (!host->dma_tx_channel) dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n"); } } /* * If only an RX channel is specified, the driver will * attempt to use it bidirectionally, however if it is * is specified but cannot be located, DMA will be disabled. */ if (host->dma_rx_channel && !host->dma_tx_channel) host->dma_tx_channel = host->dma_rx_channel; if (host->dma_rx_channel) rxname = dma_chan_name(host->dma_rx_channel); else rxname = "none"; if (host->dma_tx_channel) txname = dma_chan_name(host->dma_tx_channel); else txname = "none"; dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n", rxname, txname); /* * Limit the maximum segment size in any SG entry according to * the parameters of the DMA engine device. */ if (host->dma_tx_channel) { struct device *dev = host->dma_tx_channel->device->dev; unsigned int max_seg_size = dma_get_max_seg_size(dev); if (max_seg_size < host->mmc->max_seg_size) host->mmc->max_seg_size = max_seg_size; } if (host->dma_rx_channel) { struct device *dev = host->dma_rx_channel->device->dev; unsigned int max_seg_size = dma_get_max_seg_size(dev); if (max_seg_size < host->mmc->max_seg_size) host->mmc->max_seg_size = max_seg_size; } } /* * This is used in or so inline it * so it can be discarded. */ static inline void mmci_dma_release(struct mmci_host *host) { struct mmci_platform_data *plat = host->plat; if (host->dma_rx_channel) dma_release_channel(host->dma_rx_channel); if (host->dma_tx_channel && plat->dma_tx_param) dma_release_channel(host->dma_tx_channel); host->dma_rx_channel = host->dma_tx_channel = NULL; } static void mmci_dma_data_error(struct mmci_host *host) { dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n"); dmaengine_terminate_all(host->dma_current); host->dma_current = NULL; host->dma_desc_current = NULL; host->data->host_cookie = 0; } static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data) { struct dma_chan *chan; enum dma_data_direction dir; if (data->flags & MMC_DATA_READ) { dir = DMA_FROM_DEVICE; chan = host->dma_rx_channel; } else { dir = DMA_TO_DEVICE; chan = host->dma_tx_channel; } dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir); } static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data) { u32 status; int i; /* Wait up to 1ms for the DMA to complete */ for (i = 0; ; i++) { status = readl(host->base + MMCISTATUS); if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100) break; udelay(10); } /* * Check to see whether we still have some data left in the FIFO - * this catches DMA controllers which are unable to monitor the * DMALBREQ and DMALSREQ signals while allowing us to DMA to non- * contiguous buffers. On TX, we'll get a FIFO underrun error. */ if (status & MCI_RXDATAAVLBLMASK) { mmci_dma_data_error(host); if (!data->error) data->error = -EIO; } if (!data->host_cookie) mmci_dma_unmap(host, data); /* * Use of DMA with scatter-gather is impossible. * Give up with DMA and switch back to PIO mode. */ if (status & MCI_RXDATAAVLBLMASK) { dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n"); mmci_dma_release(host); } host->dma_current = NULL; host->dma_desc_current = NULL; } /* prepares DMA channel and DMA descriptor, returns non-zero on failure */ static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data, struct dma_chan **dma_chan, struct dma_async_tx_descriptor **dma_desc) { struct variant_data *variant = host->variant; struct dma_slave_config conf = { .src_addr = host->phybase + MMCIFIFO, .dst_addr = host->phybase + MMCIFIFO, .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES, .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES, .src_maxburst = variant->fifohalfsize >> 2, /* # of words */ .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */ .device_fc = false, }; struct dma_chan *chan; struct dma_device *device; struct dma_async_tx_descriptor *desc; enum dma_data_direction buffer_dirn; int nr_sg; if (data->flags & MMC_DATA_READ) { conf.direction = DMA_DEV_TO_MEM; buffer_dirn = DMA_FROM_DEVICE; chan = host->dma_rx_channel; } else { conf.direction = DMA_MEM_TO_DEV; buffer_dirn = DMA_TO_DEVICE; chan = host->dma_tx_channel; } /* If there's no DMA channel, fall back to PIO */ if (!chan) return -EINVAL; /* If less than or equal to the fifo size, don't bother with DMA */ if (data->blksz * data->blocks <= variant->fifosize) return -EINVAL; device = chan->device; nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn); if (nr_sg == 0) return -EINVAL; dmaengine_slave_config(chan, &conf); desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg, conf.direction, DMA_CTRL_ACK); if (!desc) goto unmap_exit; *dma_chan = chan; *dma_desc = desc; return 0; unmap_exit: dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn); return -ENOMEM; } static inline int mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data) { /* Check if next job is already prepared. */ if (host->dma_current && host->dma_desc_current) return 0; /* No job were prepared thus do it now. */ return __mmci_dma_prep_data(host, data, &host->dma_current, &host->dma_desc_current); } static inline int mmci_dma_prep_next(struct mmci_host *host, struct mmc_data *data) { struct mmci_host_next *nd = &host->next_data; return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc); } static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl) { int ret; struct mmc_data *data = host->data; ret = mmci_dma_prep_data(host, host->data); if (ret) return ret; /* Okay, go for it. */ dev_vdbg(mmc_dev(host->mmc), "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n", data->sg_len, data->blksz, data->blocks, data->flags); dmaengine_submit(host->dma_desc_current); dma_async_issue_pending(host->dma_current); datactrl |= MCI_DPSM_DMAENABLE; /* Trigger the DMA transfer */ mmci_write_datactrlreg(host, datactrl); /* * Let the MMCI say when the data is ended and it's time * to fire next DMA request. When that happens, MMCI will * call mmci_data_end() */ writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK, host->base + MMCIMASK0); return 0; } static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data) { struct mmci_host_next *next = &host->next_data; WARN_ON(data->host_cookie && data->host_cookie != next->cookie); WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan)); host->dma_desc_current = next->dma_desc; host->dma_current = next->dma_chan; next->dma_desc = NULL; next->dma_chan = NULL; } static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq, bool is_first_req) { struct mmci_host *host = mmc_priv(mmc); struct mmc_data *data = mrq->data; struct mmci_host_next *nd = &host->next_data; if (!data) return; BUG_ON(data->host_cookie); if (mmci_validate_data(host, data)) return; if (!mmci_dma_prep_next(host, data)) data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie; } static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq, int err) { struct mmci_host *host = mmc_priv(mmc); struct mmc_data *data = mrq->data; if (!data || !data->host_cookie) return; mmci_dma_unmap(host, data); if (err) { struct mmci_host_next *next = &host->next_data; struct dma_chan *chan; if (data->flags & MMC_DATA_READ) chan = host->dma_rx_channel; else chan = host->dma_tx_channel; dmaengine_terminate_all(chan); next->dma_desc = NULL; next->dma_chan = NULL; } } #else /* Blank functions if the DMA engine is not available */ static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data) { } static inline void mmci_dma_setup(struct mmci_host *host) { } static inline void mmci_dma_release(struct mmci_host *host) { } static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data) { } static inline void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data) { } static inline void mmci_dma_data_error(struct mmci_host *host) { } static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl) { return -ENOSYS; } #define mmci_pre_request NULL #define mmci_post_request NULL #endif static void mmci_start_data(struct mmci_host *host, struct mmc_data *data) { struct variant_data *variant = host->variant; unsigned int datactrl, timeout, irqmask; unsigned long long clks; void __iomem *base; int blksz_bits; dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n", data->blksz, data->blocks, data->flags); host->data = data; host->size = data->blksz * data->blocks; data->bytes_xfered = 0; clks = (unsigned long long)data->timeout_ns * host->cclk; do_div(clks, 1000000000UL); timeout = data->timeout_clks + (unsigned int)clks; base = host->base; writel(timeout, base + MMCIDATATIMER); writel(host->size, base + MMCIDATALENGTH); blksz_bits = ffs(data->blksz) - 1; BUG_ON(1 << blksz_bits != data->blksz); if (variant->blksz_datactrl16) datactrl = MCI_DPSM_ENABLE | (data->blksz << 16); else datactrl = MCI_DPSM_ENABLE | blksz_bits << 4; if (data->flags & MMC_DATA_READ) datactrl |= MCI_DPSM_DIRECTION; /* The ST Micro variants has a special bit to enable SDIO */ if (variant->sdio && host->mmc->card) if (mmc_card_sdio(host->mmc->card)) { /* * The ST Micro variants has a special bit * to enable SDIO. */ u32 clk; datactrl |= MCI_ST_DPSM_SDIOEN; /* * The ST Micro variant for SDIO small write transfers * needs to have clock H/W flow control disabled, * otherwise the transfer will not start. The threshold * depends on the rate of MCLK. */ if (data->flags & MMC_DATA_WRITE && (host->size < 8 || (host->size <= 8 && host->mclk > 50000000))) clk = host->clk_reg & ~variant->clkreg_enable; else clk = host->clk_reg | variant->clkreg_enable; mmci_write_clkreg(host, clk); } if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50) datactrl |= MCI_ST_DPSM_DDRMODE; /* * Attempt to use DMA operation mode, if this * should fail, fall back to PIO mode */ if (!mmci_dma_start_data(host, datactrl)) return; /* IRQ mode, map the SG list for CPU reading/writing */ mmci_init_sg(host, data); if (data->flags & MMC_DATA_READ) { irqmask = MCI_RXFIFOHALFFULLMASK; /* * If we have less than the fifo 'half-full' threshold to * transfer, trigger a PIO interrupt as soon as any data * is available. */ if (host->size < variant->fifohalfsize) irqmask |= MCI_RXDATAAVLBLMASK; } else { /* * We don't actually need to include "FIFO empty" here * since its implicit in "FIFO half empty". */ irqmask = MCI_TXFIFOHALFEMPTYMASK; } mmci_write_datactrlreg(host, datactrl); writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0); mmci_set_mask1(host, irqmask); } static void mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c) { void __iomem *base = host->base; dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n", cmd->opcode, cmd->arg, cmd->flags); if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) { writel(0, base + MMCICOMMAND); udelay(1); } c |= cmd->opcode | MCI_CPSM_ENABLE; if (cmd->flags & MMC_RSP_PRESENT) { if (cmd->flags & MMC_RSP_136) c |= MCI_CPSM_LONGRSP; c |= MCI_CPSM_RESPONSE; } if (/*interrupt*/0) c |= MCI_CPSM_INTERRUPT; host->cmd = cmd; writel(cmd->arg, base + MMCIARGUMENT); writel(c, base + MMCICOMMAND); } static void mmci_data_irq(struct mmci_host *host, struct mmc_data *data, unsigned int status) { /* First check for errors */ if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR| MCI_TXUNDERRUN|MCI_RXOVERRUN)) { u32 remain, success; /* Terminate the DMA transfer */ if (dma_inprogress(host)) { mmci_dma_data_error(host); mmci_dma_unmap(host, data); } /* * Calculate how far we are into the transfer. Note that * the data counter gives the number of bytes transferred * on the MMC bus, not on the host side. On reads, this * can be as much as a FIFO-worth of data ahead. This * matters for FIFO overruns only. */ remain = readl(host->base + MMCIDATACNT); success = data->blksz * data->blocks - remain; dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n", status, success); if (status & MCI_DATACRCFAIL) { /* Last block was not successful */ success -= 1; data->error = -EILSEQ; } else if (status & MCI_DATATIMEOUT) { data->error = -ETIMEDOUT; } else if (status & MCI_STARTBITERR) { data->error = -ECOMM; } else if (status & MCI_TXUNDERRUN) { data->error = -EIO; } else if (status & MCI_RXOVERRUN) { if (success > host->variant->fifosize) success -= host->variant->fifosize; else success = 0; data->error = -EIO; } data->bytes_xfered = round_down(success, data->blksz); } if (status & MCI_DATABLOCKEND) dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n"); if (status & MCI_DATAEND || data->error) { if (dma_inprogress(host)) mmci_dma_finalize(host, data); mmci_stop_data(host); if (!data->error) /* The error clause is handled above, success! */ data->bytes_xfered = data->blksz * data->blocks; if (!data->stop || host->mrq->sbc) { mmci_request_end(host, data->mrq); } else { mmci_start_command(host, data->stop, 0); } } } static void mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd, unsigned int status) { void __iomem *base = host->base; bool sbc = (cmd == host->mrq->sbc); bool busy_resp = host->variant->busy_detect && (cmd->flags & MMC_RSP_BUSY); /* Check if we need to wait for busy completion. */ if (host->busy_status && (status & MCI_ST_CARDBUSY)) return; /* Enable busy completion if needed and supported. */ if (!host->busy_status && busy_resp && !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) && (readl(base + MMCISTATUS) & MCI_ST_CARDBUSY)) { writel(readl(base + MMCIMASK0) | MCI_ST_BUSYEND, base + MMCIMASK0); host->busy_status = status & (MCI_CMDSENT|MCI_CMDRESPEND); return; } /* At busy completion, mask the IRQ and complete the request. */ if (host->busy_status) { writel(readl(base + MMCIMASK0) & ~MCI_ST_BUSYEND, base + MMCIMASK0); host->busy_status = 0; } host->cmd = NULL; if (status & MCI_CMDTIMEOUT) { cmd->error = -ETIMEDOUT; } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) { cmd->error = -EILSEQ; } else { cmd->resp[0] = readl(base + MMCIRESPONSE0); cmd->resp[1] = readl(base + MMCIRESPONSE1); cmd->resp[2] = readl(base + MMCIRESPONSE2); cmd->resp[3] = readl(base + MMCIRESPONSE3); } if ((!sbc && !cmd->data) || cmd->error) { if (host->data) { /* Terminate the DMA transfer */ if (dma_inprogress(host)) { mmci_dma_data_error(host); mmci_dma_unmap(host, host->data); } mmci_stop_data(host); } mmci_request_end(host, host->mrq); } else if (sbc) { mmci_start_command(host, host->mrq->cmd, 0); } else if (!(cmd->data->flags & MMC_DATA_READ)) { mmci_start_data(host, cmd->data); } } static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain) { void __iomem *base = host->base; char *ptr = buffer; u32 status; int host_remain = host->size; do { int count = host_remain - (readl(base + MMCIFIFOCNT) << 2); if (count > remain) count = remain; if (count <= 0) break; /* * SDIO especially may want to send something that is * not divisible by 4 (as opposed to card sectors * etc). Therefore make sure to always read the last bytes * while only doing full 32-bit reads towards the FIFO. */ if (unlikely(count & 0x3)) { if (count < 4) { unsigned char buf[4]; ioread32_rep(base + MMCIFIFO, buf, 1); memcpy(ptr, buf, count); } else { ioread32_rep(base + MMCIFIFO, ptr, count >> 2); count &= ~0x3; } } else { ioread32_rep(base + MMCIFIFO, ptr, count >> 2); } ptr += count; remain -= count; host_remain -= count; if (remain == 0) break; status = readl(base + MMCISTATUS); } while (status & MCI_RXDATAAVLBL); return ptr - buffer; } static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status) { struct variant_data *variant = host->variant; void __iomem *base = host->base; char *ptr = buffer; do { unsigned int count, maxcnt; maxcnt = status & MCI_TXFIFOEMPTY ? variant->fifosize : variant->fifohalfsize; count = min(remain, maxcnt); /* * SDIO especially may want to send something that is * not divisible by 4 (as opposed to card sectors * etc), and the FIFO only accept full 32-bit writes. * So compensate by adding +3 on the count, a single * byte become a 32bit write, 7 bytes will be two * 32bit writes etc. */ iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2); ptr += count; remain -= count; if (remain == 0) break; status = readl(base + MMCISTATUS); } while (status & MCI_TXFIFOHALFEMPTY); return ptr - buffer; } /* * PIO data transfer IRQ handler. */ static irqreturn_t mmci_pio_irq(int irq, void *dev_id) { struct mmci_host *host = dev_id; struct sg_mapping_iter *sg_miter = &host->sg_miter; struct variant_data *variant = host->variant; void __iomem *base = host->base; unsigned long flags; u32 status; status = readl(base + MMCISTATUS); dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status); local_irq_save(flags); do { unsigned int remain, len; char *buffer; /* * For write, we only need to test the half-empty flag * here - if the FIFO is completely empty, then by * definition it is more than half empty. * * For read, check for data available. */ if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL))) break; if (!sg_miter_next(sg_miter)) break; buffer = sg_miter->addr; remain = sg_miter->length; len = 0; if (status & MCI_RXACTIVE) len = mmci_pio_read(host, buffer, remain); if (status & MCI_TXACTIVE) len = mmci_pio_write(host, buffer, remain, status); sg_miter->consumed = len; host->size -= len; remain -= len; if (remain) break; status = readl(base + MMCISTATUS); } while (1); sg_miter_stop(sg_miter); local_irq_restore(flags); /* * If we have less than the fifo 'half-full' threshold to transfer, * trigger a PIO interrupt as soon as any data is available. */ if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize) mmci_set_mask1(host, MCI_RXDATAAVLBLMASK); /* * If we run out of data, disable the data IRQs; this * prevents a race where the FIFO becomes empty before * the chip itself has disabled the data path, and * stops us racing with our data end IRQ. */ if (host->size == 0) { mmci_set_mask1(host, 0); writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0); } return IRQ_HANDLED; } /* * Handle completion of command and data transfers. */ static irqreturn_t mmci_irq(int irq, void *dev_id) { struct mmci_host *host = dev_id; u32 status; int ret = 0; spin_lock(&host->lock); do { struct mmc_command *cmd; struct mmc_data *data; status = readl(host->base + MMCISTATUS); if (host->singleirq) { if (status & readl(host->base + MMCIMASK1)) mmci_pio_irq(irq, dev_id); status &= ~MCI_IRQ1MASK; } /* * We intentionally clear the MCI_ST_CARDBUSY IRQ here (if it's * enabled) since the HW seems to be triggering the IRQ on both * edges while monitoring DAT0 for busy completion. */ status &= readl(host->base + MMCIMASK0); writel(status, host->base + MMCICLEAR); dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status); cmd = host->cmd; if ((status|host->busy_status) & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT| MCI_CMDSENT|MCI_CMDRESPEND) && cmd) mmci_cmd_irq(host, cmd, status); data = host->data; if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR| MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND| MCI_DATABLOCKEND) && data) mmci_data_irq(host, data, status); /* Don't poll for busy completion in irq context. */ if (host->busy_status) status &= ~MCI_ST_CARDBUSY; ret = 1; } while (status); spin_unlock(&host->lock); return IRQ_RETVAL(ret); } static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq) { struct mmci_host *host = mmc_priv(mmc); unsigned long flags; WARN_ON(host->mrq != NULL); mrq->cmd->error = mmci_validate_data(host, mrq->data); if (mrq->cmd->error) { mmc_request_done(mmc, mrq); return; } pm_runtime_get_sync(mmc_dev(mmc)); spin_lock_irqsave(&host->lock, flags); host->mrq = mrq; if (mrq->data) mmci_get_next_data(host, mrq->data); if (mrq->data && mrq->data->flags & MMC_DATA_READ) mmci_start_data(host, mrq->data); if (mrq->sbc) mmci_start_command(host, mrq->sbc, 0); else mmci_start_command(host, mrq->cmd, 0); spin_unlock_irqrestore(&host->lock, flags); } static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) { struct mmci_host *host = mmc_priv(mmc); struct variant_data *variant = host->variant; u32 pwr = 0; unsigned long flags; int ret; pm_runtime_get_sync(mmc_dev(mmc)); if (host->plat->ios_handler && host->plat->ios_handler(mmc_dev(mmc), ios)) dev_err(mmc_dev(mmc), "platform ios_handler failed\n"); switch (ios->power_mode) { case MMC_POWER_OFF: if (!IS_ERR(mmc->supply.vmmc)) mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0); if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) { regulator_disable(mmc->supply.vqmmc); host->vqmmc_enabled = false; } break; case MMC_POWER_UP: if (!IS_ERR(mmc->supply.vmmc)) mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd); /* * The ST Micro variant doesn't have the PL180s MCI_PWR_UP * and instead uses MCI_PWR_ON so apply whatever value is * configured in the variant data. */ pwr |= variant->pwrreg_powerup; break; case MMC_POWER_ON: if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) { ret = regulator_enable(mmc->supply.vqmmc); if (ret < 0) dev_err(mmc_dev(mmc), "failed to enable vqmmc regulator\n"); else host->vqmmc_enabled = true; } pwr |= MCI_PWR_ON; break; } if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) { /* * The ST Micro variant has some additional bits * indicating signal direction for the signals in * the SD/MMC bus and feedback-clock usage. */ pwr |= host->plat->sigdir; if (ios->bus_width == MMC_BUS_WIDTH_4) pwr &= ~MCI_ST_DATA74DIREN; else if (ios->bus_width == MMC_BUS_WIDTH_1) pwr &= (~MCI_ST_DATA74DIREN & ~MCI_ST_DATA31DIREN & ~MCI_ST_DATA2DIREN); } if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) { if (host->hw_designer != AMBA_VENDOR_ST) pwr |= MCI_ROD; else { /* * The ST Micro variant use the ROD bit for something * else and only has OD (Open Drain). */ pwr |= MCI_OD; } } /* * If clock = 0 and the variant requires the MMCIPOWER to be used for * gating the clock, the MCI_PWR_ON bit is cleared. */ if (!ios->clock && variant->pwrreg_clkgate) pwr &= ~MCI_PWR_ON; spin_lock_irqsave(&host->lock, flags); mmci_set_clkreg(host, ios->clock); mmci_write_pwrreg(host, pwr); mmci_reg_delay(host); spin_unlock_irqrestore(&host->lock, flags); pm_runtime_mark_last_busy(mmc_dev(mmc)); pm_runtime_put_autosuspend(mmc_dev(mmc)); } static int mmci_get_ro(struct mmc_host *mmc) { struct mmci_host *host = mmc_priv(mmc); if (host->gpio_wp == -ENOSYS) return -ENOSYS; return gpio_get_value_cansleep(host->gpio_wp); } static int mmci_get_cd(struct mmc_host *mmc) { struct mmci_host *host = mmc_priv(mmc); struct mmci_platform_data *plat = host->plat; unsigned int status; if (host->gpio_cd == -ENOSYS) { if (!plat->status) return 1; /* Assume always present */ status = plat->status(mmc_dev(host->mmc)); } else status = !!gpio_get_value_cansleep(host->gpio_cd) ^ plat->cd_invert; /* * Use positive logic throughout - status is zero for no card, * non-zero for card inserted. */ return status; } static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios) { int ret = 0; if (!IS_ERR(mmc->supply.vqmmc)) { pm_runtime_get_sync(mmc_dev(mmc)); switch (ios->signal_voltage) { case MMC_SIGNAL_VOLTAGE_330: ret = regulator_set_voltage(mmc->supply.vqmmc, 2700000, 3600000); break; case MMC_SIGNAL_VOLTAGE_180: ret = regulator_set_voltage(mmc->supply.vqmmc, 1700000, 1950000); break; case MMC_SIGNAL_VOLTAGE_120: ret = regulator_set_voltage(mmc->supply.vqmmc, 1100000, 1300000); break; } if (ret) dev_warn(mmc_dev(mmc), "Voltage switch failed\n"); pm_runtime_mark_last_busy(mmc_dev(mmc)); pm_runtime_put_autosuspend(mmc_dev(mmc)); } return ret; } static irqreturn_t mmci_cd_irq(int irq, void *dev_id) { struct mmci_host *host = dev_id; mmc_detect_change(host->mmc, msecs_to_jiffies(500)); return IRQ_HANDLED; } static struct mmc_host_ops mmci_ops = { .request = mmci_request, .pre_req = mmci_pre_request, .post_req = mmci_post_request, .set_ios = mmci_set_ios, .get_ro = mmci_get_ro, .get_cd = mmci_get_cd, .start_signal_voltage_switch = mmci_sig_volt_switch, }; #ifdef CONFIG_OF static void mmci_dt_populate_generic_pdata(struct device_node *np, struct mmci_platform_data *pdata) { int bus_width = 0; pdata->gpio_wp = of_get_named_gpio(np, "wp-gpios", 0); pdata->gpio_cd = of_get_named_gpio(np, "cd-gpios", 0); if (of_get_property(np, "cd-inverted", NULL)) pdata->cd_invert = true; else pdata->cd_invert = false; of_property_read_u32(np, "max-frequency", &pdata->f_max); if (!pdata->f_max) pr_warn("%s has no 'max-frequency' property\n", np->full_name); if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL)) pdata->capabilities |= MMC_CAP_MMC_HIGHSPEED; if (of_get_property(np, "mmc-cap-sd-highspeed", NULL)) pdata->capabilities |= MMC_CAP_SD_HIGHSPEED; of_property_read_u32(np, "bus-width", &bus_width); switch (bus_width) { case 0 : /* No bus-width supplied. */ break; case 4 : pdata->capabilities |= MMC_CAP_4_BIT_DATA; break; case 8 : pdata->capabilities |= MMC_CAP_8_BIT_DATA; break; default : pr_warn("%s: Unsupported bus width\n", np->full_name); } } #else static void mmci_dt_populate_generic_pdata(struct device_node *np, struct mmci_platform_data *pdata) { return; } #endif static int mmci_probe(struct amba_device *dev, const struct amba_id *id) { struct mmci_platform_data *plat = dev->dev.platform_data; struct device_node *np = dev->dev.of_node; struct variant_data *variant = id->data; struct mmci_host *host; struct mmc_host *mmc; int ret; /* Must have platform data or Device Tree. */ if (!plat && !np) { dev_err(&dev->dev, "No plat data or DT found\n"); return -EINVAL; } if (!plat) { plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL); if (!plat) return -ENOMEM; } if (np) mmci_dt_populate_generic_pdata(np, plat); ret = amba_request_regions(dev, DRIVER_NAME); if (ret) goto out; mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev); if (!mmc) { ret = -ENOMEM; goto rel_regions; } host = mmc_priv(mmc); host->mmc = mmc; host->gpio_wp = -ENOSYS; host->gpio_cd = -ENOSYS; host->gpio_cd_irq = -1; host->hw_designer = amba_manf(dev); host->hw_revision = amba_rev(dev); dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer); dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision); host->clk = devm_clk_get(&dev->dev, NULL); if (IS_ERR(host->clk)) { ret = PTR_ERR(host->clk); goto host_free; } ret = clk_prepare_enable(host->clk); if (ret) goto host_free; host->plat = plat; host->variant = variant; host->mclk = clk_get_rate(host->clk); /* * According to the spec, mclk is max 100 MHz, * so we try to adjust the clock down to this, * (if possible). */ if (host->mclk > 100000000) { ret = clk_set_rate(host->clk, 100000000); if (ret < 0) goto clk_disable; host->mclk = clk_get_rate(host->clk); dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n", host->mclk); } host->phybase = dev->res.start; host->base = ioremap(dev->res.start, resource_size(&dev->res)); if (!host->base) { ret = -ENOMEM; goto clk_disable; } /* * The ARM and ST versions of the block have slightly different * clock divider equations which means that the minimum divider * differs too. */ if (variant->st_clkdiv) mmc->f_min = DIV_ROUND_UP(host->mclk, 257); else mmc->f_min = DIV_ROUND_UP(host->mclk, 512); /* * If the platform data supplies a maximum operating * frequency, this takes precedence. Else, we fall back * to using the module parameter, which has a (low) * default value in case it is not specified. Either * value must not exceed the clock rate into the block, * of course. */ if (plat->f_max) mmc->f_max = min(host->mclk, plat->f_max); else mmc->f_max = min(host->mclk, fmax); dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max); /* Get regulators and the supported OCR mask */ mmc_regulator_get_supply(mmc); if (!mmc->ocr_avail) mmc->ocr_avail = plat->ocr_mask; else if (plat->ocr_mask) dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n"); mmc->caps = plat->capabilities; mmc->caps2 = plat->capabilities2; if (variant->busy_detect) { mmci_ops.card_busy = mmci_card_busy; mmci_write_datactrlreg(host, MCI_ST_DPSM_BUSYMODE); mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY; mmc->max_busy_timeout = 0; } mmc->ops = &mmci_ops; /* We support these PM capabilities. */ mmc->pm_caps = MMC_PM_KEEP_POWER; /* * We can do SGIO */ mmc->max_segs = NR_SG; /* * Since only a certain number of bits are valid in the data length * register, we must ensure that we don't exceed 2^num-1 bytes in a * single request. */ mmc->max_req_size = (1 << variant->datalength_bits) - 1; /* * Set the maximum segment size. Since we aren't doing DMA * (yet) we are only limited by the data length register. */ mmc->max_seg_size = mmc->max_req_size; /* * Block size can be up to 2048 bytes, but must be a power of two. */ mmc->max_blk_size = 1 << 11; /* * Limit the number of blocks transferred so that we don't overflow * the maximum request size. */ mmc->max_blk_count = mmc->max_req_size >> 11; spin_lock_init(&host->lock); writel(0, host->base + MMCIMASK0); writel(0, host->base + MMCIMASK1); writel(0xfff, host->base + MMCICLEAR); if (plat->gpio_cd == -EPROBE_DEFER) { ret = -EPROBE_DEFER; goto err_gpio_cd; } if (gpio_is_valid(plat->gpio_cd)) { ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)"); if (ret == 0) ret = gpio_direction_input(plat->gpio_cd); if (ret == 0) host->gpio_cd = plat->gpio_cd; else if (ret != -ENOSYS) goto err_gpio_cd; /* * A gpio pin that will detect cards when inserted and removed * will most likely want to trigger on the edges if it is * 0 when ejected and 1 when inserted (or mutatis mutandis * for the inverted case) so we request triggers on both * edges. */ ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd), mmci_cd_irq, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, DRIVER_NAME " (cd)", host); if (ret >= 0) host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd); } if (plat->gpio_wp == -EPROBE_DEFER) { ret = -EPROBE_DEFER; goto err_gpio_wp; } if (gpio_is_valid(plat->gpio_wp)) { ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)"); if (ret == 0) ret = gpio_direction_input(plat->gpio_wp); if (ret == 0) host->gpio_wp = plat->gpio_wp; else if (ret != -ENOSYS) goto err_gpio_wp; } if ((host->plat->status || host->gpio_cd != -ENOSYS) && host->gpio_cd_irq < 0) mmc->caps |= MMC_CAP_NEEDS_POLL; ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host); if (ret) goto unmap; if (!dev->irq[1]) host->singleirq = true; else { ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED, DRIVER_NAME " (pio)", host); if (ret) goto irq0_free; } writel(MCI_IRQENABLE, host->base + MMCIMASK0); amba_set_drvdata(dev, mmc); dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n", mmc_hostname(mmc), amba_part(dev), amba_manf(dev), amba_rev(dev), (unsigned long long)dev->res.start, dev->irq[0], dev->irq[1]); mmci_dma_setup(host); pm_runtime_set_autosuspend_delay(&dev->dev, 50); pm_runtime_use_autosuspend(&dev->dev); pm_runtime_put(&dev->dev); mmc_add_host(mmc); return 0; irq0_free: free_irq(dev->irq[0], host); unmap: if (host->gpio_wp != -ENOSYS) gpio_free(host->gpio_wp); err_gpio_wp: if (host->gpio_cd_irq >= 0) free_irq(host->gpio_cd_irq, host); if (host->gpio_cd != -ENOSYS) gpio_free(host->gpio_cd); err_gpio_cd: iounmap(host->base); clk_disable: clk_disable_unprepare(host->clk); host_free: mmc_free_host(mmc); rel_regions: amba_release_regions(dev); out: return ret; } static int mmci_remove(struct amba_device *dev) { struct mmc_host *mmc = amba_get_drvdata(dev); if (mmc) { struct mmci_host *host = mmc_priv(mmc); /* * Undo pm_runtime_put() in probe. We use the _sync * version here so that we can access the primecell. */ pm_runtime_get_sync(&dev->dev); mmc_remove_host(mmc); writel(0, host->base + MMCIMASK0); writel(0, host->base + MMCIMASK1); writel(0, host->base + MMCICOMMAND); writel(0, host->base + MMCIDATACTRL); mmci_dma_release(host); free_irq(dev->irq[0], host); if (!host->singleirq) free_irq(dev->irq[1], host); if (host->gpio_wp != -ENOSYS) gpio_free(host->gpio_wp); if (host->gpio_cd_irq >= 0) free_irq(host->gpio_cd_irq, host); if (host->gpio_cd != -ENOSYS) gpio_free(host->gpio_cd); iounmap(host->base); clk_disable_unprepare(host->clk); mmc_free_host(mmc); amba_release_regions(dev); } return 0; } #ifdef CONFIG_SUSPEND static int mmci_suspend(struct device *dev) { struct amba_device *adev = to_amba_device(dev); struct mmc_host *mmc = amba_get_drvdata(adev); if (mmc) { struct mmci_host *host = mmc_priv(mmc); pm_runtime_get_sync(dev); writel(0, host->base + MMCIMASK0); } return 0; } static int mmci_resume(struct device *dev) { struct amba_device *adev = to_amba_device(dev); struct mmc_host *mmc = amba_get_drvdata(adev); if (mmc) { struct mmci_host *host = mmc_priv(mmc); writel(MCI_IRQENABLE, host->base + MMCIMASK0); pm_runtime_put(dev); } return 0; } #endif #ifdef CONFIG_PM_RUNTIME static void mmci_save(struct mmci_host *host) { unsigned long flags; spin_lock_irqsave(&host->lock, flags); writel(0, host->base + MMCIMASK0); if (host->variant->pwrreg_nopower) { writel(0, host->base + MMCIDATACTRL); writel(0, host->base + MMCIPOWER); writel(0, host->base + MMCICLOCK); } mmci_reg_delay(host); spin_unlock_irqrestore(&host->lock, flags); } static void mmci_restore(struct mmci_host *host) { unsigned long flags; spin_lock_irqsave(&host->lock, flags); if (host->variant->pwrreg_nopower) { writel(host->clk_reg, host->base + MMCICLOCK); writel(host->datactrl_reg, host->base + MMCIDATACTRL); writel(host->pwr_reg, host->base + MMCIPOWER); } writel(MCI_IRQENABLE, host->base + MMCIMASK0); mmci_reg_delay(host); spin_unlock_irqrestore(&host->lock, flags); } static int mmci_runtime_suspend(struct device *dev) { struct amba_device *adev = to_amba_device(dev); struct mmc_host *mmc = amba_get_drvdata(adev); if (mmc) { struct mmci_host *host = mmc_priv(mmc); pinctrl_pm_select_sleep_state(dev); mmci_save(host); clk_disable_unprepare(host->clk); } return 0; } static int mmci_runtime_resume(struct device *dev) { struct amba_device *adev = to_amba_device(dev); struct mmc_host *mmc = amba_get_drvdata(adev); if (mmc) { struct mmci_host *host = mmc_priv(mmc); clk_prepare_enable(host->clk); mmci_restore(host); pinctrl_pm_select_default_state(dev); } return 0; } #endif static const struct dev_pm_ops mmci_dev_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(mmci_suspend, mmci_resume) SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL) }; static struct amba_id mmci_ids[] = { { .id = 0x00041180, .mask = 0xff0fffff, .data = &variant_arm, }, { .id = 0x01041180, .mask = 0xff0fffff, .data = &variant_arm_extended_fifo, }, { .id = 0x02041180, .mask = 0xff0fffff, .data = &variant_arm_extended_fifo_hwfc, }, { .id = 0x00041181, .mask = 0x000fffff, .data = &variant_arm, }, /* ST Micro variants */ { .id = 0x00180180, .mask = 0x00ffffff, .data = &variant_u300, }, { .id = 0x10180180, .mask = 0xf0ffffff, .data = &variant_nomadik, }, { .id = 0x00280180, .mask = 0x00ffffff, .data = &variant_u300, }, { .id = 0x00480180, .mask = 0xf0ffffff, .data = &variant_ux500, }, { .id = 0x10480180, .mask = 0xf0ffffff, .data = &variant_ux500v2, }, { 0, 0 }, }; MODULE_DEVICE_TABLE(amba, mmci_ids); static struct amba_driver mmci_driver = { .drv = { .name = DRIVER_NAME, .pm = &mmci_dev_pm_ops, }, .probe = mmci_probe, .remove = mmci_remove, .id_table = mmci_ids, }; module_amba_driver(mmci_driver); module_param(fmax, uint, 0444); MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver"); MODULE_LICENSE("GPL");