/* * handling kvm guest interrupts * * Copyright IBM Corp. 2008,2014 * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License (version 2 only) * as published by the Free Software Foundation. * * Author(s): Carsten Otte */ #include #include #include #include #include #include #include #include #include #include #include "kvm-s390.h" #include "gaccess.h" #include "trace-s390.h" #define IOINT_SCHID_MASK 0x0000ffff #define IOINT_SSID_MASK 0x00030000 #define IOINT_CSSID_MASK 0x03fc0000 #define IOINT_AI_MASK 0x04000000 #define PFAULT_INIT 0x0600 #define PFAULT_DONE 0x0680 #define VIRTIO_PARAM 0x0d00 static int is_ioint(u64 type) { return ((type & 0xfffe0000u) != 0xfffe0000u); } int psw_extint_disabled(struct kvm_vcpu *vcpu) { return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT); } static int psw_ioint_disabled(struct kvm_vcpu *vcpu) { return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO); } static int psw_mchk_disabled(struct kvm_vcpu *vcpu) { return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK); } static int psw_interrupts_disabled(struct kvm_vcpu *vcpu) { if ((vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PER) || (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO) || (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT)) return 0; return 1; } static int ckc_interrupts_enabled(struct kvm_vcpu *vcpu) { if (psw_extint_disabled(vcpu) || !(vcpu->arch.sie_block->gcr[0] & 0x800ul)) return 0; if (guestdbg_enabled(vcpu) && guestdbg_sstep_enabled(vcpu)) /* No timer interrupts when single stepping */ return 0; return 1; } static u64 int_word_to_isc_bits(u32 int_word) { u8 isc = (int_word & 0x38000000) >> 27; return (0x80 >> isc) << 24; } static int __must_check __interrupt_is_deliverable(struct kvm_vcpu *vcpu, struct kvm_s390_interrupt_info *inti) { switch (inti->type) { case KVM_S390_INT_EXTERNAL_CALL: if (psw_extint_disabled(vcpu)) return 0; if (vcpu->arch.sie_block->gcr[0] & 0x2000ul) return 1; return 0; case KVM_S390_INT_EMERGENCY: if (psw_extint_disabled(vcpu)) return 0; if (vcpu->arch.sie_block->gcr[0] & 0x4000ul) return 1; return 0; case KVM_S390_INT_CLOCK_COMP: return ckc_interrupts_enabled(vcpu); case KVM_S390_INT_CPU_TIMER: if (psw_extint_disabled(vcpu)) return 0; if (vcpu->arch.sie_block->gcr[0] & 0x400ul) return 1; return 0; case KVM_S390_INT_SERVICE: case KVM_S390_INT_PFAULT_INIT: case KVM_S390_INT_PFAULT_DONE: case KVM_S390_INT_VIRTIO: if (psw_extint_disabled(vcpu)) return 0; if (vcpu->arch.sie_block->gcr[0] & 0x200ul) return 1; return 0; case KVM_S390_PROGRAM_INT: case KVM_S390_SIGP_STOP: case KVM_S390_SIGP_SET_PREFIX: case KVM_S390_RESTART: return 1; case KVM_S390_MCHK: if (psw_mchk_disabled(vcpu)) return 0; if (vcpu->arch.sie_block->gcr[14] & inti->mchk.cr14) return 1; return 0; case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: if (psw_ioint_disabled(vcpu)) return 0; if (vcpu->arch.sie_block->gcr[6] & int_word_to_isc_bits(inti->io.io_int_word)) return 1; return 0; default: printk(KERN_WARNING "illegal interrupt type %llx\n", inti->type); BUG(); } return 0; } static inline unsigned long pending_local_irqs(struct kvm_vcpu *vcpu) { return vcpu->arch.local_int.pending_irqs; } static unsigned long deliverable_local_irqs(struct kvm_vcpu *vcpu) { unsigned long active_mask = pending_local_irqs(vcpu); if (psw_extint_disabled(vcpu)) active_mask &= ~IRQ_PEND_EXT_MASK; if (!(vcpu->arch.sie_block->gcr[0] & 0x2000ul)) __clear_bit(IRQ_PEND_EXT_EXTERNAL, &active_mask); if (!(vcpu->arch.sie_block->gcr[0] & 0x4000ul)) __clear_bit(IRQ_PEND_EXT_EMERGENCY, &active_mask); if (!(vcpu->arch.sie_block->gcr[0] & 0x800ul)) __clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &active_mask); if (!(vcpu->arch.sie_block->gcr[0] & 0x400ul)) __clear_bit(IRQ_PEND_EXT_CPU_TIMER, &active_mask); if (psw_mchk_disabled(vcpu)) active_mask &= ~IRQ_PEND_MCHK_MASK; /* * STOP irqs will never be actively delivered. They are triggered via * intercept requests and cleared when the stop intercept is performed. */ __clear_bit(IRQ_PEND_SIGP_STOP, &active_mask); return active_mask; } static void __set_cpu_idle(struct kvm_vcpu *vcpu) { atomic_set_mask(CPUSTAT_WAIT, &vcpu->arch.sie_block->cpuflags); set_bit(vcpu->vcpu_id, vcpu->arch.local_int.float_int->idle_mask); } static void __unset_cpu_idle(struct kvm_vcpu *vcpu) { atomic_clear_mask(CPUSTAT_WAIT, &vcpu->arch.sie_block->cpuflags); clear_bit(vcpu->vcpu_id, vcpu->arch.local_int.float_int->idle_mask); } static void __reset_intercept_indicators(struct kvm_vcpu *vcpu) { atomic_clear_mask(CPUSTAT_IO_INT | CPUSTAT_EXT_INT | CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags); vcpu->arch.sie_block->lctl = 0x0000; vcpu->arch.sie_block->ictl &= ~(ICTL_LPSW | ICTL_STCTL | ICTL_PINT); if (guestdbg_enabled(vcpu)) { vcpu->arch.sie_block->lctl |= (LCTL_CR0 | LCTL_CR9 | LCTL_CR10 | LCTL_CR11); vcpu->arch.sie_block->ictl |= (ICTL_STCTL | ICTL_PINT); } } static void __set_cpuflag(struct kvm_vcpu *vcpu, u32 flag) { atomic_set_mask(flag, &vcpu->arch.sie_block->cpuflags); } static void set_intercept_indicators_ext(struct kvm_vcpu *vcpu) { if (!(pending_local_irqs(vcpu) & IRQ_PEND_EXT_MASK)) return; if (psw_extint_disabled(vcpu)) __set_cpuflag(vcpu, CPUSTAT_EXT_INT); else vcpu->arch.sie_block->lctl |= LCTL_CR0; } static void set_intercept_indicators_mchk(struct kvm_vcpu *vcpu) { if (!(pending_local_irqs(vcpu) & IRQ_PEND_MCHK_MASK)) return; if (psw_mchk_disabled(vcpu)) vcpu->arch.sie_block->ictl |= ICTL_LPSW; else vcpu->arch.sie_block->lctl |= LCTL_CR14; } static void set_intercept_indicators_stop(struct kvm_vcpu *vcpu) { if (kvm_s390_is_stop_irq_pending(vcpu)) __set_cpuflag(vcpu, CPUSTAT_STOP_INT); } /* Set interception request for non-deliverable local interrupts */ static void set_intercept_indicators_local(struct kvm_vcpu *vcpu) { set_intercept_indicators_ext(vcpu); set_intercept_indicators_mchk(vcpu); set_intercept_indicators_stop(vcpu); } static void __set_intercept_indicator(struct kvm_vcpu *vcpu, struct kvm_s390_interrupt_info *inti) { switch (inti->type) { case KVM_S390_INT_SERVICE: case KVM_S390_INT_PFAULT_DONE: case KVM_S390_INT_VIRTIO: if (psw_extint_disabled(vcpu)) __set_cpuflag(vcpu, CPUSTAT_EXT_INT); else vcpu->arch.sie_block->lctl |= LCTL_CR0; break; case KVM_S390_MCHK: if (psw_mchk_disabled(vcpu)) vcpu->arch.sie_block->ictl |= ICTL_LPSW; else vcpu->arch.sie_block->lctl |= LCTL_CR14; break; case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: if (psw_ioint_disabled(vcpu)) __set_cpuflag(vcpu, CPUSTAT_IO_INT); else vcpu->arch.sie_block->lctl |= LCTL_CR6; break; default: BUG(); } } static u16 get_ilc(struct kvm_vcpu *vcpu) { const unsigned short table[] = { 2, 4, 4, 6 }; switch (vcpu->arch.sie_block->icptcode) { case ICPT_INST: case ICPT_INSTPROGI: case ICPT_OPEREXC: case ICPT_PARTEXEC: case ICPT_IOINST: /* last instruction only stored for these icptcodes */ return table[vcpu->arch.sie_block->ipa >> 14]; case ICPT_PROGI: return vcpu->arch.sie_block->pgmilc; default: return 0; } } static int __must_check __deliver_cpu_timer(struct kvm_vcpu *vcpu) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; int rc; trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER, 0, 0); rc = put_guest_lc(vcpu, EXT_IRQ_CPU_TIMER, (u16 *)__LC_EXT_INT_CODE); rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR); rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs); return rc ? -EFAULT : 0; } static int __must_check __deliver_ckc(struct kvm_vcpu *vcpu) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; int rc; trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP, 0, 0); rc = put_guest_lc(vcpu, EXT_IRQ_CLK_COMP, (u16 __user *)__LC_EXT_INT_CODE); rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR); rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs); return rc ? -EFAULT : 0; } static int __must_check __deliver_pfault_init(struct kvm_vcpu *vcpu) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; struct kvm_s390_ext_info ext; int rc; spin_lock(&li->lock); ext = li->irq.ext; clear_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs); li->irq.ext.ext_params2 = 0; spin_unlock(&li->lock); VCPU_EVENT(vcpu, 4, "interrupt: pfault init parm:%x,parm64:%llx", 0, ext.ext_params2); trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT, 0, ext.ext_params2); rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *) __LC_EXT_INT_CODE); rc |= put_guest_lc(vcpu, PFAULT_INIT, (u16 *) __LC_EXT_CPU_ADDR); rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); rc |= put_guest_lc(vcpu, ext.ext_params2, (u64 *) __LC_EXT_PARAMS2); return rc ? -EFAULT : 0; } static int __must_check __deliver_machine_check(struct kvm_vcpu *vcpu) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; struct kvm_s390_mchk_info mchk; int rc; spin_lock(&li->lock); mchk = li->irq.mchk; /* * If there was an exigent machine check pending, then any repressible * machine checks that might have been pending are indicated along * with it, so always clear both bits */ clear_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs); clear_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs); memset(&li->irq.mchk, 0, sizeof(mchk)); spin_unlock(&li->lock); VCPU_EVENT(vcpu, 4, "interrupt: machine check mcic=%llx", mchk.mcic); trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_MCHK, mchk.cr14, mchk.mcic); rc = kvm_s390_vcpu_store_status(vcpu, KVM_S390_STORE_STATUS_PREFIXED); rc |= put_guest_lc(vcpu, mchk.mcic, (u64 __user *) __LC_MCCK_CODE); rc |= put_guest_lc(vcpu, mchk.failing_storage_address, (u64 __user *) __LC_MCCK_FAIL_STOR_ADDR); rc |= write_guest_lc(vcpu, __LC_PSW_SAVE_AREA, &mchk.fixed_logout, sizeof(mchk.fixed_logout)); rc |= write_guest_lc(vcpu, __LC_MCK_OLD_PSW, &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); rc |= read_guest_lc(vcpu, __LC_MCK_NEW_PSW, &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); return rc ? -EFAULT : 0; } static int __must_check __deliver_restart(struct kvm_vcpu *vcpu) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; int rc; VCPU_EVENT(vcpu, 4, "%s", "interrupt: cpu restart"); vcpu->stat.deliver_restart_signal++; trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0); rc = write_guest_lc(vcpu, offsetof(struct _lowcore, restart_old_psw), &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); rc |= read_guest_lc(vcpu, offsetof(struct _lowcore, restart_psw), &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); clear_bit(IRQ_PEND_RESTART, &li->pending_irqs); return rc ? -EFAULT : 0; } static int __must_check __deliver_set_prefix(struct kvm_vcpu *vcpu) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; struct kvm_s390_prefix_info prefix; spin_lock(&li->lock); prefix = li->irq.prefix; li->irq.prefix.address = 0; clear_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs); spin_unlock(&li->lock); VCPU_EVENT(vcpu, 4, "interrupt: set prefix to %x", prefix.address); vcpu->stat.deliver_prefix_signal++; trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX, prefix.address, 0); kvm_s390_set_prefix(vcpu, prefix.address); return 0; } static int __must_check __deliver_emergency_signal(struct kvm_vcpu *vcpu) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; int rc; int cpu_addr; spin_lock(&li->lock); cpu_addr = find_first_bit(li->sigp_emerg_pending, KVM_MAX_VCPUS); clear_bit(cpu_addr, li->sigp_emerg_pending); if (bitmap_empty(li->sigp_emerg_pending, KVM_MAX_VCPUS)) clear_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs); spin_unlock(&li->lock); VCPU_EVENT(vcpu, 4, "%s", "interrupt: sigp emerg"); vcpu->stat.deliver_emergency_signal++; trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY, cpu_addr, 0); rc = put_guest_lc(vcpu, EXT_IRQ_EMERGENCY_SIG, (u16 *)__LC_EXT_INT_CODE); rc |= put_guest_lc(vcpu, cpu_addr, (u16 *)__LC_EXT_CPU_ADDR); rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); return rc ? -EFAULT : 0; } static int __must_check __deliver_external_call(struct kvm_vcpu *vcpu) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; struct kvm_s390_extcall_info extcall; int rc; spin_lock(&li->lock); extcall = li->irq.extcall; li->irq.extcall.code = 0; clear_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs); spin_unlock(&li->lock); VCPU_EVENT(vcpu, 4, "%s", "interrupt: sigp ext call"); vcpu->stat.deliver_external_call++; trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL, extcall.code, 0); rc = put_guest_lc(vcpu, EXT_IRQ_EXTERNAL_CALL, (u16 *)__LC_EXT_INT_CODE); rc |= put_guest_lc(vcpu, extcall.code, (u16 *)__LC_EXT_CPU_ADDR); rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); return rc ? -EFAULT : 0; } static int __must_check __deliver_prog(struct kvm_vcpu *vcpu) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; struct kvm_s390_pgm_info pgm_info; int rc = 0; u16 ilc = get_ilc(vcpu); spin_lock(&li->lock); pgm_info = li->irq.pgm; clear_bit(IRQ_PEND_PROG, &li->pending_irqs); memset(&li->irq.pgm, 0, sizeof(pgm_info)); spin_unlock(&li->lock); VCPU_EVENT(vcpu, 4, "interrupt: pgm check code:%x, ilc:%x", pgm_info.code, ilc); vcpu->stat.deliver_program_int++; trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_PROGRAM_INT, pgm_info.code, 0); switch (pgm_info.code & ~PGM_PER) { case PGM_AFX_TRANSLATION: case PGM_ASX_TRANSLATION: case PGM_EX_TRANSLATION: case PGM_LFX_TRANSLATION: case PGM_LSTE_SEQUENCE: case PGM_LSX_TRANSLATION: case PGM_LX_TRANSLATION: case PGM_PRIMARY_AUTHORITY: case PGM_SECONDARY_AUTHORITY: case PGM_SPACE_SWITCH: rc = put_guest_lc(vcpu, pgm_info.trans_exc_code, (u64 *)__LC_TRANS_EXC_CODE); break; case PGM_ALEN_TRANSLATION: case PGM_ALE_SEQUENCE: case PGM_ASTE_INSTANCE: case PGM_ASTE_SEQUENCE: case PGM_ASTE_VALIDITY: case PGM_EXTENDED_AUTHORITY: rc = put_guest_lc(vcpu, pgm_info.exc_access_id, (u8 *)__LC_EXC_ACCESS_ID); break; case PGM_ASCE_TYPE: case PGM_PAGE_TRANSLATION: case PGM_REGION_FIRST_TRANS: case PGM_REGION_SECOND_TRANS: case PGM_REGION_THIRD_TRANS: case PGM_SEGMENT_TRANSLATION: rc = put_guest_lc(vcpu, pgm_info.trans_exc_code, (u64 *)__LC_TRANS_EXC_CODE); rc |= put_guest_lc(vcpu, pgm_info.exc_access_id, (u8 *)__LC_EXC_ACCESS_ID); rc |= put_guest_lc(vcpu, pgm_info.op_access_id, (u8 *)__LC_OP_ACCESS_ID); break; case PGM_MONITOR: rc = put_guest_lc(vcpu, pgm_info.mon_class_nr, (u16 *)__LC_MON_CLASS_NR); rc |= put_guest_lc(vcpu, pgm_info.mon_code, (u64 *)__LC_MON_CODE); break; case PGM_DATA: rc = put_guest_lc(vcpu, pgm_info.data_exc_code, (u32 *)__LC_DATA_EXC_CODE); break; case PGM_PROTECTION: rc = put_guest_lc(vcpu, pgm_info.trans_exc_code, (u64 *)__LC_TRANS_EXC_CODE); rc |= put_guest_lc(vcpu, pgm_info.exc_access_id, (u8 *)__LC_EXC_ACCESS_ID); break; } if (pgm_info.code & PGM_PER) { rc |= put_guest_lc(vcpu, pgm_info.per_code, (u8 *) __LC_PER_CODE); rc |= put_guest_lc(vcpu, pgm_info.per_atmid, (u8 *)__LC_PER_ATMID); rc |= put_guest_lc(vcpu, pgm_info.per_address, (u64 *) __LC_PER_ADDRESS); rc |= put_guest_lc(vcpu, pgm_info.per_access_id, (u8 *) __LC_PER_ACCESS_ID); } rc |= put_guest_lc(vcpu, ilc, (u16 *) __LC_PGM_ILC); rc |= put_guest_lc(vcpu, pgm_info.code, (u16 *)__LC_PGM_INT_CODE); rc |= write_guest_lc(vcpu, __LC_PGM_OLD_PSW, &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); rc |= read_guest_lc(vcpu, __LC_PGM_NEW_PSW, &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); return rc ? -EFAULT : 0; } static int __must_check __deliver_service(struct kvm_vcpu *vcpu, struct kvm_s390_interrupt_info *inti) { int rc; VCPU_EVENT(vcpu, 4, "interrupt: sclp parm:%x", inti->ext.ext_params); vcpu->stat.deliver_service_signal++; trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, inti->type, inti->ext.ext_params, 0); rc = put_guest_lc(vcpu, EXT_IRQ_SERVICE_SIG, (u16 *)__LC_EXT_INT_CODE); rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR); rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); rc |= put_guest_lc(vcpu, inti->ext.ext_params, (u32 *)__LC_EXT_PARAMS); return rc ? -EFAULT : 0; } static int __must_check __deliver_pfault_done(struct kvm_vcpu *vcpu, struct kvm_s390_interrupt_info *inti) { int rc; trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_PFAULT_DONE, 0, inti->ext.ext_params2); rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *)__LC_EXT_INT_CODE); rc |= put_guest_lc(vcpu, PFAULT_DONE, (u16 *)__LC_EXT_CPU_ADDR); rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); rc |= put_guest_lc(vcpu, inti->ext.ext_params2, (u64 *)__LC_EXT_PARAMS2); return rc ? -EFAULT : 0; } static int __must_check __deliver_virtio(struct kvm_vcpu *vcpu, struct kvm_s390_interrupt_info *inti) { int rc; VCPU_EVENT(vcpu, 4, "interrupt: virtio parm:%x,parm64:%llx", inti->ext.ext_params, inti->ext.ext_params2); vcpu->stat.deliver_virtio_interrupt++; trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, inti->type, inti->ext.ext_params, inti->ext.ext_params2); rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *)__LC_EXT_INT_CODE); rc |= put_guest_lc(vcpu, VIRTIO_PARAM, (u16 *)__LC_EXT_CPU_ADDR); rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW, &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); rc |= put_guest_lc(vcpu, inti->ext.ext_params, (u32 *)__LC_EXT_PARAMS); rc |= put_guest_lc(vcpu, inti->ext.ext_params2, (u64 *)__LC_EXT_PARAMS2); return rc ? -EFAULT : 0; } static int __must_check __deliver_io(struct kvm_vcpu *vcpu, struct kvm_s390_interrupt_info *inti) { int rc; VCPU_EVENT(vcpu, 4, "interrupt: I/O %llx", inti->type); vcpu->stat.deliver_io_int++; trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, inti->type, ((__u32)inti->io.subchannel_id << 16) | inti->io.subchannel_nr, ((__u64)inti->io.io_int_parm << 32) | inti->io.io_int_word); rc = put_guest_lc(vcpu, inti->io.subchannel_id, (u16 *)__LC_SUBCHANNEL_ID); rc |= put_guest_lc(vcpu, inti->io.subchannel_nr, (u16 *)__LC_SUBCHANNEL_NR); rc |= put_guest_lc(vcpu, inti->io.io_int_parm, (u32 *)__LC_IO_INT_PARM); rc |= put_guest_lc(vcpu, inti->io.io_int_word, (u32 *)__LC_IO_INT_WORD); rc |= write_guest_lc(vcpu, __LC_IO_OLD_PSW, &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); rc |= read_guest_lc(vcpu, __LC_IO_NEW_PSW, &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); return rc ? -EFAULT : 0; } static int __must_check __deliver_mchk_floating(struct kvm_vcpu *vcpu, struct kvm_s390_interrupt_info *inti) { struct kvm_s390_mchk_info *mchk = &inti->mchk; int rc; VCPU_EVENT(vcpu, 4, "interrupt: machine check mcic=%llx", mchk->mcic); trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_MCHK, mchk->cr14, mchk->mcic); rc = kvm_s390_vcpu_store_status(vcpu, KVM_S390_STORE_STATUS_PREFIXED); rc |= put_guest_lc(vcpu, mchk->mcic, (u64 __user *) __LC_MCCK_CODE); rc |= put_guest_lc(vcpu, mchk->failing_storage_address, (u64 __user *) __LC_MCCK_FAIL_STOR_ADDR); rc |= write_guest_lc(vcpu, __LC_PSW_SAVE_AREA, &mchk->fixed_logout, sizeof(mchk->fixed_logout)); rc |= write_guest_lc(vcpu, __LC_MCK_OLD_PSW, &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); rc |= read_guest_lc(vcpu, __LC_MCK_NEW_PSW, &vcpu->arch.sie_block->gpsw, sizeof(psw_t)); return rc ? -EFAULT : 0; } typedef int (*deliver_irq_t)(struct kvm_vcpu *vcpu); static const deliver_irq_t deliver_irq_funcs[] = { [IRQ_PEND_MCHK_EX] = __deliver_machine_check, [IRQ_PEND_PROG] = __deliver_prog, [IRQ_PEND_EXT_EMERGENCY] = __deliver_emergency_signal, [IRQ_PEND_EXT_EXTERNAL] = __deliver_external_call, [IRQ_PEND_EXT_CLOCK_COMP] = __deliver_ckc, [IRQ_PEND_EXT_CPU_TIMER] = __deliver_cpu_timer, [IRQ_PEND_RESTART] = __deliver_restart, [IRQ_PEND_SET_PREFIX] = __deliver_set_prefix, [IRQ_PEND_PFAULT_INIT] = __deliver_pfault_init, }; static int __must_check __deliver_floating_interrupt(struct kvm_vcpu *vcpu, struct kvm_s390_interrupt_info *inti) { int rc; switch (inti->type) { case KVM_S390_INT_SERVICE: rc = __deliver_service(vcpu, inti); break; case KVM_S390_INT_PFAULT_DONE: rc = __deliver_pfault_done(vcpu, inti); break; case KVM_S390_INT_VIRTIO: rc = __deliver_virtio(vcpu, inti); break; case KVM_S390_MCHK: rc = __deliver_mchk_floating(vcpu, inti); break; case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: rc = __deliver_io(vcpu, inti); break; default: BUG(); } return rc; } /* Check whether an external call is pending (deliverable or not) */ int kvm_s390_ext_call_pending(struct kvm_vcpu *vcpu) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; uint8_t sigp_ctrl = vcpu->kvm->arch.sca->cpu[vcpu->vcpu_id].sigp_ctrl; if (!sclp_has_sigpif()) return test_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs); return (sigp_ctrl & SIGP_CTRL_C) && (atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_ECALL_PEND); } int kvm_s390_vcpu_has_irq(struct kvm_vcpu *vcpu, int exclude_stop) { struct kvm_s390_float_interrupt *fi = vcpu->arch.local_int.float_int; struct kvm_s390_interrupt_info *inti; int rc; rc = !!deliverable_local_irqs(vcpu); if ((!rc) && atomic_read(&fi->active)) { spin_lock(&fi->lock); list_for_each_entry(inti, &fi->list, list) if (__interrupt_is_deliverable(vcpu, inti)) { rc = 1; break; } spin_unlock(&fi->lock); } if (!rc && kvm_cpu_has_pending_timer(vcpu)) rc = 1; /* external call pending and deliverable */ if (!rc && kvm_s390_ext_call_pending(vcpu) && !psw_extint_disabled(vcpu) && (vcpu->arch.sie_block->gcr[0] & 0x2000ul)) rc = 1; if (!rc && !exclude_stop && kvm_s390_is_stop_irq_pending(vcpu)) rc = 1; return rc; } int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) { if (!(vcpu->arch.sie_block->ckc < get_tod_clock_fast() + vcpu->arch.sie_block->epoch)) return 0; if (!ckc_interrupts_enabled(vcpu)) return 0; return 1; } int kvm_s390_handle_wait(struct kvm_vcpu *vcpu) { u64 now, sltime; vcpu->stat.exit_wait_state++; /* fast path */ if (kvm_cpu_has_pending_timer(vcpu) || kvm_arch_vcpu_runnable(vcpu)) return 0; if (psw_interrupts_disabled(vcpu)) { VCPU_EVENT(vcpu, 3, "%s", "disabled wait"); return -EOPNOTSUPP; /* disabled wait */ } if (!ckc_interrupts_enabled(vcpu)) { VCPU_EVENT(vcpu, 3, "%s", "enabled wait w/o timer"); __set_cpu_idle(vcpu); goto no_timer; } now = get_tod_clock_fast() + vcpu->arch.sie_block->epoch; sltime = tod_to_ns(vcpu->arch.sie_block->ckc - now); /* underflow */ if (vcpu->arch.sie_block->ckc < now) return 0; __set_cpu_idle(vcpu); hrtimer_start(&vcpu->arch.ckc_timer, ktime_set (0, sltime) , HRTIMER_MODE_REL); VCPU_EVENT(vcpu, 5, "enabled wait via clock comparator: %llx ns", sltime); no_timer: srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); kvm_vcpu_block(vcpu); __unset_cpu_idle(vcpu); vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); hrtimer_cancel(&vcpu->arch.ckc_timer); return 0; } void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu) { if (waitqueue_active(&vcpu->wq)) { /* * The vcpu gave up the cpu voluntarily, mark it as a good * yield-candidate. */ vcpu->preempted = true; wake_up_interruptible(&vcpu->wq); vcpu->stat.halt_wakeup++; } } enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer) { struct kvm_vcpu *vcpu; u64 now, sltime; vcpu = container_of(timer, struct kvm_vcpu, arch.ckc_timer); now = get_tod_clock_fast() + vcpu->arch.sie_block->epoch; sltime = tod_to_ns(vcpu->arch.sie_block->ckc - now); /* * If the monotonic clock runs faster than the tod clock we might be * woken up too early and have to go back to sleep to avoid deadlocks. */ if (vcpu->arch.sie_block->ckc > now && hrtimer_forward_now(timer, ns_to_ktime(sltime))) return HRTIMER_RESTART; kvm_s390_vcpu_wakeup(vcpu); return HRTIMER_NORESTART; } void kvm_s390_clear_local_irqs(struct kvm_vcpu *vcpu) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; spin_lock(&li->lock); li->pending_irqs = 0; bitmap_zero(li->sigp_emerg_pending, KVM_MAX_VCPUS); memset(&li->irq, 0, sizeof(li->irq)); spin_unlock(&li->lock); /* clear pending external calls set by sigp interpretation facility */ atomic_clear_mask(CPUSTAT_ECALL_PEND, li->cpuflags); vcpu->kvm->arch.sca->cpu[vcpu->vcpu_id].sigp_ctrl = 0; } int __must_check kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; struct kvm_s390_float_interrupt *fi = vcpu->arch.local_int.float_int; struct kvm_s390_interrupt_info *n, *inti = NULL; deliver_irq_t func; int deliver; int rc = 0; unsigned long irq_type; unsigned long deliverable_irqs; __reset_intercept_indicators(vcpu); /* pending ckc conditions might have been invalidated */ clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs); if (kvm_cpu_has_pending_timer(vcpu)) set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs); do { deliverable_irqs = deliverable_local_irqs(vcpu); /* bits are in the order of interrupt priority */ irq_type = find_first_bit(&deliverable_irqs, IRQ_PEND_COUNT); if (irq_type == IRQ_PEND_COUNT) break; func = deliver_irq_funcs[irq_type]; if (!func) { WARN_ON_ONCE(func == NULL); clear_bit(irq_type, &li->pending_irqs); continue; } rc = func(vcpu); } while (!rc && irq_type != IRQ_PEND_COUNT); set_intercept_indicators_local(vcpu); if (!rc && atomic_read(&fi->active)) { do { deliver = 0; spin_lock(&fi->lock); list_for_each_entry_safe(inti, n, &fi->list, list) { if (__interrupt_is_deliverable(vcpu, inti)) { list_del(&inti->list); fi->irq_count--; deliver = 1; break; } __set_intercept_indicator(vcpu, inti); } if (list_empty(&fi->list)) atomic_set(&fi->active, 0); spin_unlock(&fi->lock); if (deliver) { rc = __deliver_floating_interrupt(vcpu, inti); kfree(inti); } } while (!rc && deliver); } return rc; } static int __inject_prog(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; li->irq.pgm = irq->u.pgm; set_bit(IRQ_PEND_PROG, &li->pending_irqs); return 0; } int kvm_s390_inject_program_int(struct kvm_vcpu *vcpu, u16 code) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; struct kvm_s390_irq irq; VCPU_EVENT(vcpu, 3, "inject: program check %d (from kernel)", code); trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT, code, 0, 1); spin_lock(&li->lock); irq.u.pgm.code = code; __inject_prog(vcpu, &irq); BUG_ON(waitqueue_active(li->wq)); spin_unlock(&li->lock); return 0; } int kvm_s390_inject_prog_irq(struct kvm_vcpu *vcpu, struct kvm_s390_pgm_info *pgm_info) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; struct kvm_s390_irq irq; int rc; VCPU_EVENT(vcpu, 3, "inject: prog irq %d (from kernel)", pgm_info->code); trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT, pgm_info->code, 0, 1); spin_lock(&li->lock); irq.u.pgm = *pgm_info; rc = __inject_prog(vcpu, &irq); BUG_ON(waitqueue_active(li->wq)); spin_unlock(&li->lock); return rc; } static int __inject_pfault_init(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; VCPU_EVENT(vcpu, 3, "inject: external irq params:%x, params2:%llx", irq->u.ext.ext_params, irq->u.ext.ext_params2); trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT, irq->u.ext.ext_params, irq->u.ext.ext_params2, 2); li->irq.ext = irq->u.ext; set_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs); atomic_set_mask(CPUSTAT_EXT_INT, li->cpuflags); return 0; } static int __inject_extcall_sigpif(struct kvm_vcpu *vcpu, uint16_t src_id) { unsigned char new_val, old_val; uint8_t *sigp_ctrl = &vcpu->kvm->arch.sca->cpu[vcpu->vcpu_id].sigp_ctrl; new_val = SIGP_CTRL_C | (src_id & SIGP_CTRL_SCN_MASK); old_val = *sigp_ctrl & ~SIGP_CTRL_C; if (cmpxchg(sigp_ctrl, old_val, new_val) != old_val) { /* another external call is pending */ return -EBUSY; } atomic_set_mask(CPUSTAT_ECALL_PEND, &vcpu->arch.sie_block->cpuflags); return 0; } static int __inject_extcall(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; struct kvm_s390_extcall_info *extcall = &li->irq.extcall; uint16_t src_id = irq->u.extcall.code; VCPU_EVENT(vcpu, 3, "inject: external call source-cpu:%u", src_id); trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL, src_id, 0, 2); /* sending vcpu invalid */ if (src_id >= KVM_MAX_VCPUS || kvm_get_vcpu(vcpu->kvm, src_id) == NULL) return -EINVAL; if (sclp_has_sigpif()) return __inject_extcall_sigpif(vcpu, src_id); if (!test_and_set_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs)) return -EBUSY; *extcall = irq->u.extcall; atomic_set_mask(CPUSTAT_EXT_INT, li->cpuflags); return 0; } static int __inject_set_prefix(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; struct kvm_s390_prefix_info *prefix = &li->irq.prefix; VCPU_EVENT(vcpu, 3, "inject: set prefix to %x (from user)", irq->u.prefix.address); trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX, irq->u.prefix.address, 0, 2); if (!is_vcpu_stopped(vcpu)) return -EBUSY; *prefix = irq->u.prefix; set_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs); return 0; } #define KVM_S390_STOP_SUPP_FLAGS (KVM_S390_STOP_FLAG_STORE_STATUS) static int __inject_sigp_stop(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; struct kvm_s390_stop_info *stop = &li->irq.stop; int rc = 0; trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_STOP, 0, 0, 2); if (irq->u.stop.flags & ~KVM_S390_STOP_SUPP_FLAGS) return -EINVAL; if (is_vcpu_stopped(vcpu)) { if (irq->u.stop.flags & KVM_S390_STOP_FLAG_STORE_STATUS) rc = kvm_s390_store_status_unloaded(vcpu, KVM_S390_STORE_STATUS_NOADDR); return rc; } if (test_and_set_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs)) return -EBUSY; stop->flags = irq->u.stop.flags; __set_cpuflag(vcpu, CPUSTAT_STOP_INT); return 0; } static int __inject_sigp_restart(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; VCPU_EVENT(vcpu, 3, "inject: restart type %llx", irq->type); trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0, 2); set_bit(IRQ_PEND_RESTART, &li->pending_irqs); return 0; } static int __inject_sigp_emergency(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; VCPU_EVENT(vcpu, 3, "inject: emergency %u\n", irq->u.emerg.code); trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY, irq->u.emerg.code, 0, 2); set_bit(irq->u.emerg.code, li->sigp_emerg_pending); set_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs); atomic_set_mask(CPUSTAT_EXT_INT, li->cpuflags); return 0; } static int __inject_mchk(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; struct kvm_s390_mchk_info *mchk = &li->irq.mchk; VCPU_EVENT(vcpu, 5, "inject: machine check parm64:%llx", irq->u.mchk.mcic); trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_MCHK, 0, irq->u.mchk.mcic, 2); /* * Because repressible machine checks can be indicated along with * exigent machine checks (PoP, Chapter 11, Interruption action) * we need to combine cr14, mcic and external damage code. * Failing storage address and the logout area should not be or'ed * together, we just indicate the last occurrence of the corresponding * machine check */ mchk->cr14 |= irq->u.mchk.cr14; mchk->mcic |= irq->u.mchk.mcic; mchk->ext_damage_code |= irq->u.mchk.ext_damage_code; mchk->failing_storage_address = irq->u.mchk.failing_storage_address; memcpy(&mchk->fixed_logout, &irq->u.mchk.fixed_logout, sizeof(mchk->fixed_logout)); if (mchk->mcic & MCHK_EX_MASK) set_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs); else if (mchk->mcic & MCHK_REP_MASK) set_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs); return 0; } static int __inject_ckc(struct kvm_vcpu *vcpu) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; VCPU_EVENT(vcpu, 3, "inject: type %x", KVM_S390_INT_CLOCK_COMP); trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP, 0, 0, 2); set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs); atomic_set_mask(CPUSTAT_EXT_INT, li->cpuflags); return 0; } static int __inject_cpu_timer(struct kvm_vcpu *vcpu) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; VCPU_EVENT(vcpu, 3, "inject: type %x", KVM_S390_INT_CPU_TIMER); trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER, 0, 0, 2); set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs); atomic_set_mask(CPUSTAT_EXT_INT, li->cpuflags); return 0; } struct kvm_s390_interrupt_info *kvm_s390_get_io_int(struct kvm *kvm, u64 cr6, u64 schid) { struct kvm_s390_float_interrupt *fi; struct kvm_s390_interrupt_info *inti, *iter; if ((!schid && !cr6) || (schid && cr6)) return NULL; fi = &kvm->arch.float_int; spin_lock(&fi->lock); inti = NULL; list_for_each_entry(iter, &fi->list, list) { if (!is_ioint(iter->type)) continue; if (cr6 && ((cr6 & int_word_to_isc_bits(iter->io.io_int_word)) == 0)) continue; if (schid) { if (((schid & 0x00000000ffff0000) >> 16) != iter->io.subchannel_id) continue; if ((schid & 0x000000000000ffff) != iter->io.subchannel_nr) continue; } inti = iter; break; } if (inti) { list_del_init(&inti->list); fi->irq_count--; } if (list_empty(&fi->list)) atomic_set(&fi->active, 0); spin_unlock(&fi->lock); return inti; } static int __inject_vm(struct kvm *kvm, struct kvm_s390_interrupt_info *inti) { struct kvm_s390_local_interrupt *li; struct kvm_s390_float_interrupt *fi; struct kvm_s390_interrupt_info *iter; struct kvm_vcpu *dst_vcpu = NULL; int sigcpu; int rc = 0; fi = &kvm->arch.float_int; spin_lock(&fi->lock); if (fi->irq_count >= KVM_S390_MAX_FLOAT_IRQS) { rc = -EINVAL; goto unlock_fi; } fi->irq_count++; if (!is_ioint(inti->type)) { list_add_tail(&inti->list, &fi->list); } else { u64 isc_bits = int_word_to_isc_bits(inti->io.io_int_word); /* Keep I/O interrupts sorted in isc order. */ list_for_each_entry(iter, &fi->list, list) { if (!is_ioint(iter->type)) continue; if (int_word_to_isc_bits(iter->io.io_int_word) <= isc_bits) continue; break; } list_add_tail(&inti->list, &iter->list); } atomic_set(&fi->active, 1); sigcpu = find_first_bit(fi->idle_mask, KVM_MAX_VCPUS); if (sigcpu == KVM_MAX_VCPUS) { do { sigcpu = fi->next_rr_cpu++; if (sigcpu == KVM_MAX_VCPUS) sigcpu = fi->next_rr_cpu = 0; } while (kvm_get_vcpu(kvm, sigcpu) == NULL); } dst_vcpu = kvm_get_vcpu(kvm, sigcpu); li = &dst_vcpu->arch.local_int; spin_lock(&li->lock); switch (inti->type) { case KVM_S390_MCHK: atomic_set_mask(CPUSTAT_STOP_INT, li->cpuflags); break; case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: atomic_set_mask(CPUSTAT_IO_INT, li->cpuflags); break; default: atomic_set_mask(CPUSTAT_EXT_INT, li->cpuflags); break; } spin_unlock(&li->lock); kvm_s390_vcpu_wakeup(kvm_get_vcpu(kvm, sigcpu)); unlock_fi: spin_unlock(&fi->lock); return rc; } int kvm_s390_inject_vm(struct kvm *kvm, struct kvm_s390_interrupt *s390int) { struct kvm_s390_interrupt_info *inti; int rc; inti = kzalloc(sizeof(*inti), GFP_KERNEL); if (!inti) return -ENOMEM; inti->type = s390int->type; switch (inti->type) { case KVM_S390_INT_VIRTIO: VM_EVENT(kvm, 5, "inject: virtio parm:%x,parm64:%llx", s390int->parm, s390int->parm64); inti->ext.ext_params = s390int->parm; inti->ext.ext_params2 = s390int->parm64; break; case KVM_S390_INT_SERVICE: VM_EVENT(kvm, 5, "inject: sclp parm:%x", s390int->parm); inti->ext.ext_params = s390int->parm; break; case KVM_S390_INT_PFAULT_DONE: inti->type = s390int->type; inti->ext.ext_params2 = s390int->parm64; break; case KVM_S390_MCHK: VM_EVENT(kvm, 5, "inject: machine check parm64:%llx", s390int->parm64); inti->mchk.cr14 = s390int->parm; /* upper bits are not used */ inti->mchk.mcic = s390int->parm64; break; case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: if (inti->type & IOINT_AI_MASK) VM_EVENT(kvm, 5, "%s", "inject: I/O (AI)"); else VM_EVENT(kvm, 5, "inject: I/O css %x ss %x schid %04x", s390int->type & IOINT_CSSID_MASK, s390int->type & IOINT_SSID_MASK, s390int->type & IOINT_SCHID_MASK); inti->io.subchannel_id = s390int->parm >> 16; inti->io.subchannel_nr = s390int->parm & 0x0000ffffu; inti->io.io_int_parm = s390int->parm64 >> 32; inti->io.io_int_word = s390int->parm64 & 0x00000000ffffffffull; break; default: kfree(inti); return -EINVAL; } trace_kvm_s390_inject_vm(s390int->type, s390int->parm, s390int->parm64, 2); rc = __inject_vm(kvm, inti); if (rc) kfree(inti); return rc; } void kvm_s390_reinject_io_int(struct kvm *kvm, struct kvm_s390_interrupt_info *inti) { __inject_vm(kvm, inti); } int s390int_to_s390irq(struct kvm_s390_interrupt *s390int, struct kvm_s390_irq *irq) { irq->type = s390int->type; switch (irq->type) { case KVM_S390_PROGRAM_INT: if (s390int->parm & 0xffff0000) return -EINVAL; irq->u.pgm.code = s390int->parm; break; case KVM_S390_SIGP_SET_PREFIX: irq->u.prefix.address = s390int->parm; break; case KVM_S390_SIGP_STOP: irq->u.stop.flags = s390int->parm; break; case KVM_S390_INT_EXTERNAL_CALL: if (irq->u.extcall.code & 0xffff0000) return -EINVAL; irq->u.extcall.code = s390int->parm; break; case KVM_S390_INT_EMERGENCY: if (irq->u.emerg.code & 0xffff0000) return -EINVAL; irq->u.emerg.code = s390int->parm; break; case KVM_S390_MCHK: irq->u.mchk.mcic = s390int->parm64; break; } return 0; } int kvm_s390_is_stop_irq_pending(struct kvm_vcpu *vcpu) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; return test_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs); } void kvm_s390_clear_stop_irq(struct kvm_vcpu *vcpu) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; spin_lock(&li->lock); li->irq.stop.flags = 0; clear_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs); spin_unlock(&li->lock); } int kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq) { struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int; int rc; spin_lock(&li->lock); switch (irq->type) { case KVM_S390_PROGRAM_INT: VCPU_EVENT(vcpu, 3, "inject: program check %d (from user)", irq->u.pgm.code); rc = __inject_prog(vcpu, irq); break; case KVM_S390_SIGP_SET_PREFIX: rc = __inject_set_prefix(vcpu, irq); break; case KVM_S390_SIGP_STOP: rc = __inject_sigp_stop(vcpu, irq); break; case KVM_S390_RESTART: rc = __inject_sigp_restart(vcpu, irq); break; case KVM_S390_INT_CLOCK_COMP: rc = __inject_ckc(vcpu); break; case KVM_S390_INT_CPU_TIMER: rc = __inject_cpu_timer(vcpu); break; case KVM_S390_INT_EXTERNAL_CALL: rc = __inject_extcall(vcpu, irq); break; case KVM_S390_INT_EMERGENCY: rc = __inject_sigp_emergency(vcpu, irq); break; case KVM_S390_MCHK: rc = __inject_mchk(vcpu, irq); break; case KVM_S390_INT_PFAULT_INIT: rc = __inject_pfault_init(vcpu, irq); break; case KVM_S390_INT_VIRTIO: case KVM_S390_INT_SERVICE: case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: default: rc = -EINVAL; } spin_unlock(&li->lock); if (!rc) kvm_s390_vcpu_wakeup(vcpu); return rc; } void kvm_s390_clear_float_irqs(struct kvm *kvm) { struct kvm_s390_float_interrupt *fi; struct kvm_s390_interrupt_info *n, *inti = NULL; fi = &kvm->arch.float_int; spin_lock(&fi->lock); list_for_each_entry_safe(inti, n, &fi->list, list) { list_del(&inti->list); kfree(inti); } fi->irq_count = 0; atomic_set(&fi->active, 0); spin_unlock(&fi->lock); } static inline int copy_irq_to_user(struct kvm_s390_interrupt_info *inti, u8 *addr) { struct kvm_s390_irq __user *uptr = (struct kvm_s390_irq __user *) addr; struct kvm_s390_irq irq = {0}; irq.type = inti->type; switch (inti->type) { case KVM_S390_INT_PFAULT_INIT: case KVM_S390_INT_PFAULT_DONE: case KVM_S390_INT_VIRTIO: case KVM_S390_INT_SERVICE: irq.u.ext = inti->ext; break; case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: irq.u.io = inti->io; break; case KVM_S390_MCHK: irq.u.mchk = inti->mchk; break; default: return -EINVAL; } if (copy_to_user(uptr, &irq, sizeof(irq))) return -EFAULT; return 0; } static int get_all_floating_irqs(struct kvm *kvm, __u8 *buf, __u64 len) { struct kvm_s390_interrupt_info *inti; struct kvm_s390_float_interrupt *fi; int ret = 0; int n = 0; fi = &kvm->arch.float_int; spin_lock(&fi->lock); list_for_each_entry(inti, &fi->list, list) { if (len < sizeof(struct kvm_s390_irq)) { /* signal userspace to try again */ ret = -ENOMEM; break; } ret = copy_irq_to_user(inti, buf); if (ret) break; buf += sizeof(struct kvm_s390_irq); len -= sizeof(struct kvm_s390_irq); n++; } spin_unlock(&fi->lock); return ret < 0 ? ret : n; } static int flic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr) { int r; switch (attr->group) { case KVM_DEV_FLIC_GET_ALL_IRQS: r = get_all_floating_irqs(dev->kvm, (u8 *) attr->addr, attr->attr); break; default: r = -EINVAL; } return r; } static inline int copy_irq_from_user(struct kvm_s390_interrupt_info *inti, u64 addr) { struct kvm_s390_irq __user *uptr = (struct kvm_s390_irq __user *) addr; void *target = NULL; void __user *source; u64 size; if (get_user(inti->type, (u64 __user *)addr)) return -EFAULT; switch (inti->type) { case KVM_S390_INT_PFAULT_INIT: case KVM_S390_INT_PFAULT_DONE: case KVM_S390_INT_VIRTIO: case KVM_S390_INT_SERVICE: target = (void *) &inti->ext; source = &uptr->u.ext; size = sizeof(inti->ext); break; case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: target = (void *) &inti->io; source = &uptr->u.io; size = sizeof(inti->io); break; case KVM_S390_MCHK: target = (void *) &inti->mchk; source = &uptr->u.mchk; size = sizeof(inti->mchk); break; default: return -EINVAL; } if (copy_from_user(target, source, size)) return -EFAULT; return 0; } static int enqueue_floating_irq(struct kvm_device *dev, struct kvm_device_attr *attr) { struct kvm_s390_interrupt_info *inti = NULL; int r = 0; int len = attr->attr; if (len % sizeof(struct kvm_s390_irq) != 0) return -EINVAL; else if (len > KVM_S390_FLIC_MAX_BUFFER) return -EINVAL; while (len >= sizeof(struct kvm_s390_irq)) { inti = kzalloc(sizeof(*inti), GFP_KERNEL); if (!inti) return -ENOMEM; r = copy_irq_from_user(inti, attr->addr); if (r) { kfree(inti); return r; } r = __inject_vm(dev->kvm, inti); if (r) { kfree(inti); return r; } len -= sizeof(struct kvm_s390_irq); attr->addr += sizeof(struct kvm_s390_irq); } return r; } static struct s390_io_adapter *get_io_adapter(struct kvm *kvm, unsigned int id) { if (id >= MAX_S390_IO_ADAPTERS) return NULL; return kvm->arch.adapters[id]; } static int register_io_adapter(struct kvm_device *dev, struct kvm_device_attr *attr) { struct s390_io_adapter *adapter; struct kvm_s390_io_adapter adapter_info; if (copy_from_user(&adapter_info, (void __user *)attr->addr, sizeof(adapter_info))) return -EFAULT; if ((adapter_info.id >= MAX_S390_IO_ADAPTERS) || (dev->kvm->arch.adapters[adapter_info.id] != NULL)) return -EINVAL; adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); if (!adapter) return -ENOMEM; INIT_LIST_HEAD(&adapter->maps); init_rwsem(&adapter->maps_lock); atomic_set(&adapter->nr_maps, 0); adapter->id = adapter_info.id; adapter->isc = adapter_info.isc; adapter->maskable = adapter_info.maskable; adapter->masked = false; adapter->swap = adapter_info.swap; dev->kvm->arch.adapters[adapter->id] = adapter; return 0; } int kvm_s390_mask_adapter(struct kvm *kvm, unsigned int id, bool masked) { int ret; struct s390_io_adapter *adapter = get_io_adapter(kvm, id); if (!adapter || !adapter->maskable) return -EINVAL; ret = adapter->masked; adapter->masked = masked; return ret; } static int kvm_s390_adapter_map(struct kvm *kvm, unsigned int id, __u64 addr) { struct s390_io_adapter *adapter = get_io_adapter(kvm, id); struct s390_map_info *map; int ret; if (!adapter || !addr) return -EINVAL; map = kzalloc(sizeof(*map), GFP_KERNEL); if (!map) { ret = -ENOMEM; goto out; } INIT_LIST_HEAD(&map->list); map->guest_addr = addr; map->addr = gmap_translate(kvm->arch.gmap, addr); if (map->addr == -EFAULT) { ret = -EFAULT; goto out; } ret = get_user_pages_fast(map->addr, 1, 1, &map->page); if (ret < 0) goto out; BUG_ON(ret != 1); down_write(&adapter->maps_lock); if (atomic_inc_return(&adapter->nr_maps) < MAX_S390_ADAPTER_MAPS) { list_add_tail(&map->list, &adapter->maps); ret = 0; } else { put_page(map->page); ret = -EINVAL; } up_write(&adapter->maps_lock); out: if (ret) kfree(map); return ret; } static int kvm_s390_adapter_unmap(struct kvm *kvm, unsigned int id, __u64 addr) { struct s390_io_adapter *adapter = get_io_adapter(kvm, id); struct s390_map_info *map, *tmp; int found = 0; if (!adapter || !addr) return -EINVAL; down_write(&adapter->maps_lock); list_for_each_entry_safe(map, tmp, &adapter->maps, list) { if (map->guest_addr == addr) { found = 1; atomic_dec(&adapter->nr_maps); list_del(&map->list); put_page(map->page); kfree(map); break; } } up_write(&adapter->maps_lock); return found ? 0 : -EINVAL; } void kvm_s390_destroy_adapters(struct kvm *kvm) { int i; struct s390_map_info *map, *tmp; for (i = 0; i < MAX_S390_IO_ADAPTERS; i++) { if (!kvm->arch.adapters[i]) continue; list_for_each_entry_safe(map, tmp, &kvm->arch.adapters[i]->maps, list) { list_del(&map->list); put_page(map->page); kfree(map); } kfree(kvm->arch.adapters[i]); } } static int modify_io_adapter(struct kvm_device *dev, struct kvm_device_attr *attr) { struct kvm_s390_io_adapter_req req; struct s390_io_adapter *adapter; int ret; if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req))) return -EFAULT; adapter = get_io_adapter(dev->kvm, req.id); if (!adapter) return -EINVAL; switch (req.type) { case KVM_S390_IO_ADAPTER_MASK: ret = kvm_s390_mask_adapter(dev->kvm, req.id, req.mask); if (ret > 0) ret = 0; break; case KVM_S390_IO_ADAPTER_MAP: ret = kvm_s390_adapter_map(dev->kvm, req.id, req.addr); break; case KVM_S390_IO_ADAPTER_UNMAP: ret = kvm_s390_adapter_unmap(dev->kvm, req.id, req.addr); break; default: ret = -EINVAL; } return ret; } static int flic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr) { int r = 0; unsigned int i; struct kvm_vcpu *vcpu; switch (attr->group) { case KVM_DEV_FLIC_ENQUEUE: r = enqueue_floating_irq(dev, attr); break; case KVM_DEV_FLIC_CLEAR_IRQS: kvm_s390_clear_float_irqs(dev->kvm); break; case KVM_DEV_FLIC_APF_ENABLE: dev->kvm->arch.gmap->pfault_enabled = 1; break; case KVM_DEV_FLIC_APF_DISABLE_WAIT: dev->kvm->arch.gmap->pfault_enabled = 0; /* * Make sure no async faults are in transition when * clearing the queues. So we don't need to worry * about late coming workers. */ synchronize_srcu(&dev->kvm->srcu); kvm_for_each_vcpu(i, vcpu, dev->kvm) kvm_clear_async_pf_completion_queue(vcpu); break; case KVM_DEV_FLIC_ADAPTER_REGISTER: r = register_io_adapter(dev, attr); break; case KVM_DEV_FLIC_ADAPTER_MODIFY: r = modify_io_adapter(dev, attr); break; default: r = -EINVAL; } return r; } static int flic_create(struct kvm_device *dev, u32 type) { if (!dev) return -EINVAL; if (dev->kvm->arch.flic) return -EINVAL; dev->kvm->arch.flic = dev; return 0; } static void flic_destroy(struct kvm_device *dev) { dev->kvm->arch.flic = NULL; kfree(dev); } /* s390 floating irq controller (flic) */ struct kvm_device_ops kvm_flic_ops = { .name = "kvm-flic", .get_attr = flic_get_attr, .set_attr = flic_set_attr, .create = flic_create, .destroy = flic_destroy, }; static unsigned long get_ind_bit(__u64 addr, unsigned long bit_nr, bool swap) { unsigned long bit; bit = bit_nr + (addr % PAGE_SIZE) * 8; return swap ? (bit ^ (BITS_PER_LONG - 1)) : bit; } static struct s390_map_info *get_map_info(struct s390_io_adapter *adapter, u64 addr) { struct s390_map_info *map; if (!adapter) return NULL; list_for_each_entry(map, &adapter->maps, list) { if (map->guest_addr == addr) return map; } return NULL; } static int adapter_indicators_set(struct kvm *kvm, struct s390_io_adapter *adapter, struct kvm_s390_adapter_int *adapter_int) { unsigned long bit; int summary_set, idx; struct s390_map_info *info; void *map; info = get_map_info(adapter, adapter_int->ind_addr); if (!info) return -1; map = page_address(info->page); bit = get_ind_bit(info->addr, adapter_int->ind_offset, adapter->swap); set_bit(bit, map); idx = srcu_read_lock(&kvm->srcu); mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT); set_page_dirty_lock(info->page); info = get_map_info(adapter, adapter_int->summary_addr); if (!info) { srcu_read_unlock(&kvm->srcu, idx); return -1; } map = page_address(info->page); bit = get_ind_bit(info->addr, adapter_int->summary_offset, adapter->swap); summary_set = test_and_set_bit(bit, map); mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT); set_page_dirty_lock(info->page); srcu_read_unlock(&kvm->srcu, idx); return summary_set ? 0 : 1; } /* * < 0 - not injected due to error * = 0 - coalesced, summary indicator already active * > 0 - injected interrupt */ static int set_adapter_int(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm, int irq_source_id, int level, bool line_status) { int ret; struct s390_io_adapter *adapter; /* We're only interested in the 0->1 transition. */ if (!level) return 0; adapter = get_io_adapter(kvm, e->adapter.adapter_id); if (!adapter) return -1; down_read(&adapter->maps_lock); ret = adapter_indicators_set(kvm, adapter, &e->adapter); up_read(&adapter->maps_lock); if ((ret > 0) && !adapter->masked) { struct kvm_s390_interrupt s390int = { .type = KVM_S390_INT_IO(1, 0, 0, 0), .parm = 0, .parm64 = (adapter->isc << 27) | 0x80000000, }; ret = kvm_s390_inject_vm(kvm, &s390int); if (ret == 0) ret = 1; } return ret; } int kvm_set_routing_entry(struct kvm_kernel_irq_routing_entry *e, const struct kvm_irq_routing_entry *ue) { int ret; switch (ue->type) { case KVM_IRQ_ROUTING_S390_ADAPTER: e->set = set_adapter_int; e->adapter.summary_addr = ue->u.adapter.summary_addr; e->adapter.ind_addr = ue->u.adapter.ind_addr; e->adapter.summary_offset = ue->u.adapter.summary_offset; e->adapter.ind_offset = ue->u.adapter.ind_offset; e->adapter.adapter_id = ue->u.adapter.adapter_id; ret = 0; break; default: ret = -EINVAL; } return ret; } int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm, int irq_source_id, int level, bool line_status) { return -EINVAL; }