#ifndef _LINUX_MMZONE_H #define _LINUX_MMZONE_H #ifdef __KERNEL__ #ifndef __ASSEMBLY__ #include #include #include #include #include #include #include #include #include /* Free memory management - zoned buddy allocator. */ #ifndef CONFIG_FORCE_MAX_ZONEORDER #define MAX_ORDER 11 #else #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER #endif struct free_area { struct list_head free_list; unsigned long nr_free; }; struct pglist_data; /* * zone->lock and zone->lru_lock are two of the hottest locks in the kernel. * So add a wild amount of padding here to ensure that they fall into separate * cachelines. There are very few zone structures in the machine, so space * consumption is not a concern here. */ #if defined(CONFIG_SMP) struct zone_padding { char x[0]; } ____cacheline_maxaligned_in_smp; #define ZONE_PADDING(name) struct zone_padding name; #else #define ZONE_PADDING(name) #endif struct per_cpu_pages { int count; /* number of pages in the list */ int low; /* low watermark, refill needed */ int high; /* high watermark, emptying needed */ int batch; /* chunk size for buddy add/remove */ struct list_head list; /* the list of pages */ }; struct per_cpu_pageset { struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */ #ifdef CONFIG_NUMA unsigned long numa_hit; /* allocated in intended node */ unsigned long numa_miss; /* allocated in non intended node */ unsigned long numa_foreign; /* was intended here, hit elsewhere */ unsigned long interleave_hit; /* interleaver prefered this zone */ unsigned long local_node; /* allocation from local node */ unsigned long other_node; /* allocation from other node */ #endif } ____cacheline_aligned_in_smp; #ifdef CONFIG_NUMA #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)]) #else #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)]) #endif #define ZONE_DMA 0 #define ZONE_NORMAL 1 #define ZONE_HIGHMEM 2 #define MAX_NR_ZONES 3 /* Sync this with ZONES_SHIFT */ #define ZONES_SHIFT 2 /* ceil(log2(MAX_NR_ZONES)) */ /* * When a memory allocation must conform to specific limitations (such * as being suitable for DMA) the caller will pass in hints to the * allocator in the gfp_mask, in the zone modifier bits. These bits * are used to select a priority ordered list of memory zones which * match the requested limits. GFP_ZONEMASK defines which bits within * the gfp_mask should be considered as zone modifiers. Each valid * combination of the zone modifier bits has a corresponding list * of zones (in node_zonelists). Thus for two zone modifiers there * will be a maximum of 4 (2 ** 2) zonelists, for 3 modifiers there will * be 8 (2 ** 3) zonelists. GFP_ZONETYPES defines the number of possible * combinations of zone modifiers in "zone modifier space". */ #define GFP_ZONEMASK 0x03 /* * As an optimisation any zone modifier bits which are only valid when * no other zone modifier bits are set (loners) should be placed in * the highest order bits of this field. This allows us to reduce the * extent of the zonelists thus saving space. For example in the case * of three zone modifier bits, we could require up to eight zonelists. * If the left most zone modifier is a "loner" then the highest valid * zonelist would be four allowing us to allocate only five zonelists. * Use the first form when the left most bit is not a "loner", otherwise * use the second. */ /* #define GFP_ZONETYPES (GFP_ZONEMASK + 1) */ /* Non-loner */ #define GFP_ZONETYPES ((GFP_ZONEMASK + 1) / 2 + 1) /* Loner */ /* * On machines where it is needed (eg PCs) we divide physical memory * into multiple physical zones. On a PC we have 3 zones: * * ZONE_DMA < 16 MB ISA DMA capable memory * ZONE_NORMAL 16-896 MB direct mapped by the kernel * ZONE_HIGHMEM > 896 MB only page cache and user processes */ struct zone { /* Fields commonly accessed by the page allocator */ unsigned long free_pages; unsigned long pages_min, pages_low, pages_high; /* * We don't know if the memory that we're going to allocate will be freeable * or/and it will be released eventually, so to avoid totally wasting several * GB of ram we must reserve some of the lower zone memory (otherwise we risk * to run OOM on the lower zones despite there's tons of freeable ram * on the higher zones). This array is recalculated at runtime if the * sysctl_lowmem_reserve_ratio sysctl changes. */ unsigned long lowmem_reserve[MAX_NR_ZONES]; #ifdef CONFIG_NUMA struct per_cpu_pageset *pageset[NR_CPUS]; #else struct per_cpu_pageset pageset[NR_CPUS]; #endif /* * free areas of different sizes */ spinlock_t lock; struct free_area free_area[MAX_ORDER]; ZONE_PADDING(_pad1_) /* Fields commonly accessed by the page reclaim scanner */ spinlock_t lru_lock; struct list_head active_list; struct list_head inactive_list; unsigned long nr_scan_active; unsigned long nr_scan_inactive; unsigned long nr_active; unsigned long nr_inactive; unsigned long pages_scanned; /* since last reclaim */ int all_unreclaimable; /* All pages pinned */ /* * Does the allocator try to reclaim pages from the zone as soon * as it fails a watermark_ok() in __alloc_pages? */ int reclaim_pages; /* A count of how many reclaimers are scanning this zone */ atomic_t reclaim_in_progress; /* * prev_priority holds the scanning priority for this zone. It is * defined as the scanning priority at which we achieved our reclaim * target at the previous try_to_free_pages() or balance_pgdat() * invokation. * * We use prev_priority as a measure of how much stress page reclaim is * under - it drives the swappiness decision: whether to unmap mapped * pages. * * temp_priority is used to remember the scanning priority at which * this zone was successfully refilled to free_pages == pages_high. * * Access to both these fields is quite racy even on uniprocessor. But * it is expected to average out OK. */ int temp_priority; int prev_priority; ZONE_PADDING(_pad2_) /* Rarely used or read-mostly fields */ /* * wait_table -- the array holding the hash table * wait_table_size -- the size of the hash table array * wait_table_bits -- wait_table_size == (1 << wait_table_bits) * * The purpose of all these is to keep track of the people * waiting for a page to become available and make them * runnable again when possible. The trouble is that this * consumes a lot of space, especially when so few things * wait on pages at a given time. So instead of using * per-page waitqueues, we use a waitqueue hash table. * * The bucket discipline is to sleep on the same queue when * colliding and wake all in that wait queue when removing. * When something wakes, it must check to be sure its page is * truly available, a la thundering herd. The cost of a * collision is great, but given the expected load of the * table, they should be so rare as to be outweighed by the * benefits from the saved space. * * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the * primary users of these fields, and in mm/page_alloc.c * free_area_init_core() performs the initialization of them. */ wait_queue_head_t * wait_table; unsigned long wait_table_size; unsigned long wait_table_bits; /* * Discontig memory support fields. */ struct pglist_data *zone_pgdat; struct page *zone_mem_map; /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ unsigned long zone_start_pfn; unsigned long spanned_pages; /* total size, including holes */ unsigned long present_pages; /* amount of memory (excluding holes) */ /* * rarely used fields: */ char *name; } ____cacheline_maxaligned_in_smp; /* * The "priority" of VM scanning is how much of the queues we will scan in one * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the * queues ("queue_length >> 12") during an aging round. */ #define DEF_PRIORITY 12 /* * One allocation request operates on a zonelist. A zonelist * is a list of zones, the first one is the 'goal' of the * allocation, the other zones are fallback zones, in decreasing * priority. * * Right now a zonelist takes up less than a cacheline. We never * modify it apart from boot-up, and only a few indices are used, * so despite the zonelist table being relatively big, the cache * footprint of this construct is very small. */ struct zonelist { struct zone *zones[MAX_NUMNODES * MAX_NR_ZONES + 1]; // NULL delimited }; /* * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM * (mostly NUMA machines?) to denote a higher-level memory zone than the * zone denotes. * * On NUMA machines, each NUMA node would have a pg_data_t to describe * it's memory layout. * * Memory statistics and page replacement data structures are maintained on a * per-zone basis. */ struct bootmem_data; typedef struct pglist_data { struct zone node_zones[MAX_NR_ZONES]; struct zonelist node_zonelists[GFP_ZONETYPES]; int nr_zones; struct page *node_mem_map; struct bootmem_data *bdata; unsigned long node_start_pfn; unsigned long node_present_pages; /* total number of physical pages */ unsigned long node_spanned_pages; /* total size of physical page range, including holes */ int node_id; struct pglist_data *pgdat_next; wait_queue_head_t kswapd_wait; struct task_struct *kswapd; int kswapd_max_order; } pg_data_t; #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) extern struct pglist_data *pgdat_list; void __get_zone_counts(unsigned long *active, unsigned long *inactive, unsigned long *free, struct pglist_data *pgdat); void get_zone_counts(unsigned long *active, unsigned long *inactive, unsigned long *free); void build_all_zonelists(void); void wakeup_kswapd(struct zone *zone, int order); int zone_watermark_ok(struct zone *z, int order, unsigned long mark, int alloc_type, int can_try_harder, int gfp_high); #ifdef CONFIG_HAVE_MEMORY_PRESENT void memory_present(int nid, unsigned long start, unsigned long end); #else static inline void memory_present(int nid, unsigned long start, unsigned long end) {} #endif #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); #endif /* * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. */ #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) /** * for_each_pgdat - helper macro to iterate over all nodes * @pgdat - pointer to a pg_data_t variable * * Meant to help with common loops of the form * pgdat = pgdat_list; * while(pgdat) { * ... * pgdat = pgdat->pgdat_next; * } */ #define for_each_pgdat(pgdat) \ for (pgdat = pgdat_list; pgdat; pgdat = pgdat->pgdat_next) /* * next_zone - helper magic for for_each_zone() * Thanks to William Lee Irwin III for this piece of ingenuity. */ static inline struct zone *next_zone(struct zone *zone) { pg_data_t *pgdat = zone->zone_pgdat; if (zone < pgdat->node_zones + MAX_NR_ZONES - 1) zone++; else if (pgdat->pgdat_next) { pgdat = pgdat->pgdat_next; zone = pgdat->node_zones; } else zone = NULL; return zone; } /** * for_each_zone - helper macro to iterate over all memory zones * @zone - pointer to struct zone variable * * The user only needs to declare the zone variable, for_each_zone * fills it in. This basically means for_each_zone() is an * easier to read version of this piece of code: * * for (pgdat = pgdat_list; pgdat; pgdat = pgdat->node_next) * for (i = 0; i < MAX_NR_ZONES; ++i) { * struct zone * z = pgdat->node_zones + i; * ... * } * } */ #define for_each_zone(zone) \ for (zone = pgdat_list->node_zones; zone; zone = next_zone(zone)) static inline int is_highmem_idx(int idx) { return (idx == ZONE_HIGHMEM); } static inline int is_normal_idx(int idx) { return (idx == ZONE_NORMAL); } /** * is_highmem - helper function to quickly check if a struct zone is a * highmem zone or not. This is an attempt to keep references * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. * @zone - pointer to struct zone variable */ static inline int is_highmem(struct zone *zone) { return zone == zone->zone_pgdat->node_zones + ZONE_HIGHMEM; } static inline int is_normal(struct zone *zone) { return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL; } /* These two functions are used to setup the per zone pages min values */ struct ctl_table; struct file; int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *, void __user *, size_t *, loff_t *); extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *, void __user *, size_t *, loff_t *); #include /* Returns the number of the current Node. */ #define numa_node_id() (cpu_to_node(raw_smp_processor_id())) #ifndef CONFIG_DISCONTIGMEM extern struct pglist_data contig_page_data; #define NODE_DATA(nid) (&contig_page_data) #define NODE_MEM_MAP(nid) mem_map #define MAX_NODES_SHIFT 1 #define pfn_to_nid(pfn) (0) #else /* CONFIG_DISCONTIGMEM */ #include #if BITS_PER_LONG == 32 || defined(ARCH_HAS_ATOMIC_UNSIGNED) /* * with 32 bit page->flags field, we reserve 8 bits for node/zone info. * there are 3 zones (2 bits) and this leaves 8-2=6 bits for nodes. */ #define MAX_NODES_SHIFT 6 #elif BITS_PER_LONG == 64 /* * with 64 bit flags field, there's plenty of room. */ #define MAX_NODES_SHIFT 10 #endif #endif /* !CONFIG_DISCONTIGMEM */ #if NODES_SHIFT > MAX_NODES_SHIFT #error NODES_SHIFT > MAX_NODES_SHIFT #endif /* There are currently 3 zones: DMA, Normal & Highmem, thus we need 2 bits */ #define MAX_ZONES_SHIFT 2 #if ZONES_SHIFT > MAX_ZONES_SHIFT #error ZONES_SHIFT > MAX_ZONES_SHIFT #endif #endif /* !__ASSEMBLY__ */ #endif /* __KERNEL__ */ #endif /* _LINUX_MMZONE_H */