/****************************************************************************** * * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved. * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH * Copyright(c) 2016 Intel Deutschland GmbH * * Portions of this file are derived from the ipw3945 project, as well * as portions of the ieee80211 subsystem header files. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * The full GNU General Public License is included in this distribution in the * file called LICENSE. * * Contact Information: * Intel Linux Wireless * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 * *****************************************************************************/ #include #include #include #include #include #include #include #include "iwl-debug.h" #include "iwl-csr.h" #include "iwl-prph.h" #include "iwl-io.h" #include "iwl-scd.h" #include "iwl-op-mode.h" #include "internal.h" /* FIXME: need to abstract out TX command (once we know what it looks like) */ #include "dvm/commands.h" #define IWL_TX_CRC_SIZE 4 #define IWL_TX_DELIMITER_SIZE 4 /*************** DMA-QUEUE-GENERAL-FUNCTIONS ***** * DMA services * * Theory of operation * * A Tx or Rx queue resides in host DRAM, and is comprised of a circular buffer * of buffer descriptors, each of which points to one or more data buffers for * the device to read from or fill. Driver and device exchange status of each * queue via "read" and "write" pointers. Driver keeps minimum of 2 empty * entries in each circular buffer, to protect against confusing empty and full * queue states. * * The device reads or writes the data in the queues via the device's several * DMA/FIFO channels. Each queue is mapped to a single DMA channel. * * For Tx queue, there are low mark and high mark limits. If, after queuing * the packet for Tx, free space become < low mark, Tx queue stopped. When * reclaiming packets (on 'tx done IRQ), if free space become > high mark, * Tx queue resumed. * ***************************************************/ static int iwl_queue_space(const struct iwl_queue *q) { unsigned int max; unsigned int used; /* * To avoid ambiguity between empty and completely full queues, there * should always be less than TFD_QUEUE_SIZE_MAX elements in the queue. * If q->n_window is smaller than TFD_QUEUE_SIZE_MAX, there is no need * to reserve any queue entries for this purpose. */ if (q->n_window < TFD_QUEUE_SIZE_MAX) max = q->n_window; else max = TFD_QUEUE_SIZE_MAX - 1; /* * TFD_QUEUE_SIZE_MAX is a power of 2, so the following is equivalent to * modulo by TFD_QUEUE_SIZE_MAX and is well defined. */ used = (q->write_ptr - q->read_ptr) & (TFD_QUEUE_SIZE_MAX - 1); if (WARN_ON(used > max)) return 0; return max - used; } /* * iwl_queue_init - Initialize queue's high/low-water and read/write indexes */ static int iwl_queue_init(struct iwl_queue *q, int slots_num, u32 id) { q->n_window = slots_num; q->id = id; /* slots_num must be power-of-two size, otherwise * get_cmd_index is broken. */ if (WARN_ON(!is_power_of_2(slots_num))) return -EINVAL; q->low_mark = q->n_window / 4; if (q->low_mark < 4) q->low_mark = 4; q->high_mark = q->n_window / 8; if (q->high_mark < 2) q->high_mark = 2; q->write_ptr = 0; q->read_ptr = 0; return 0; } static int iwl_pcie_alloc_dma_ptr(struct iwl_trans *trans, struct iwl_dma_ptr *ptr, size_t size) { if (WARN_ON(ptr->addr)) return -EINVAL; ptr->addr = dma_alloc_coherent(trans->dev, size, &ptr->dma, GFP_KERNEL); if (!ptr->addr) return -ENOMEM; ptr->size = size; return 0; } static void iwl_pcie_free_dma_ptr(struct iwl_trans *trans, struct iwl_dma_ptr *ptr) { if (unlikely(!ptr->addr)) return; dma_free_coherent(trans->dev, ptr->size, ptr->addr, ptr->dma); memset(ptr, 0, sizeof(*ptr)); } static void iwl_pcie_txq_stuck_timer(unsigned long data) { struct iwl_txq *txq = (void *)data; struct iwl_trans_pcie *trans_pcie = txq->trans_pcie; struct iwl_trans *trans = iwl_trans_pcie_get_trans(trans_pcie); u32 scd_sram_addr = trans_pcie->scd_base_addr + SCD_TX_STTS_QUEUE_OFFSET(txq->q.id); u8 buf[16]; int i; spin_lock(&txq->lock); /* check if triggered erroneously */ if (txq->q.read_ptr == txq->q.write_ptr) { spin_unlock(&txq->lock); return; } spin_unlock(&txq->lock); IWL_ERR(trans, "Queue %d stuck for %u ms.\n", txq->q.id, jiffies_to_msecs(txq->wd_timeout)); IWL_ERR(trans, "Current SW read_ptr %d write_ptr %d\n", txq->q.read_ptr, txq->q.write_ptr); iwl_trans_read_mem_bytes(trans, scd_sram_addr, buf, sizeof(buf)); iwl_print_hex_error(trans, buf, sizeof(buf)); for (i = 0; i < FH_TCSR_CHNL_NUM; i++) IWL_ERR(trans, "FH TRBs(%d) = 0x%08x\n", i, iwl_read_direct32(trans, FH_TX_TRB_REG(i))); for (i = 0; i < trans->cfg->base_params->num_of_queues; i++) { u32 status = iwl_read_prph(trans, SCD_QUEUE_STATUS_BITS(i)); u8 fifo = (status >> SCD_QUEUE_STTS_REG_POS_TXF) & 0x7; bool active = !!(status & BIT(SCD_QUEUE_STTS_REG_POS_ACTIVE)); u32 tbl_dw = iwl_trans_read_mem32(trans, trans_pcie->scd_base_addr + SCD_TRANS_TBL_OFFSET_QUEUE(i)); if (i & 0x1) tbl_dw = (tbl_dw & 0xFFFF0000) >> 16; else tbl_dw = tbl_dw & 0x0000FFFF; IWL_ERR(trans, "Q %d is %sactive and mapped to fifo %d ra_tid 0x%04x [%d,%d]\n", i, active ? "" : "in", fifo, tbl_dw, iwl_read_prph(trans, SCD_QUEUE_RDPTR(i)) & (TFD_QUEUE_SIZE_MAX - 1), iwl_read_prph(trans, SCD_QUEUE_WRPTR(i))); } iwl_force_nmi(trans); } /* * iwl_pcie_txq_update_byte_cnt_tbl - Set up entry in Tx byte-count array */ static void iwl_pcie_txq_update_byte_cnt_tbl(struct iwl_trans *trans, struct iwl_txq *txq, u16 byte_cnt) { struct iwlagn_scd_bc_tbl *scd_bc_tbl; struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); int write_ptr = txq->q.write_ptr; int txq_id = txq->q.id; u8 sec_ctl = 0; u8 sta_id = 0; u16 len = byte_cnt + IWL_TX_CRC_SIZE + IWL_TX_DELIMITER_SIZE; __le16 bc_ent; struct iwl_tx_cmd *tx_cmd = (void *) txq->entries[txq->q.write_ptr].cmd->payload; scd_bc_tbl = trans_pcie->scd_bc_tbls.addr; sta_id = tx_cmd->sta_id; sec_ctl = tx_cmd->sec_ctl; switch (sec_ctl & TX_CMD_SEC_MSK) { case TX_CMD_SEC_CCM: len += IEEE80211_CCMP_MIC_LEN; break; case TX_CMD_SEC_TKIP: len += IEEE80211_TKIP_ICV_LEN; break; case TX_CMD_SEC_WEP: len += IEEE80211_WEP_IV_LEN + IEEE80211_WEP_ICV_LEN; break; } if (trans_pcie->bc_table_dword) len = DIV_ROUND_UP(len, 4); if (WARN_ON(len > 0xFFF || write_ptr >= TFD_QUEUE_SIZE_MAX)) return; bc_ent = cpu_to_le16(len | (sta_id << 12)); scd_bc_tbl[txq_id].tfd_offset[write_ptr] = bc_ent; if (write_ptr < TFD_QUEUE_SIZE_BC_DUP) scd_bc_tbl[txq_id]. tfd_offset[TFD_QUEUE_SIZE_MAX + write_ptr] = bc_ent; } static void iwl_pcie_txq_inval_byte_cnt_tbl(struct iwl_trans *trans, struct iwl_txq *txq) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct iwlagn_scd_bc_tbl *scd_bc_tbl = trans_pcie->scd_bc_tbls.addr; int txq_id = txq->q.id; int read_ptr = txq->q.read_ptr; u8 sta_id = 0; __le16 bc_ent; struct iwl_tx_cmd *tx_cmd = (void *)txq->entries[txq->q.read_ptr].cmd->payload; WARN_ON(read_ptr >= TFD_QUEUE_SIZE_MAX); if (txq_id != trans_pcie->cmd_queue) sta_id = tx_cmd->sta_id; bc_ent = cpu_to_le16(1 | (sta_id << 12)); scd_bc_tbl[txq_id].tfd_offset[read_ptr] = bc_ent; if (read_ptr < TFD_QUEUE_SIZE_BC_DUP) scd_bc_tbl[txq_id]. tfd_offset[TFD_QUEUE_SIZE_MAX + read_ptr] = bc_ent; } /* * iwl_pcie_txq_inc_wr_ptr - Send new write index to hardware */ static void iwl_pcie_txq_inc_wr_ptr(struct iwl_trans *trans, struct iwl_txq *txq) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); u32 reg = 0; int txq_id = txq->q.id; lockdep_assert_held(&txq->lock); /* * explicitly wake up the NIC if: * 1. shadow registers aren't enabled * 2. NIC is woken up for CMD regardless of shadow outside this function * 3. there is a chance that the NIC is asleep */ if (!trans->cfg->base_params->shadow_reg_enable && txq_id != trans_pcie->cmd_queue && test_bit(STATUS_TPOWER_PMI, &trans->status)) { /* * wake up nic if it's powered down ... * uCode will wake up, and interrupt us again, so next * time we'll skip this part. */ reg = iwl_read32(trans, CSR_UCODE_DRV_GP1); if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) { IWL_DEBUG_INFO(trans, "Tx queue %d requesting wakeup, GP1 = 0x%x\n", txq_id, reg); iwl_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); txq->need_update = true; return; } } /* * if not in power-save mode, uCode will never sleep when we're * trying to tx (during RFKILL, we're not trying to tx). */ IWL_DEBUG_TX(trans, "Q:%d WR: 0x%x\n", txq_id, txq->q.write_ptr); if (!txq->block) iwl_write32(trans, HBUS_TARG_WRPTR, txq->q.write_ptr | (txq_id << 8)); } void iwl_pcie_txq_check_wrptrs(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); int i; for (i = 0; i < trans->cfg->base_params->num_of_queues; i++) { struct iwl_txq *txq = &trans_pcie->txq[i]; spin_lock_bh(&txq->lock); if (trans_pcie->txq[i].need_update) { iwl_pcie_txq_inc_wr_ptr(trans, txq); trans_pcie->txq[i].need_update = false; } spin_unlock_bh(&txq->lock); } } static inline dma_addr_t iwl_pcie_tfd_tb_get_addr(struct iwl_tfd *tfd, u8 idx) { struct iwl_tfd_tb *tb = &tfd->tbs[idx]; dma_addr_t addr = get_unaligned_le32(&tb->lo); if (sizeof(dma_addr_t) > sizeof(u32)) addr |= ((dma_addr_t)(le16_to_cpu(tb->hi_n_len) & 0xF) << 16) << 16; return addr; } static inline void iwl_pcie_tfd_set_tb(struct iwl_tfd *tfd, u8 idx, dma_addr_t addr, u16 len) { struct iwl_tfd_tb *tb = &tfd->tbs[idx]; u16 hi_n_len = len << 4; put_unaligned_le32(addr, &tb->lo); if (sizeof(dma_addr_t) > sizeof(u32)) hi_n_len |= ((addr >> 16) >> 16) & 0xF; tb->hi_n_len = cpu_to_le16(hi_n_len); tfd->num_tbs = idx + 1; } static inline u8 iwl_pcie_tfd_get_num_tbs(struct iwl_tfd *tfd) { return tfd->num_tbs & 0x1f; } static void iwl_pcie_tfd_unmap(struct iwl_trans *trans, struct iwl_cmd_meta *meta, struct iwl_tfd *tfd) { int i; int num_tbs; /* Sanity check on number of chunks */ num_tbs = iwl_pcie_tfd_get_num_tbs(tfd); if (num_tbs >= IWL_NUM_OF_TBS) { IWL_ERR(trans, "Too many chunks: %i\n", num_tbs); /* @todo issue fatal error, it is quite serious situation */ return; } /* first TB is never freed - it's the scratchbuf data */ for (i = 1; i < num_tbs; i++) { if (meta->flags & BIT(i + CMD_TB_BITMAP_POS)) dma_unmap_page(trans->dev, iwl_pcie_tfd_tb_get_addr(tfd, i), iwl_pcie_tfd_tb_get_len(tfd, i), DMA_TO_DEVICE); else dma_unmap_single(trans->dev, iwl_pcie_tfd_tb_get_addr(tfd, i), iwl_pcie_tfd_tb_get_len(tfd, i), DMA_TO_DEVICE); } tfd->num_tbs = 0; } /* * iwl_pcie_txq_free_tfd - Free all chunks referenced by TFD [txq->q.read_ptr] * @trans - transport private data * @txq - tx queue * @dma_dir - the direction of the DMA mapping * * Does NOT advance any TFD circular buffer read/write indexes * Does NOT free the TFD itself (which is within circular buffer) */ static void iwl_pcie_txq_free_tfd(struct iwl_trans *trans, struct iwl_txq *txq) { struct iwl_tfd *tfd_tmp = txq->tfds; /* rd_ptr is bounded by TFD_QUEUE_SIZE_MAX and * idx is bounded by n_window */ int rd_ptr = txq->q.read_ptr; int idx = get_cmd_index(&txq->q, rd_ptr); lockdep_assert_held(&txq->lock); /* We have only q->n_window txq->entries, but we use * TFD_QUEUE_SIZE_MAX tfds */ iwl_pcie_tfd_unmap(trans, &txq->entries[idx].meta, &tfd_tmp[rd_ptr]); /* free SKB */ if (txq->entries) { struct sk_buff *skb; skb = txq->entries[idx].skb; /* Can be called from irqs-disabled context * If skb is not NULL, it means that the whole queue is being * freed and that the queue is not empty - free the skb */ if (skb) { iwl_op_mode_free_skb(trans->op_mode, skb); txq->entries[idx].skb = NULL; } } } static int iwl_pcie_txq_build_tfd(struct iwl_trans *trans, struct iwl_txq *txq, dma_addr_t addr, u16 len, bool reset) { struct iwl_queue *q; struct iwl_tfd *tfd, *tfd_tmp; u32 num_tbs; q = &txq->q; tfd_tmp = txq->tfds; tfd = &tfd_tmp[q->write_ptr]; if (reset) memset(tfd, 0, sizeof(*tfd)); num_tbs = iwl_pcie_tfd_get_num_tbs(tfd); /* Each TFD can point to a maximum 20 Tx buffers */ if (num_tbs >= IWL_NUM_OF_TBS) { IWL_ERR(trans, "Error can not send more than %d chunks\n", IWL_NUM_OF_TBS); return -EINVAL; } if (WARN(addr & ~IWL_TX_DMA_MASK, "Unaligned address = %llx\n", (unsigned long long)addr)) return -EINVAL; iwl_pcie_tfd_set_tb(tfd, num_tbs, addr, len); return num_tbs; } static int iwl_pcie_txq_alloc(struct iwl_trans *trans, struct iwl_txq *txq, int slots_num, u32 txq_id) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); size_t tfd_sz = sizeof(struct iwl_tfd) * TFD_QUEUE_SIZE_MAX; size_t scratchbuf_sz; int i; if (WARN_ON(txq->entries || txq->tfds)) return -EINVAL; setup_timer(&txq->stuck_timer, iwl_pcie_txq_stuck_timer, (unsigned long)txq); txq->trans_pcie = trans_pcie; txq->q.n_window = slots_num; txq->entries = kcalloc(slots_num, sizeof(struct iwl_pcie_txq_entry), GFP_KERNEL); if (!txq->entries) goto error; if (txq_id == trans_pcie->cmd_queue) for (i = 0; i < slots_num; i++) { txq->entries[i].cmd = kmalloc(sizeof(struct iwl_device_cmd), GFP_KERNEL); if (!txq->entries[i].cmd) goto error; } /* Circular buffer of transmit frame descriptors (TFDs), * shared with device */ txq->tfds = dma_alloc_coherent(trans->dev, tfd_sz, &txq->q.dma_addr, GFP_KERNEL); if (!txq->tfds) goto error; BUILD_BUG_ON(IWL_HCMD_SCRATCHBUF_SIZE != sizeof(*txq->scratchbufs)); BUILD_BUG_ON(offsetof(struct iwl_pcie_txq_scratch_buf, scratch) != sizeof(struct iwl_cmd_header) + offsetof(struct iwl_tx_cmd, scratch)); scratchbuf_sz = sizeof(*txq->scratchbufs) * slots_num; txq->scratchbufs = dma_alloc_coherent(trans->dev, scratchbuf_sz, &txq->scratchbufs_dma, GFP_KERNEL); if (!txq->scratchbufs) goto err_free_tfds; txq->q.id = txq_id; return 0; err_free_tfds: dma_free_coherent(trans->dev, tfd_sz, txq->tfds, txq->q.dma_addr); error: if (txq->entries && txq_id == trans_pcie->cmd_queue) for (i = 0; i < slots_num; i++) kfree(txq->entries[i].cmd); kfree(txq->entries); txq->entries = NULL; return -ENOMEM; } static int iwl_pcie_txq_init(struct iwl_trans *trans, struct iwl_txq *txq, int slots_num, u32 txq_id) { int ret; txq->need_update = false; /* TFD_QUEUE_SIZE_MAX must be power-of-two size, otherwise * iwl_queue_inc_wrap and iwl_queue_dec_wrap are broken. */ BUILD_BUG_ON(TFD_QUEUE_SIZE_MAX & (TFD_QUEUE_SIZE_MAX - 1)); /* Initialize queue's high/low-water marks, and head/tail indexes */ ret = iwl_queue_init(&txq->q, slots_num, txq_id); if (ret) return ret; spin_lock_init(&txq->lock); __skb_queue_head_init(&txq->overflow_q); /* * Tell nic where to find circular buffer of Tx Frame Descriptors for * given Tx queue, and enable the DMA channel used for that queue. * Circular buffer (TFD queue in DRAM) physical base address */ iwl_write_direct32(trans, FH_MEM_CBBC_QUEUE(txq_id), txq->q.dma_addr >> 8); return 0; } static void iwl_pcie_free_tso_page(struct sk_buff *skb) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); if (info->driver_data[IWL_TRANS_FIRST_DRIVER_DATA]) { struct page *page = info->driver_data[IWL_TRANS_FIRST_DRIVER_DATA]; __free_page(page); info->driver_data[IWL_TRANS_FIRST_DRIVER_DATA] = NULL; } } static void iwl_pcie_clear_cmd_in_flight(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); lockdep_assert_held(&trans_pcie->reg_lock); if (trans_pcie->ref_cmd_in_flight) { trans_pcie->ref_cmd_in_flight = false; IWL_DEBUG_RPM(trans, "clear ref_cmd_in_flight - unref\n"); iwl_trans_unref(trans); } if (!trans->cfg->base_params->apmg_wake_up_wa) return; if (WARN_ON(!trans_pcie->cmd_hold_nic_awake)) return; trans_pcie->cmd_hold_nic_awake = false; __iwl_trans_pcie_clear_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); } /* * iwl_pcie_txq_unmap - Unmap any remaining DMA mappings and free skb's */ static void iwl_pcie_txq_unmap(struct iwl_trans *trans, int txq_id) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct iwl_txq *txq = &trans_pcie->txq[txq_id]; struct iwl_queue *q = &txq->q; spin_lock_bh(&txq->lock); while (q->write_ptr != q->read_ptr) { IWL_DEBUG_TX_REPLY(trans, "Q %d Free %d\n", txq_id, q->read_ptr); if (txq_id != trans_pcie->cmd_queue) { struct sk_buff *skb = txq->entries[q->read_ptr].skb; if (WARN_ON_ONCE(!skb)) continue; iwl_pcie_free_tso_page(skb); } iwl_pcie_txq_free_tfd(trans, txq); q->read_ptr = iwl_queue_inc_wrap(q->read_ptr); if (q->read_ptr == q->write_ptr) { unsigned long flags; spin_lock_irqsave(&trans_pcie->reg_lock, flags); if (txq_id != trans_pcie->cmd_queue) { IWL_DEBUG_RPM(trans, "Q %d - last tx freed\n", q->id); iwl_trans_unref(trans); } else { iwl_pcie_clear_cmd_in_flight(trans); } spin_unlock_irqrestore(&trans_pcie->reg_lock, flags); } } txq->active = false; while (!skb_queue_empty(&txq->overflow_q)) { struct sk_buff *skb = __skb_dequeue(&txq->overflow_q); iwl_op_mode_free_skb(trans->op_mode, skb); } spin_unlock_bh(&txq->lock); /* just in case - this queue may have been stopped */ iwl_wake_queue(trans, txq); } /* * iwl_pcie_txq_free - Deallocate DMA queue. * @txq: Transmit queue to deallocate. * * Empty queue by removing and destroying all BD's. * Free all buffers. * 0-fill, but do not free "txq" descriptor structure. */ static void iwl_pcie_txq_free(struct iwl_trans *trans, int txq_id) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct iwl_txq *txq = &trans_pcie->txq[txq_id]; struct device *dev = trans->dev; int i; if (WARN_ON(!txq)) return; iwl_pcie_txq_unmap(trans, txq_id); /* De-alloc array of command/tx buffers */ if (txq_id == trans_pcie->cmd_queue) for (i = 0; i < txq->q.n_window; i++) { kzfree(txq->entries[i].cmd); kzfree(txq->entries[i].free_buf); } /* De-alloc circular buffer of TFDs */ if (txq->tfds) { dma_free_coherent(dev, sizeof(struct iwl_tfd) * TFD_QUEUE_SIZE_MAX, txq->tfds, txq->q.dma_addr); txq->q.dma_addr = 0; txq->tfds = NULL; dma_free_coherent(dev, sizeof(*txq->scratchbufs) * txq->q.n_window, txq->scratchbufs, txq->scratchbufs_dma); } kfree(txq->entries); txq->entries = NULL; del_timer_sync(&txq->stuck_timer); /* 0-fill queue descriptor structure */ memset(txq, 0, sizeof(*txq)); } void iwl_pcie_tx_start(struct iwl_trans *trans, u32 scd_base_addr) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); int nq = trans->cfg->base_params->num_of_queues; int chan; u32 reg_val; int clear_dwords = (SCD_TRANS_TBL_OFFSET_QUEUE(nq) - SCD_CONTEXT_MEM_LOWER_BOUND) / sizeof(u32); /* make sure all queue are not stopped/used */ memset(trans_pcie->queue_stopped, 0, sizeof(trans_pcie->queue_stopped)); memset(trans_pcie->queue_used, 0, sizeof(trans_pcie->queue_used)); trans_pcie->scd_base_addr = iwl_read_prph(trans, SCD_SRAM_BASE_ADDR); WARN_ON(scd_base_addr != 0 && scd_base_addr != trans_pcie->scd_base_addr); /* reset context data, TX status and translation data */ iwl_trans_write_mem(trans, trans_pcie->scd_base_addr + SCD_CONTEXT_MEM_LOWER_BOUND, NULL, clear_dwords); iwl_write_prph(trans, SCD_DRAM_BASE_ADDR, trans_pcie->scd_bc_tbls.dma >> 10); /* The chain extension of the SCD doesn't work well. This feature is * enabled by default by the HW, so we need to disable it manually. */ if (trans->cfg->base_params->scd_chain_ext_wa) iwl_write_prph(trans, SCD_CHAINEXT_EN, 0); iwl_trans_ac_txq_enable(trans, trans_pcie->cmd_queue, trans_pcie->cmd_fifo, trans_pcie->cmd_q_wdg_timeout); /* Activate all Tx DMA/FIFO channels */ iwl_scd_activate_fifos(trans); /* Enable DMA channel */ for (chan = 0; chan < FH_TCSR_CHNL_NUM; chan++) iwl_write_direct32(trans, FH_TCSR_CHNL_TX_CONFIG_REG(chan), FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE | FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE); /* Update FH chicken bits */ reg_val = iwl_read_direct32(trans, FH_TX_CHICKEN_BITS_REG); iwl_write_direct32(trans, FH_TX_CHICKEN_BITS_REG, reg_val | FH_TX_CHICKEN_BITS_SCD_AUTO_RETRY_EN); /* Enable L1-Active */ if (trans->cfg->device_family != IWL_DEVICE_FAMILY_8000) iwl_clear_bits_prph(trans, APMG_PCIDEV_STT_REG, APMG_PCIDEV_STT_VAL_L1_ACT_DIS); } void iwl_trans_pcie_tx_reset(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); int txq_id; for (txq_id = 0; txq_id < trans->cfg->base_params->num_of_queues; txq_id++) { struct iwl_txq *txq = &trans_pcie->txq[txq_id]; iwl_write_direct32(trans, FH_MEM_CBBC_QUEUE(txq_id), txq->q.dma_addr >> 8); iwl_pcie_txq_unmap(trans, txq_id); txq->q.read_ptr = 0; txq->q.write_ptr = 0; } /* Tell NIC where to find the "keep warm" buffer */ iwl_write_direct32(trans, FH_KW_MEM_ADDR_REG, trans_pcie->kw.dma >> 4); /* * Send 0 as the scd_base_addr since the device may have be reset * while we were in WoWLAN in which case SCD_SRAM_BASE_ADDR will * contain garbage. */ iwl_pcie_tx_start(trans, 0); } static void iwl_pcie_tx_stop_fh(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); unsigned long flags; int ch, ret; u32 mask = 0; spin_lock(&trans_pcie->irq_lock); if (!iwl_trans_grab_nic_access(trans, &flags)) goto out; /* Stop each Tx DMA channel */ for (ch = 0; ch < FH_TCSR_CHNL_NUM; ch++) { iwl_write32(trans, FH_TCSR_CHNL_TX_CONFIG_REG(ch), 0x0); mask |= FH_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(ch); } /* Wait for DMA channels to be idle */ ret = iwl_poll_bit(trans, FH_TSSR_TX_STATUS_REG, mask, mask, 5000); if (ret < 0) IWL_ERR(trans, "Failing on timeout while stopping DMA channel %d [0x%08x]\n", ch, iwl_read32(trans, FH_TSSR_TX_STATUS_REG)); iwl_trans_release_nic_access(trans, &flags); out: spin_unlock(&trans_pcie->irq_lock); } /* * iwl_pcie_tx_stop - Stop all Tx DMA channels */ int iwl_pcie_tx_stop(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); int txq_id; /* Turn off all Tx DMA fifos */ iwl_scd_deactivate_fifos(trans); /* Turn off all Tx DMA channels */ iwl_pcie_tx_stop_fh(trans); /* * This function can be called before the op_mode disabled the * queues. This happens when we have an rfkill interrupt. * Since we stop Tx altogether - mark the queues as stopped. */ memset(trans_pcie->queue_stopped, 0, sizeof(trans_pcie->queue_stopped)); memset(trans_pcie->queue_used, 0, sizeof(trans_pcie->queue_used)); /* This can happen: start_hw, stop_device */ if (!trans_pcie->txq) return 0; /* Unmap DMA from host system and free skb's */ for (txq_id = 0; txq_id < trans->cfg->base_params->num_of_queues; txq_id++) iwl_pcie_txq_unmap(trans, txq_id); return 0; } /* * iwl_trans_tx_free - Free TXQ Context * * Destroy all TX DMA queues and structures */ void iwl_pcie_tx_free(struct iwl_trans *trans) { int txq_id; struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); /* Tx queues */ if (trans_pcie->txq) { for (txq_id = 0; txq_id < trans->cfg->base_params->num_of_queues; txq_id++) iwl_pcie_txq_free(trans, txq_id); } kfree(trans_pcie->txq); trans_pcie->txq = NULL; iwl_pcie_free_dma_ptr(trans, &trans_pcie->kw); iwl_pcie_free_dma_ptr(trans, &trans_pcie->scd_bc_tbls); } /* * iwl_pcie_tx_alloc - allocate TX context * Allocate all Tx DMA structures and initialize them */ static int iwl_pcie_tx_alloc(struct iwl_trans *trans) { int ret; int txq_id, slots_num; struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); u16 scd_bc_tbls_size = trans->cfg->base_params->num_of_queues * sizeof(struct iwlagn_scd_bc_tbl); /*It is not allowed to alloc twice, so warn when this happens. * We cannot rely on the previous allocation, so free and fail */ if (WARN_ON(trans_pcie->txq)) { ret = -EINVAL; goto error; } ret = iwl_pcie_alloc_dma_ptr(trans, &trans_pcie->scd_bc_tbls, scd_bc_tbls_size); if (ret) { IWL_ERR(trans, "Scheduler BC Table allocation failed\n"); goto error; } /* Alloc keep-warm buffer */ ret = iwl_pcie_alloc_dma_ptr(trans, &trans_pcie->kw, IWL_KW_SIZE); if (ret) { IWL_ERR(trans, "Keep Warm allocation failed\n"); goto error; } trans_pcie->txq = kcalloc(trans->cfg->base_params->num_of_queues, sizeof(struct iwl_txq), GFP_KERNEL); if (!trans_pcie->txq) { IWL_ERR(trans, "Not enough memory for txq\n"); ret = -ENOMEM; goto error; } /* Alloc and init all Tx queues, including the command queue (#4/#9) */ for (txq_id = 0; txq_id < trans->cfg->base_params->num_of_queues; txq_id++) { slots_num = (txq_id == trans_pcie->cmd_queue) ? TFD_CMD_SLOTS : TFD_TX_CMD_SLOTS; ret = iwl_pcie_txq_alloc(trans, &trans_pcie->txq[txq_id], slots_num, txq_id); if (ret) { IWL_ERR(trans, "Tx %d queue alloc failed\n", txq_id); goto error; } } return 0; error: iwl_pcie_tx_free(trans); return ret; } int iwl_pcie_tx_init(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); int ret; int txq_id, slots_num; bool alloc = false; if (!trans_pcie->txq) { ret = iwl_pcie_tx_alloc(trans); if (ret) goto error; alloc = true; } spin_lock(&trans_pcie->irq_lock); /* Turn off all Tx DMA fifos */ iwl_scd_deactivate_fifos(trans); /* Tell NIC where to find the "keep warm" buffer */ iwl_write_direct32(trans, FH_KW_MEM_ADDR_REG, trans_pcie->kw.dma >> 4); spin_unlock(&trans_pcie->irq_lock); /* Alloc and init all Tx queues, including the command queue (#4/#9) */ for (txq_id = 0; txq_id < trans->cfg->base_params->num_of_queues; txq_id++) { slots_num = (txq_id == trans_pcie->cmd_queue) ? TFD_CMD_SLOTS : TFD_TX_CMD_SLOTS; ret = iwl_pcie_txq_init(trans, &trans_pcie->txq[txq_id], slots_num, txq_id); if (ret) { IWL_ERR(trans, "Tx %d queue init failed\n", txq_id); goto error; } } iwl_set_bits_prph(trans, SCD_GP_CTRL, SCD_GP_CTRL_AUTO_ACTIVE_MODE); if (trans->cfg->base_params->num_of_queues > 20) iwl_set_bits_prph(trans, SCD_GP_CTRL, SCD_GP_CTRL_ENABLE_31_QUEUES); return 0; error: /*Upon error, free only if we allocated something */ if (alloc) iwl_pcie_tx_free(trans); return ret; } static inline void iwl_pcie_txq_progress(struct iwl_txq *txq) { lockdep_assert_held(&txq->lock); if (!txq->wd_timeout) return; /* * station is asleep and we send data - that must * be uAPSD or PS-Poll. Don't rearm the timer. */ if (txq->frozen) return; /* * if empty delete timer, otherwise move timer forward * since we're making progress on this queue */ if (txq->q.read_ptr == txq->q.write_ptr) del_timer(&txq->stuck_timer); else mod_timer(&txq->stuck_timer, jiffies + txq->wd_timeout); } /* Frees buffers until index _not_ inclusive */ void iwl_trans_pcie_reclaim(struct iwl_trans *trans, int txq_id, int ssn, struct sk_buff_head *skbs) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct iwl_txq *txq = &trans_pcie->txq[txq_id]; int tfd_num = ssn & (TFD_QUEUE_SIZE_MAX - 1); struct iwl_queue *q = &txq->q; int last_to_free; /* This function is not meant to release cmd queue*/ if (WARN_ON(txq_id == trans_pcie->cmd_queue)) return; spin_lock_bh(&txq->lock); if (!txq->active) { IWL_DEBUG_TX_QUEUES(trans, "Q %d inactive - ignoring idx %d\n", txq_id, ssn); goto out; } if (txq->q.read_ptr == tfd_num) goto out; IWL_DEBUG_TX_REPLY(trans, "[Q %d] %d -> %d (%d)\n", txq_id, txq->q.read_ptr, tfd_num, ssn); /*Since we free until index _not_ inclusive, the one before index is * the last we will free. This one must be used */ last_to_free = iwl_queue_dec_wrap(tfd_num); if (!iwl_queue_used(q, last_to_free)) { IWL_ERR(trans, "%s: Read index for DMA queue txq id (%d), last_to_free %d is out of range [0-%d] %d %d.\n", __func__, txq_id, last_to_free, TFD_QUEUE_SIZE_MAX, q->write_ptr, q->read_ptr); goto out; } if (WARN_ON(!skb_queue_empty(skbs))) goto out; for (; q->read_ptr != tfd_num; q->read_ptr = iwl_queue_inc_wrap(q->read_ptr)) { struct sk_buff *skb = txq->entries[txq->q.read_ptr].skb; if (WARN_ON_ONCE(!skb)) continue; iwl_pcie_free_tso_page(skb); __skb_queue_tail(skbs, skb); txq->entries[txq->q.read_ptr].skb = NULL; iwl_pcie_txq_inval_byte_cnt_tbl(trans, txq); iwl_pcie_txq_free_tfd(trans, txq); } iwl_pcie_txq_progress(txq); if (iwl_queue_space(&txq->q) > txq->q.low_mark && test_bit(txq_id, trans_pcie->queue_stopped)) { struct sk_buff_head overflow_skbs; __skb_queue_head_init(&overflow_skbs); skb_queue_splice_init(&txq->overflow_q, &overflow_skbs); /* * This is tricky: we are in reclaim path which is non * re-entrant, so noone will try to take the access the * txq data from that path. We stopped tx, so we can't * have tx as well. Bottom line, we can unlock and re-lock * later. */ spin_unlock_bh(&txq->lock); while (!skb_queue_empty(&overflow_skbs)) { struct sk_buff *skb = __skb_dequeue(&overflow_skbs); struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); u8 dev_cmd_idx = IWL_TRANS_FIRST_DRIVER_DATA + 1; struct iwl_device_cmd *dev_cmd = info->driver_data[dev_cmd_idx]; /* * Note that we can very well be overflowing again. * In that case, iwl_queue_space will be small again * and we won't wake mac80211's queue. */ iwl_trans_pcie_tx(trans, skb, dev_cmd, txq_id); } spin_lock_bh(&txq->lock); if (iwl_queue_space(&txq->q) > txq->q.low_mark) iwl_wake_queue(trans, txq); } if (q->read_ptr == q->write_ptr) { IWL_DEBUG_RPM(trans, "Q %d - last tx reclaimed\n", q->id); iwl_trans_unref(trans); } out: spin_unlock_bh(&txq->lock); } static int iwl_pcie_set_cmd_in_flight(struct iwl_trans *trans, const struct iwl_host_cmd *cmd) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); int ret; lockdep_assert_held(&trans_pcie->reg_lock); if (!(cmd->flags & CMD_SEND_IN_IDLE) && !trans_pcie->ref_cmd_in_flight) { trans_pcie->ref_cmd_in_flight = true; IWL_DEBUG_RPM(trans, "set ref_cmd_in_flight - ref\n"); iwl_trans_ref(trans); } /* * wake up the NIC to make sure that the firmware will see the host * command - we will let the NIC sleep once all the host commands * returned. This needs to be done only on NICs that have * apmg_wake_up_wa set. */ if (trans->cfg->base_params->apmg_wake_up_wa && !trans_pcie->cmd_hold_nic_awake) { __iwl_trans_pcie_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); ret = iwl_poll_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_VAL_MAC_ACCESS_EN, (CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY | CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP), 15000); if (ret < 0) { __iwl_trans_pcie_clear_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); IWL_ERR(trans, "Failed to wake NIC for hcmd\n"); return -EIO; } trans_pcie->cmd_hold_nic_awake = true; } return 0; } /* * iwl_pcie_cmdq_reclaim - Reclaim TX command queue entries already Tx'd * * When FW advances 'R' index, all entries between old and new 'R' index * need to be reclaimed. As result, some free space forms. If there is * enough free space (> low mark), wake the stack that feeds us. */ static void iwl_pcie_cmdq_reclaim(struct iwl_trans *trans, int txq_id, int idx) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct iwl_txq *txq = &trans_pcie->txq[txq_id]; struct iwl_queue *q = &txq->q; unsigned long flags; int nfreed = 0; lockdep_assert_held(&txq->lock); if ((idx >= TFD_QUEUE_SIZE_MAX) || (!iwl_queue_used(q, idx))) { IWL_ERR(trans, "%s: Read index for DMA queue txq id (%d), index %d is out of range [0-%d] %d %d.\n", __func__, txq_id, idx, TFD_QUEUE_SIZE_MAX, q->write_ptr, q->read_ptr); return; } for (idx = iwl_queue_inc_wrap(idx); q->read_ptr != idx; q->read_ptr = iwl_queue_inc_wrap(q->read_ptr)) { if (nfreed++ > 0) { IWL_ERR(trans, "HCMD skipped: index (%d) %d %d\n", idx, q->write_ptr, q->read_ptr); iwl_force_nmi(trans); } } if (q->read_ptr == q->write_ptr) { spin_lock_irqsave(&trans_pcie->reg_lock, flags); iwl_pcie_clear_cmd_in_flight(trans); spin_unlock_irqrestore(&trans_pcie->reg_lock, flags); } iwl_pcie_txq_progress(txq); } static int iwl_pcie_txq_set_ratid_map(struct iwl_trans *trans, u16 ra_tid, u16 txq_id) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); u32 tbl_dw_addr; u32 tbl_dw; u16 scd_q2ratid; scd_q2ratid = ra_tid & SCD_QUEUE_RA_TID_MAP_RATID_MSK; tbl_dw_addr = trans_pcie->scd_base_addr + SCD_TRANS_TBL_OFFSET_QUEUE(txq_id); tbl_dw = iwl_trans_read_mem32(trans, tbl_dw_addr); if (txq_id & 0x1) tbl_dw = (scd_q2ratid << 16) | (tbl_dw & 0x0000FFFF); else tbl_dw = scd_q2ratid | (tbl_dw & 0xFFFF0000); iwl_trans_write_mem32(trans, tbl_dw_addr, tbl_dw); return 0; } /* Receiver address (actually, Rx station's index into station table), * combined with Traffic ID (QOS priority), in format used by Tx Scheduler */ #define BUILD_RAxTID(sta_id, tid) (((sta_id) << 4) + (tid)) void iwl_trans_pcie_txq_enable(struct iwl_trans *trans, int txq_id, u16 ssn, const struct iwl_trans_txq_scd_cfg *cfg, unsigned int wdg_timeout) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct iwl_txq *txq = &trans_pcie->txq[txq_id]; int fifo = -1; if (test_and_set_bit(txq_id, trans_pcie->queue_used)) WARN_ONCE(1, "queue %d already used - expect issues", txq_id); txq->wd_timeout = msecs_to_jiffies(wdg_timeout); if (cfg) { fifo = cfg->fifo; /* Disable the scheduler prior configuring the cmd queue */ if (txq_id == trans_pcie->cmd_queue && trans_pcie->scd_set_active) iwl_scd_enable_set_active(trans, 0); /* Stop this Tx queue before configuring it */ iwl_scd_txq_set_inactive(trans, txq_id); /* Set this queue as a chain-building queue unless it is CMD */ if (txq_id != trans_pcie->cmd_queue) iwl_scd_txq_set_chain(trans, txq_id); if (cfg->aggregate) { u16 ra_tid = BUILD_RAxTID(cfg->sta_id, cfg->tid); /* Map receiver-address / traffic-ID to this queue */ iwl_pcie_txq_set_ratid_map(trans, ra_tid, txq_id); /* enable aggregations for the queue */ iwl_scd_txq_enable_agg(trans, txq_id); txq->ampdu = true; } else { /* * disable aggregations for the queue, this will also * make the ra_tid mapping configuration irrelevant * since it is now a non-AGG queue. */ iwl_scd_txq_disable_agg(trans, txq_id); ssn = txq->q.read_ptr; } } /* Place first TFD at index corresponding to start sequence number. * Assumes that ssn_idx is valid (!= 0xFFF) */ txq->q.read_ptr = (ssn & 0xff); txq->q.write_ptr = (ssn & 0xff); iwl_write_direct32(trans, HBUS_TARG_WRPTR, (ssn & 0xff) | (txq_id << 8)); if (cfg) { u8 frame_limit = cfg->frame_limit; iwl_write_prph(trans, SCD_QUEUE_RDPTR(txq_id), ssn); /* Set up Tx window size and frame limit for this queue */ iwl_trans_write_mem32(trans, trans_pcie->scd_base_addr + SCD_CONTEXT_QUEUE_OFFSET(txq_id), 0); iwl_trans_write_mem32(trans, trans_pcie->scd_base_addr + SCD_CONTEXT_QUEUE_OFFSET(txq_id) + sizeof(u32), ((frame_limit << SCD_QUEUE_CTX_REG2_WIN_SIZE_POS) & SCD_QUEUE_CTX_REG2_WIN_SIZE_MSK) | ((frame_limit << SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS) & SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK)); /* Set up status area in SRAM, map to Tx DMA/FIFO, activate */ iwl_write_prph(trans, SCD_QUEUE_STATUS_BITS(txq_id), (1 << SCD_QUEUE_STTS_REG_POS_ACTIVE) | (cfg->fifo << SCD_QUEUE_STTS_REG_POS_TXF) | (1 << SCD_QUEUE_STTS_REG_POS_WSL) | SCD_QUEUE_STTS_REG_MSK); /* enable the scheduler for this queue (only) */ if (txq_id == trans_pcie->cmd_queue && trans_pcie->scd_set_active) iwl_scd_enable_set_active(trans, BIT(txq_id)); IWL_DEBUG_TX_QUEUES(trans, "Activate queue %d on FIFO %d WrPtr: %d\n", txq_id, fifo, ssn & 0xff); } else { IWL_DEBUG_TX_QUEUES(trans, "Activate queue %d WrPtr: %d\n", txq_id, ssn & 0xff); } txq->active = true; } void iwl_trans_pcie_txq_set_shared_mode(struct iwl_trans *trans, u32 txq_id, bool shared_mode) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct iwl_txq *txq = &trans_pcie->txq[txq_id]; txq->ampdu = !shared_mode; } void iwl_trans_pcie_txq_disable(struct iwl_trans *trans, int txq_id, bool configure_scd) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); u32 stts_addr = trans_pcie->scd_base_addr + SCD_TX_STTS_QUEUE_OFFSET(txq_id); static const u32 zero_val[4] = {}; trans_pcie->txq[txq_id].frozen_expiry_remainder = 0; trans_pcie->txq[txq_id].frozen = false; /* * Upon HW Rfkill - we stop the device, and then stop the queues * in the op_mode. Just for the sake of the simplicity of the op_mode, * allow the op_mode to call txq_disable after it already called * stop_device. */ if (!test_and_clear_bit(txq_id, trans_pcie->queue_used)) { WARN_ONCE(test_bit(STATUS_DEVICE_ENABLED, &trans->status), "queue %d not used", txq_id); return; } if (configure_scd) { iwl_scd_txq_set_inactive(trans, txq_id); iwl_trans_write_mem(trans, stts_addr, (void *)zero_val, ARRAY_SIZE(zero_val)); } iwl_pcie_txq_unmap(trans, txq_id); trans_pcie->txq[txq_id].ampdu = false; IWL_DEBUG_TX_QUEUES(trans, "Deactivate queue %d\n", txq_id); } /*************** HOST COMMAND QUEUE FUNCTIONS *****/ /* * iwl_pcie_enqueue_hcmd - enqueue a uCode command * @priv: device private data point * @cmd: a pointer to the ucode command structure * * The function returns < 0 values to indicate the operation * failed. On success, it returns the index (>= 0) of command in the * command queue. */ static int iwl_pcie_enqueue_hcmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct iwl_txq *txq = &trans_pcie->txq[trans_pcie->cmd_queue]; struct iwl_queue *q = &txq->q; struct iwl_device_cmd *out_cmd; struct iwl_cmd_meta *out_meta; unsigned long flags; void *dup_buf = NULL; dma_addr_t phys_addr; int idx; u16 copy_size, cmd_size, scratch_size; bool had_nocopy = false; u8 group_id = iwl_cmd_groupid(cmd->id); int i, ret; u32 cmd_pos; const u8 *cmddata[IWL_MAX_CMD_TBS_PER_TFD]; u16 cmdlen[IWL_MAX_CMD_TBS_PER_TFD]; if (WARN(!trans_pcie->wide_cmd_header && group_id > IWL_ALWAYS_LONG_GROUP, "unsupported wide command %#x\n", cmd->id)) return -EINVAL; if (group_id != 0) { copy_size = sizeof(struct iwl_cmd_header_wide); cmd_size = sizeof(struct iwl_cmd_header_wide); } else { copy_size = sizeof(struct iwl_cmd_header); cmd_size = sizeof(struct iwl_cmd_header); } /* need one for the header if the first is NOCOPY */ BUILD_BUG_ON(IWL_MAX_CMD_TBS_PER_TFD > IWL_NUM_OF_TBS - 1); for (i = 0; i < IWL_MAX_CMD_TBS_PER_TFD; i++) { cmddata[i] = cmd->data[i]; cmdlen[i] = cmd->len[i]; if (!cmd->len[i]) continue; /* need at least IWL_HCMD_SCRATCHBUF_SIZE copied */ if (copy_size < IWL_HCMD_SCRATCHBUF_SIZE) { int copy = IWL_HCMD_SCRATCHBUF_SIZE - copy_size; if (copy > cmdlen[i]) copy = cmdlen[i]; cmdlen[i] -= copy; cmddata[i] += copy; copy_size += copy; } if (cmd->dataflags[i] & IWL_HCMD_DFL_NOCOPY) { had_nocopy = true; if (WARN_ON(cmd->dataflags[i] & IWL_HCMD_DFL_DUP)) { idx = -EINVAL; goto free_dup_buf; } } else if (cmd->dataflags[i] & IWL_HCMD_DFL_DUP) { /* * This is also a chunk that isn't copied * to the static buffer so set had_nocopy. */ had_nocopy = true; /* only allowed once */ if (WARN_ON(dup_buf)) { idx = -EINVAL; goto free_dup_buf; } dup_buf = kmemdup(cmddata[i], cmdlen[i], GFP_ATOMIC); if (!dup_buf) return -ENOMEM; } else { /* NOCOPY must not be followed by normal! */ if (WARN_ON(had_nocopy)) { idx = -EINVAL; goto free_dup_buf; } copy_size += cmdlen[i]; } cmd_size += cmd->len[i]; } /* * If any of the command structures end up being larger than * the TFD_MAX_PAYLOAD_SIZE and they aren't dynamically * allocated into separate TFDs, then we will need to * increase the size of the buffers. */ if (WARN(copy_size > TFD_MAX_PAYLOAD_SIZE, "Command %s (%#x) is too large (%d bytes)\n", iwl_get_cmd_string(trans, cmd->id), cmd->id, copy_size)) { idx = -EINVAL; goto free_dup_buf; } spin_lock_bh(&txq->lock); if (iwl_queue_space(q) < ((cmd->flags & CMD_ASYNC) ? 2 : 1)) { spin_unlock_bh(&txq->lock); IWL_ERR(trans, "No space in command queue\n"); iwl_op_mode_cmd_queue_full(trans->op_mode); idx = -ENOSPC; goto free_dup_buf; } idx = get_cmd_index(q, q->write_ptr); out_cmd = txq->entries[idx].cmd; out_meta = &txq->entries[idx].meta; memset(out_meta, 0, sizeof(*out_meta)); /* re-initialize to NULL */ if (cmd->flags & CMD_WANT_SKB) out_meta->source = cmd; /* set up the header */ if (group_id != 0) { out_cmd->hdr_wide.cmd = iwl_cmd_opcode(cmd->id); out_cmd->hdr_wide.group_id = group_id; out_cmd->hdr_wide.version = iwl_cmd_version(cmd->id); out_cmd->hdr_wide.length = cpu_to_le16(cmd_size - sizeof(struct iwl_cmd_header_wide)); out_cmd->hdr_wide.reserved = 0; out_cmd->hdr_wide.sequence = cpu_to_le16(QUEUE_TO_SEQ(trans_pcie->cmd_queue) | INDEX_TO_SEQ(q->write_ptr)); cmd_pos = sizeof(struct iwl_cmd_header_wide); copy_size = sizeof(struct iwl_cmd_header_wide); } else { out_cmd->hdr.cmd = iwl_cmd_opcode(cmd->id); out_cmd->hdr.sequence = cpu_to_le16(QUEUE_TO_SEQ(trans_pcie->cmd_queue) | INDEX_TO_SEQ(q->write_ptr)); out_cmd->hdr.group_id = 0; cmd_pos = sizeof(struct iwl_cmd_header); copy_size = sizeof(struct iwl_cmd_header); } /* and copy the data that needs to be copied */ for (i = 0; i < IWL_MAX_CMD_TBS_PER_TFD; i++) { int copy; if (!cmd->len[i]) continue; /* copy everything if not nocopy/dup */ if (!(cmd->dataflags[i] & (IWL_HCMD_DFL_NOCOPY | IWL_HCMD_DFL_DUP))) { copy = cmd->len[i]; memcpy((u8 *)out_cmd + cmd_pos, cmd->data[i], copy); cmd_pos += copy; copy_size += copy; continue; } /* * Otherwise we need at least IWL_HCMD_SCRATCHBUF_SIZE copied * in total (for the scratchbuf handling), but copy up to what * we can fit into the payload for debug dump purposes. */ copy = min_t(int, TFD_MAX_PAYLOAD_SIZE - cmd_pos, cmd->len[i]); memcpy((u8 *)out_cmd + cmd_pos, cmd->data[i], copy); cmd_pos += copy; /* However, treat copy_size the proper way, we need it below */ if (copy_size < IWL_HCMD_SCRATCHBUF_SIZE) { copy = IWL_HCMD_SCRATCHBUF_SIZE - copy_size; if (copy > cmd->len[i]) copy = cmd->len[i]; copy_size += copy; } } IWL_DEBUG_HC(trans, "Sending command %s (%.2x.%.2x), seq: 0x%04X, %d bytes at %d[%d]:%d\n", iwl_get_cmd_string(trans, cmd->id), group_id, out_cmd->hdr.cmd, le16_to_cpu(out_cmd->hdr.sequence), cmd_size, q->write_ptr, idx, trans_pcie->cmd_queue); /* start the TFD with the scratchbuf */ scratch_size = min_t(int, copy_size, IWL_HCMD_SCRATCHBUF_SIZE); memcpy(&txq->scratchbufs[q->write_ptr], &out_cmd->hdr, scratch_size); iwl_pcie_txq_build_tfd(trans, txq, iwl_pcie_get_scratchbuf_dma(txq, q->write_ptr), scratch_size, true); /* map first command fragment, if any remains */ if (copy_size > scratch_size) { phys_addr = dma_map_single(trans->dev, ((u8 *)&out_cmd->hdr) + scratch_size, copy_size - scratch_size, DMA_TO_DEVICE); if (dma_mapping_error(trans->dev, phys_addr)) { iwl_pcie_tfd_unmap(trans, out_meta, &txq->tfds[q->write_ptr]); idx = -ENOMEM; goto out; } iwl_pcie_txq_build_tfd(trans, txq, phys_addr, copy_size - scratch_size, false); } /* map the remaining (adjusted) nocopy/dup fragments */ for (i = 0; i < IWL_MAX_CMD_TBS_PER_TFD; i++) { const void *data = cmddata[i]; if (!cmdlen[i]) continue; if (!(cmd->dataflags[i] & (IWL_HCMD_DFL_NOCOPY | IWL_HCMD_DFL_DUP))) continue; if (cmd->dataflags[i] & IWL_HCMD_DFL_DUP) data = dup_buf; phys_addr = dma_map_single(trans->dev, (void *)data, cmdlen[i], DMA_TO_DEVICE); if (dma_mapping_error(trans->dev, phys_addr)) { iwl_pcie_tfd_unmap(trans, out_meta, &txq->tfds[q->write_ptr]); idx = -ENOMEM; goto out; } iwl_pcie_txq_build_tfd(trans, txq, phys_addr, cmdlen[i], false); } BUILD_BUG_ON(IWL_NUM_OF_TBS + CMD_TB_BITMAP_POS > sizeof(out_meta->flags) * BITS_PER_BYTE); out_meta->flags = cmd->flags; if (WARN_ON_ONCE(txq->entries[idx].free_buf)) kzfree(txq->entries[idx].free_buf); txq->entries[idx].free_buf = dup_buf; trace_iwlwifi_dev_hcmd(trans->dev, cmd, cmd_size, &out_cmd->hdr_wide); /* start timer if queue currently empty */ if (q->read_ptr == q->write_ptr && txq->wd_timeout) mod_timer(&txq->stuck_timer, jiffies + txq->wd_timeout); spin_lock_irqsave(&trans_pcie->reg_lock, flags); ret = iwl_pcie_set_cmd_in_flight(trans, cmd); if (ret < 0) { idx = ret; spin_unlock_irqrestore(&trans_pcie->reg_lock, flags); goto out; } /* Increment and update queue's write index */ q->write_ptr = iwl_queue_inc_wrap(q->write_ptr); iwl_pcie_txq_inc_wr_ptr(trans, txq); spin_unlock_irqrestore(&trans_pcie->reg_lock, flags); out: spin_unlock_bh(&txq->lock); free_dup_buf: if (idx < 0) kfree(dup_buf); return idx; } /* * iwl_pcie_hcmd_complete - Pull unused buffers off the queue and reclaim them * @rxb: Rx buffer to reclaim */ void iwl_pcie_hcmd_complete(struct iwl_trans *trans, struct iwl_rx_cmd_buffer *rxb) { struct iwl_rx_packet *pkt = rxb_addr(rxb); u16 sequence = le16_to_cpu(pkt->hdr.sequence); u8 group_id = iwl_cmd_groupid(pkt->hdr.group_id); u32 cmd_id; int txq_id = SEQ_TO_QUEUE(sequence); int index = SEQ_TO_INDEX(sequence); int cmd_index; struct iwl_device_cmd *cmd; struct iwl_cmd_meta *meta; struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct iwl_txq *txq = &trans_pcie->txq[trans_pcie->cmd_queue]; /* If a Tx command is being handled and it isn't in the actual * command queue then there a command routing bug has been introduced * in the queue management code. */ if (WARN(txq_id != trans_pcie->cmd_queue, "wrong command queue %d (should be %d), sequence 0x%X readp=%d writep=%d\n", txq_id, trans_pcie->cmd_queue, sequence, trans_pcie->txq[trans_pcie->cmd_queue].q.read_ptr, trans_pcie->txq[trans_pcie->cmd_queue].q.write_ptr)) { iwl_print_hex_error(trans, pkt, 32); return; } spin_lock_bh(&txq->lock); cmd_index = get_cmd_index(&txq->q, index); cmd = txq->entries[cmd_index].cmd; meta = &txq->entries[cmd_index].meta; cmd_id = iwl_cmd_id(cmd->hdr.cmd, group_id, 0); iwl_pcie_tfd_unmap(trans, meta, &txq->tfds[index]); /* Input error checking is done when commands are added to queue. */ if (meta->flags & CMD_WANT_SKB) { struct page *p = rxb_steal_page(rxb); meta->source->resp_pkt = pkt; meta->source->_rx_page_addr = (unsigned long)page_address(p); meta->source->_rx_page_order = trans_pcie->rx_page_order; } if (meta->flags & CMD_WANT_ASYNC_CALLBACK) iwl_op_mode_async_cb(trans->op_mode, cmd); iwl_pcie_cmdq_reclaim(trans, txq_id, index); if (!(meta->flags & CMD_ASYNC)) { if (!test_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status)) { IWL_WARN(trans, "HCMD_ACTIVE already clear for command %s\n", iwl_get_cmd_string(trans, cmd_id)); } clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); IWL_DEBUG_INFO(trans, "Clearing HCMD_ACTIVE for command %s\n", iwl_get_cmd_string(trans, cmd_id)); wake_up(&trans_pcie->wait_command_queue); } if (meta->flags & CMD_MAKE_TRANS_IDLE) { IWL_DEBUG_INFO(trans, "complete %s - mark trans as idle\n", iwl_get_cmd_string(trans, cmd->hdr.cmd)); set_bit(STATUS_TRANS_IDLE, &trans->status); wake_up(&trans_pcie->d0i3_waitq); } if (meta->flags & CMD_WAKE_UP_TRANS) { IWL_DEBUG_INFO(trans, "complete %s - clear trans idle flag\n", iwl_get_cmd_string(trans, cmd->hdr.cmd)); clear_bit(STATUS_TRANS_IDLE, &trans->status); wake_up(&trans_pcie->d0i3_waitq); } meta->flags = 0; spin_unlock_bh(&txq->lock); } #define HOST_COMPLETE_TIMEOUT (2 * HZ) static int iwl_pcie_send_hcmd_async(struct iwl_trans *trans, struct iwl_host_cmd *cmd) { int ret; /* An asynchronous command can not expect an SKB to be set. */ if (WARN_ON(cmd->flags & CMD_WANT_SKB)) return -EINVAL; ret = iwl_pcie_enqueue_hcmd(trans, cmd); if (ret < 0) { IWL_ERR(trans, "Error sending %s: enqueue_hcmd failed: %d\n", iwl_get_cmd_string(trans, cmd->id), ret); return ret; } return 0; } static int iwl_pcie_send_hcmd_sync(struct iwl_trans *trans, struct iwl_host_cmd *cmd) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); int cmd_idx; int ret; IWL_DEBUG_INFO(trans, "Attempting to send sync command %s\n", iwl_get_cmd_string(trans, cmd->id)); if (WARN(test_and_set_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status), "Command %s: a command is already active!\n", iwl_get_cmd_string(trans, cmd->id))) return -EIO; IWL_DEBUG_INFO(trans, "Setting HCMD_ACTIVE for command %s\n", iwl_get_cmd_string(trans, cmd->id)); if (pm_runtime_suspended(&trans_pcie->pci_dev->dev)) { ret = wait_event_timeout(trans_pcie->d0i3_waitq, pm_runtime_active(&trans_pcie->pci_dev->dev), msecs_to_jiffies(IWL_TRANS_IDLE_TIMEOUT)); if (!ret) { IWL_ERR(trans, "Timeout exiting D0i3 before hcmd\n"); return -ETIMEDOUT; } } cmd_idx = iwl_pcie_enqueue_hcmd(trans, cmd); if (cmd_idx < 0) { ret = cmd_idx; clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); IWL_ERR(trans, "Error sending %s: enqueue_hcmd failed: %d\n", iwl_get_cmd_string(trans, cmd->id), ret); return ret; } ret = wait_event_timeout(trans_pcie->wait_command_queue, !test_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status), HOST_COMPLETE_TIMEOUT); if (!ret) { struct iwl_txq *txq = &trans_pcie->txq[trans_pcie->cmd_queue]; struct iwl_queue *q = &txq->q; IWL_ERR(trans, "Error sending %s: time out after %dms.\n", iwl_get_cmd_string(trans, cmd->id), jiffies_to_msecs(HOST_COMPLETE_TIMEOUT)); IWL_ERR(trans, "Current CMD queue read_ptr %d write_ptr %d\n", q->read_ptr, q->write_ptr); clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); IWL_DEBUG_INFO(trans, "Clearing HCMD_ACTIVE for command %s\n", iwl_get_cmd_string(trans, cmd->id)); ret = -ETIMEDOUT; iwl_force_nmi(trans); iwl_trans_fw_error(trans); goto cancel; } if (test_bit(STATUS_FW_ERROR, &trans->status)) { IWL_ERR(trans, "FW error in SYNC CMD %s\n", iwl_get_cmd_string(trans, cmd->id)); dump_stack(); ret = -EIO; goto cancel; } if (!(cmd->flags & CMD_SEND_IN_RFKILL) && test_bit(STATUS_RFKILL, &trans->status)) { IWL_DEBUG_RF_KILL(trans, "RFKILL in SYNC CMD... no rsp\n"); ret = -ERFKILL; goto cancel; } if ((cmd->flags & CMD_WANT_SKB) && !cmd->resp_pkt) { IWL_ERR(trans, "Error: Response NULL in '%s'\n", iwl_get_cmd_string(trans, cmd->id)); ret = -EIO; goto cancel; } return 0; cancel: if (cmd->flags & CMD_WANT_SKB) { /* * Cancel the CMD_WANT_SKB flag for the cmd in the * TX cmd queue. Otherwise in case the cmd comes * in later, it will possibly set an invalid * address (cmd->meta.source). */ trans_pcie->txq[trans_pcie->cmd_queue]. entries[cmd_idx].meta.flags &= ~CMD_WANT_SKB; } if (cmd->resp_pkt) { iwl_free_resp(cmd); cmd->resp_pkt = NULL; } return ret; } int iwl_trans_pcie_send_hcmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd) { if (!(cmd->flags & CMD_SEND_IN_RFKILL) && test_bit(STATUS_RFKILL, &trans->status)) { IWL_DEBUG_RF_KILL(trans, "Dropping CMD 0x%x: RF KILL\n", cmd->id); return -ERFKILL; } if (cmd->flags & CMD_ASYNC) return iwl_pcie_send_hcmd_async(trans, cmd); /* We still can fail on RFKILL that can be asserted while we wait */ return iwl_pcie_send_hcmd_sync(trans, cmd); } static int iwl_fill_data_tbs(struct iwl_trans *trans, struct sk_buff *skb, struct iwl_txq *txq, u8 hdr_len, struct iwl_cmd_meta *out_meta, struct iwl_device_cmd *dev_cmd, u16 tb1_len) { struct iwl_queue *q = &txq->q; u16 tb2_len; int i; /* * Set up TFD's third entry to point directly to remainder * of skb's head, if any */ tb2_len = skb_headlen(skb) - hdr_len; if (tb2_len > 0) { dma_addr_t tb2_phys = dma_map_single(trans->dev, skb->data + hdr_len, tb2_len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(trans->dev, tb2_phys))) { iwl_pcie_tfd_unmap(trans, out_meta, &txq->tfds[q->write_ptr]); return -EINVAL; } iwl_pcie_txq_build_tfd(trans, txq, tb2_phys, tb2_len, false); } /* set up the remaining entries to point to the data */ for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; dma_addr_t tb_phys; int tb_idx; if (!skb_frag_size(frag)) continue; tb_phys = skb_frag_dma_map(trans->dev, frag, 0, skb_frag_size(frag), DMA_TO_DEVICE); if (unlikely(dma_mapping_error(trans->dev, tb_phys))) { iwl_pcie_tfd_unmap(trans, out_meta, &txq->tfds[q->write_ptr]); return -EINVAL; } tb_idx = iwl_pcie_txq_build_tfd(trans, txq, tb_phys, skb_frag_size(frag), false); out_meta->flags |= BIT(tb_idx + CMD_TB_BITMAP_POS); } trace_iwlwifi_dev_tx(trans->dev, skb, &txq->tfds[txq->q.write_ptr], sizeof(struct iwl_tfd), &dev_cmd->hdr, IWL_HCMD_SCRATCHBUF_SIZE + tb1_len, skb->data + hdr_len, tb2_len); trace_iwlwifi_dev_tx_data(trans->dev, skb, hdr_len, skb->len - hdr_len); return 0; } #ifdef CONFIG_INET static struct iwl_tso_hdr_page * get_page_hdr(struct iwl_trans *trans, size_t len) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct iwl_tso_hdr_page *p = this_cpu_ptr(trans_pcie->tso_hdr_page); if (!p->page) goto alloc; /* enough room on this page */ if (p->pos + len < (u8 *)page_address(p->page) + PAGE_SIZE) return p; /* We don't have enough room on this page, get a new one. */ __free_page(p->page); alloc: p->page = alloc_page(GFP_ATOMIC); if (!p->page) return NULL; p->pos = page_address(p->page); return p; } static void iwl_compute_pseudo_hdr_csum(void *iph, struct tcphdr *tcph, bool ipv6, unsigned int len) { if (ipv6) { struct ipv6hdr *iphv6 = iph; tcph->check = ~csum_ipv6_magic(&iphv6->saddr, &iphv6->daddr, len + tcph->doff * 4, IPPROTO_TCP, 0); } else { struct iphdr *iphv4 = iph; ip_send_check(iphv4); tcph->check = ~csum_tcpudp_magic(iphv4->saddr, iphv4->daddr, len + tcph->doff * 4, IPPROTO_TCP, 0); } } static int iwl_fill_data_tbs_amsdu(struct iwl_trans *trans, struct sk_buff *skb, struct iwl_txq *txq, u8 hdr_len, struct iwl_cmd_meta *out_meta, struct iwl_device_cmd *dev_cmd, u16 tb1_len) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct iwl_trans_pcie *trans_pcie = txq->trans_pcie; struct ieee80211_hdr *hdr = (void *)skb->data; unsigned int snap_ip_tcp_hdrlen, ip_hdrlen, total_len, hdr_room; unsigned int mss = skb_shinfo(skb)->gso_size; struct iwl_queue *q = &txq->q; u16 length, iv_len, amsdu_pad; u8 *start_hdr; struct iwl_tso_hdr_page *hdr_page; int ret; struct tso_t tso; /* if the packet is protected, then it must be CCMP or GCMP */ BUILD_BUG_ON(IEEE80211_CCMP_HDR_LEN != IEEE80211_GCMP_HDR_LEN); iv_len = ieee80211_has_protected(hdr->frame_control) ? IEEE80211_CCMP_HDR_LEN : 0; trace_iwlwifi_dev_tx(trans->dev, skb, &txq->tfds[txq->q.write_ptr], sizeof(struct iwl_tfd), &dev_cmd->hdr, IWL_HCMD_SCRATCHBUF_SIZE + tb1_len, NULL, 0); ip_hdrlen = skb_transport_header(skb) - skb_network_header(skb); snap_ip_tcp_hdrlen = 8 + ip_hdrlen + tcp_hdrlen(skb); total_len = skb->len - snap_ip_tcp_hdrlen - hdr_len - iv_len; amsdu_pad = 0; /* total amount of header we may need for this A-MSDU */ hdr_room = DIV_ROUND_UP(total_len, mss) * (3 + snap_ip_tcp_hdrlen + sizeof(struct ethhdr)) + iv_len; /* Our device supports 9 segments at most, it will fit in 1 page */ hdr_page = get_page_hdr(trans, hdr_room); if (!hdr_page) return -ENOMEM; get_page(hdr_page->page); start_hdr = hdr_page->pos; info->driver_data[IWL_TRANS_FIRST_DRIVER_DATA] = hdr_page->page; memcpy(hdr_page->pos, skb->data + hdr_len, iv_len); hdr_page->pos += iv_len; /* * Pull the ieee80211 header + IV to be able to use TSO core, * we will restore it for the tx_status flow. */ skb_pull(skb, hdr_len + iv_len); tso_start(skb, &tso); while (total_len) { /* this is the data left for this subframe */ unsigned int data_left = min_t(unsigned int, mss, total_len); struct sk_buff *csum_skb = NULL; unsigned int hdr_tb_len; dma_addr_t hdr_tb_phys; struct tcphdr *tcph; u8 *iph; total_len -= data_left; memset(hdr_page->pos, 0, amsdu_pad); hdr_page->pos += amsdu_pad; amsdu_pad = (4 - (sizeof(struct ethhdr) + snap_ip_tcp_hdrlen + data_left)) & 0x3; ether_addr_copy(hdr_page->pos, ieee80211_get_DA(hdr)); hdr_page->pos += ETH_ALEN; ether_addr_copy(hdr_page->pos, ieee80211_get_SA(hdr)); hdr_page->pos += ETH_ALEN; length = snap_ip_tcp_hdrlen + data_left; *((__be16 *)hdr_page->pos) = cpu_to_be16(length); hdr_page->pos += sizeof(length); /* * This will copy the SNAP as well which will be considered * as MAC header. */ tso_build_hdr(skb, hdr_page->pos, &tso, data_left, !total_len); iph = hdr_page->pos + 8; tcph = (void *)(iph + ip_hdrlen); /* For testing on current hardware only */ if (trans_pcie->sw_csum_tx) { csum_skb = alloc_skb(data_left + tcp_hdrlen(skb), GFP_ATOMIC); if (!csum_skb) { ret = -ENOMEM; goto out_unmap; } iwl_compute_pseudo_hdr_csum(iph, tcph, skb->protocol == htons(ETH_P_IPV6), data_left); memcpy(skb_put(csum_skb, tcp_hdrlen(skb)), tcph, tcp_hdrlen(skb)); skb_set_transport_header(csum_skb, 0); csum_skb->csum_start = (unsigned char *)tcp_hdr(csum_skb) - csum_skb->head; } hdr_page->pos += snap_ip_tcp_hdrlen; hdr_tb_len = hdr_page->pos - start_hdr; hdr_tb_phys = dma_map_single(trans->dev, start_hdr, hdr_tb_len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(trans->dev, hdr_tb_phys))) { dev_kfree_skb(csum_skb); ret = -EINVAL; goto out_unmap; } iwl_pcie_txq_build_tfd(trans, txq, hdr_tb_phys, hdr_tb_len, false); trace_iwlwifi_dev_tx_tso_chunk(trans->dev, start_hdr, hdr_tb_len); /* prepare the start_hdr for the next subframe */ start_hdr = hdr_page->pos; /* put the payload */ while (data_left) { unsigned int size = min_t(unsigned int, tso.size, data_left); dma_addr_t tb_phys; if (trans_pcie->sw_csum_tx) memcpy(skb_put(csum_skb, size), tso.data, size); tb_phys = dma_map_single(trans->dev, tso.data, size, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(trans->dev, tb_phys))) { dev_kfree_skb(csum_skb); ret = -EINVAL; goto out_unmap; } iwl_pcie_txq_build_tfd(trans, txq, tb_phys, size, false); trace_iwlwifi_dev_tx_tso_chunk(trans->dev, tso.data, size); data_left -= size; tso_build_data(skb, &tso, size); } /* For testing on early hardware only */ if (trans_pcie->sw_csum_tx) { __wsum csum; csum = skb_checksum(csum_skb, skb_checksum_start_offset(csum_skb), csum_skb->len - skb_checksum_start_offset(csum_skb), 0); dev_kfree_skb(csum_skb); dma_sync_single_for_cpu(trans->dev, hdr_tb_phys, hdr_tb_len, DMA_TO_DEVICE); tcph->check = csum_fold(csum); dma_sync_single_for_device(trans->dev, hdr_tb_phys, hdr_tb_len, DMA_TO_DEVICE); } } /* re -add the WiFi header and IV */ skb_push(skb, hdr_len + iv_len); return 0; out_unmap: iwl_pcie_tfd_unmap(trans, out_meta, &txq->tfds[q->write_ptr]); return ret; } #else /* CONFIG_INET */ static int iwl_fill_data_tbs_amsdu(struct iwl_trans *trans, struct sk_buff *skb, struct iwl_txq *txq, u8 hdr_len, struct iwl_cmd_meta *out_meta, struct iwl_device_cmd *dev_cmd, u16 tb1_len) { /* No A-MSDU without CONFIG_INET */ WARN_ON(1); return -1; } #endif /* CONFIG_INET */ int iwl_trans_pcie_tx(struct iwl_trans *trans, struct sk_buff *skb, struct iwl_device_cmd *dev_cmd, int txq_id) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct ieee80211_hdr *hdr; struct iwl_tx_cmd *tx_cmd = (struct iwl_tx_cmd *)dev_cmd->payload; struct iwl_cmd_meta *out_meta; struct iwl_txq *txq; struct iwl_queue *q; dma_addr_t tb0_phys, tb1_phys, scratch_phys; void *tb1_addr; u16 len, tb1_len; bool wait_write_ptr; __le16 fc; u8 hdr_len; u16 wifi_seq; bool amsdu; txq = &trans_pcie->txq[txq_id]; q = &txq->q; if (WARN_ONCE(!test_bit(txq_id, trans_pcie->queue_used), "TX on unused queue %d\n", txq_id)) return -EINVAL; if (unlikely(trans_pcie->sw_csum_tx && skb->ip_summed == CHECKSUM_PARTIAL)) { int offs = skb_checksum_start_offset(skb); int csum_offs = offs + skb->csum_offset; __wsum csum; if (skb_ensure_writable(skb, csum_offs + sizeof(__sum16))) return -1; csum = skb_checksum(skb, offs, skb->len - offs, 0); *(__sum16 *)(skb->data + csum_offs) = csum_fold(csum); skb->ip_summed = CHECKSUM_UNNECESSARY; } if (skb_is_nonlinear(skb) && skb_shinfo(skb)->nr_frags > IWL_PCIE_MAX_FRAGS && __skb_linearize(skb)) return -ENOMEM; /* mac80211 always puts the full header into the SKB's head, * so there's no need to check if it's readable there */ hdr = (struct ieee80211_hdr *)skb->data; fc = hdr->frame_control; hdr_len = ieee80211_hdrlen(fc); spin_lock(&txq->lock); if (iwl_queue_space(q) < q->high_mark) { iwl_stop_queue(trans, txq); /* don't put the packet on the ring, if there is no room */ if (unlikely(iwl_queue_space(q) < 3)) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); info->driver_data[IWL_TRANS_FIRST_DRIVER_DATA + 1] = dev_cmd; __skb_queue_tail(&txq->overflow_q, skb); spin_unlock(&txq->lock); return 0; } } /* In AGG mode, the index in the ring must correspond to the WiFi * sequence number. This is a HW requirements to help the SCD to parse * the BA. * Check here that the packets are in the right place on the ring. */ wifi_seq = IEEE80211_SEQ_TO_SN(le16_to_cpu(hdr->seq_ctrl)); WARN_ONCE(txq->ampdu && (wifi_seq & 0xff) != q->write_ptr, "Q: %d WiFi Seq %d tfdNum %d", txq_id, wifi_seq, q->write_ptr); /* Set up driver data for this TFD */ txq->entries[q->write_ptr].skb = skb; txq->entries[q->write_ptr].cmd = dev_cmd; dev_cmd->hdr.sequence = cpu_to_le16((u16)(QUEUE_TO_SEQ(txq_id) | INDEX_TO_SEQ(q->write_ptr))); tb0_phys = iwl_pcie_get_scratchbuf_dma(txq, q->write_ptr); scratch_phys = tb0_phys + sizeof(struct iwl_cmd_header) + offsetof(struct iwl_tx_cmd, scratch); tx_cmd->dram_lsb_ptr = cpu_to_le32(scratch_phys); tx_cmd->dram_msb_ptr = iwl_get_dma_hi_addr(scratch_phys); /* Set up first empty entry in queue's array of Tx/cmd buffers */ out_meta = &txq->entries[q->write_ptr].meta; out_meta->flags = 0; /* * The second TB (tb1) points to the remainder of the TX command * and the 802.11 header - dword aligned size * (This calculation modifies the TX command, so do it before the * setup of the first TB) */ len = sizeof(struct iwl_tx_cmd) + sizeof(struct iwl_cmd_header) + hdr_len - IWL_HCMD_SCRATCHBUF_SIZE; /* do not align A-MSDU to dword as the subframe header aligns it */ amsdu = ieee80211_is_data_qos(fc) && (*ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_A_MSDU_PRESENT); if (trans_pcie->sw_csum_tx || !amsdu) { tb1_len = ALIGN(len, 4); /* Tell NIC about any 2-byte padding after MAC header */ if (tb1_len != len) tx_cmd->tx_flags |= TX_CMD_FLG_MH_PAD_MSK; } else { tb1_len = len; } /* The first TB points to the scratchbuf data - min_copy bytes */ memcpy(&txq->scratchbufs[q->write_ptr], &dev_cmd->hdr, IWL_HCMD_SCRATCHBUF_SIZE); iwl_pcie_txq_build_tfd(trans, txq, tb0_phys, IWL_HCMD_SCRATCHBUF_SIZE, true); /* there must be data left over for TB1 or this code must be changed */ BUILD_BUG_ON(sizeof(struct iwl_tx_cmd) < IWL_HCMD_SCRATCHBUF_SIZE); /* map the data for TB1 */ tb1_addr = ((u8 *)&dev_cmd->hdr) + IWL_HCMD_SCRATCHBUF_SIZE; tb1_phys = dma_map_single(trans->dev, tb1_addr, tb1_len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(trans->dev, tb1_phys))) goto out_err; iwl_pcie_txq_build_tfd(trans, txq, tb1_phys, tb1_len, false); if (amsdu) { if (unlikely(iwl_fill_data_tbs_amsdu(trans, skb, txq, hdr_len, out_meta, dev_cmd, tb1_len))) goto out_err; } else if (unlikely(iwl_fill_data_tbs(trans, skb, txq, hdr_len, out_meta, dev_cmd, tb1_len))) { goto out_err; } /* Set up entry for this TFD in Tx byte-count array */ iwl_pcie_txq_update_byte_cnt_tbl(trans, txq, le16_to_cpu(tx_cmd->len)); wait_write_ptr = ieee80211_has_morefrags(fc); /* start timer if queue currently empty */ if (q->read_ptr == q->write_ptr) { if (txq->wd_timeout) { /* * If the TXQ is active, then set the timer, if not, * set the timer in remainder so that the timer will * be armed with the right value when the station will * wake up. */ if (!txq->frozen) mod_timer(&txq->stuck_timer, jiffies + txq->wd_timeout); else txq->frozen_expiry_remainder = txq->wd_timeout; } IWL_DEBUG_RPM(trans, "Q: %d first tx - take ref\n", q->id); iwl_trans_ref(trans); } /* Tell device the write index *just past* this latest filled TFD */ q->write_ptr = iwl_queue_inc_wrap(q->write_ptr); if (!wait_write_ptr) iwl_pcie_txq_inc_wr_ptr(trans, txq); /* * At this point the frame is "transmitted" successfully * and we will get a TX status notification eventually. */ spin_unlock(&txq->lock); return 0; out_err: spin_unlock(&txq->lock); return -1; }