/* * vMTRR implementation * * Copyright (C) 2006 Qumranet, Inc. * Copyright 2010 Red Hat, Inc. and/or its affiliates. * Copyright(C) 2015 Intel Corporation. * * Authors: * Yaniv Kamay * Avi Kivity * Marcelo Tosatti * Paolo Bonzini * Xiao Guangrong * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. */ #include #include #include "cpuid.h" #include "mmu.h" #define IA32_MTRR_DEF_TYPE_E (1ULL << 11) #define IA32_MTRR_DEF_TYPE_FE (1ULL << 10) #define IA32_MTRR_DEF_TYPE_TYPE_MASK (0xff) static bool msr_mtrr_valid(unsigned msr) { switch (msr) { case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1: case MSR_MTRRfix64K_00000: case MSR_MTRRfix16K_80000: case MSR_MTRRfix16K_A0000: case MSR_MTRRfix4K_C0000: case MSR_MTRRfix4K_C8000: case MSR_MTRRfix4K_D0000: case MSR_MTRRfix4K_D8000: case MSR_MTRRfix4K_E0000: case MSR_MTRRfix4K_E8000: case MSR_MTRRfix4K_F0000: case MSR_MTRRfix4K_F8000: case MSR_MTRRdefType: case MSR_IA32_CR_PAT: return true; case 0x2f8: return true; } return false; } static bool valid_pat_type(unsigned t) { return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */ } static bool valid_mtrr_type(unsigned t) { return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */ } bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data) { int i; u64 mask; if (!msr_mtrr_valid(msr)) return false; if (msr == MSR_IA32_CR_PAT) { for (i = 0; i < 8; i++) if (!valid_pat_type((data >> (i * 8)) & 0xff)) return false; return true; } else if (msr == MSR_MTRRdefType) { if (data & ~0xcff) return false; return valid_mtrr_type(data & 0xff); } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) { for (i = 0; i < 8 ; i++) if (!valid_mtrr_type((data >> (i * 8)) & 0xff)) return false; return true; } /* variable MTRRs */ WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR)); mask = (~0ULL) << cpuid_maxphyaddr(vcpu); if ((msr & 1) == 0) { /* MTRR base */ if (!valid_mtrr_type(data & 0xff)) return false; mask |= 0xf00; } else /* MTRR mask */ mask |= 0x7ff; if (data & mask) { kvm_inject_gp(vcpu, 0); return false; } return true; } EXPORT_SYMBOL_GPL(kvm_mtrr_valid); static bool mtrr_is_enabled(struct kvm_mtrr *mtrr_state) { return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_E); } static bool fixed_mtrr_is_enabled(struct kvm_mtrr *mtrr_state) { return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_FE); } static u8 mtrr_default_type(struct kvm_mtrr *mtrr_state) { return mtrr_state->deftype & IA32_MTRR_DEF_TYPE_TYPE_MASK; } static void update_mtrr(struct kvm_vcpu *vcpu, u32 msr) { struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state; gfn_t start, end, mask; int index; bool is_fixed = true; if (msr == MSR_IA32_CR_PAT || !tdp_enabled || !kvm_arch_has_noncoherent_dma(vcpu->kvm)) return; if (!mtrr_is_enabled(mtrr_state) && msr != MSR_MTRRdefType) return; switch (msr) { case MSR_MTRRfix64K_00000: start = 0x0; end = 0x80000; break; case MSR_MTRRfix16K_80000: start = 0x80000; end = 0xa0000; break; case MSR_MTRRfix16K_A0000: start = 0xa0000; end = 0xc0000; break; case MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000: index = msr - MSR_MTRRfix4K_C0000; start = 0xc0000 + index * (32 << 10); end = start + (32 << 10); break; case MSR_MTRRdefType: is_fixed = false; start = 0x0; end = ~0ULL; break; default: /* variable range MTRRs. */ is_fixed = false; index = (msr - 0x200) / 2; start = mtrr_state->var_ranges[index].base & PAGE_MASK; mask = mtrr_state->var_ranges[index].mask & PAGE_MASK; mask |= ~0ULL << cpuid_maxphyaddr(vcpu); end = ((start & mask) | ~mask) + 1; } if (is_fixed && !fixed_mtrr_is_enabled(mtrr_state)) return; kvm_zap_gfn_range(vcpu->kvm, gpa_to_gfn(start), gpa_to_gfn(end)); } int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data) { u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; if (!kvm_mtrr_valid(vcpu, msr, data)) return 1; if (msr == MSR_MTRRdefType) vcpu->arch.mtrr_state.deftype = data; else if (msr == MSR_MTRRfix64K_00000) p[0] = data; else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) p[1 + msr - MSR_MTRRfix16K_80000] = data; else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) p[3 + msr - MSR_MTRRfix4K_C0000] = data; else if (msr == MSR_IA32_CR_PAT) vcpu->arch.pat = data; else { /* Variable MTRRs */ int idx, is_mtrr_mask; idx = (msr - 0x200) / 2; is_mtrr_mask = msr - 0x200 - 2 * idx; if (!is_mtrr_mask) vcpu->arch.mtrr_state.var_ranges[idx].base = data; else vcpu->arch.mtrr_state.var_ranges[idx].mask = data; } update_mtrr(vcpu, msr); return 0; } int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) { u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; /* MSR_MTRRcap is a readonly MSR. */ if (msr == MSR_MTRRcap) { /* * SMRR = 0 * WC = 1 * FIX = 1 * VCNT = KVM_NR_VAR_MTRR */ *pdata = 0x500 | KVM_NR_VAR_MTRR; return 0; } if (!msr_mtrr_valid(msr)) return 1; if (msr == MSR_MTRRdefType) *pdata = vcpu->arch.mtrr_state.deftype; else if (msr == MSR_MTRRfix64K_00000) *pdata = p[0]; else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) *pdata = p[1 + msr - MSR_MTRRfix16K_80000]; else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) *pdata = p[3 + msr - MSR_MTRRfix4K_C0000]; else if (msr == MSR_IA32_CR_PAT) *pdata = vcpu->arch.pat; else { /* Variable MTRRs */ int idx, is_mtrr_mask; idx = (msr - 0x200) / 2; is_mtrr_mask = msr - 0x200 - 2 * idx; if (!is_mtrr_mask) *pdata = vcpu->arch.mtrr_state.var_ranges[idx].base; else *pdata = vcpu->arch.mtrr_state.var_ranges[idx].mask; } return 0; } u8 kvm_mtrr_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn) { struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state; u64 base, mask, start; int i, num_var_ranges, type; const int wt_wb_mask = (1 << MTRR_TYPE_WRBACK) | (1 << MTRR_TYPE_WRTHROUGH); start = gfn_to_gpa(gfn); num_var_ranges = KVM_NR_VAR_MTRR; type = -1; /* MTRR is completely disabled, use UC for all of physical memory. */ if (!mtrr_is_enabled(mtrr_state)) return MTRR_TYPE_UNCACHABLE; /* Look in fixed ranges. Just return the type as per start */ if (fixed_mtrr_is_enabled(mtrr_state) && (start < 0x100000)) { int idx; if (start < 0x80000) { idx = 0; idx += (start >> 16); return mtrr_state->fixed_ranges[idx]; } else if (start < 0xC0000) { idx = 1 * 8; idx += ((start - 0x80000) >> 14); return mtrr_state->fixed_ranges[idx]; } else if (start < 0x1000000) { idx = 3 * 8; idx += ((start - 0xC0000) >> 12); return mtrr_state->fixed_ranges[idx]; } } /* * Look in variable ranges * Look of multiple ranges matching this address and pick type * as per MTRR precedence */ for (i = 0; i < num_var_ranges; ++i) { int curr_type; if (!(mtrr_state->var_ranges[i].mask & (1 << 11))) continue; base = mtrr_state->var_ranges[i].base & PAGE_MASK; mask = mtrr_state->var_ranges[i].mask & PAGE_MASK; if ((start & mask) != (base & mask)) continue; /* * Please refer to Intel SDM Volume 3: 11.11.4.1 MTRR * Precedences. */ curr_type = mtrr_state->var_ranges[i].base & 0xff; if (type == -1) { type = curr_type; continue; } /* * If two or more variable memory ranges match and the * memory types are identical, then that memory type is * used. */ if (type == curr_type) continue; /* * If two or more variable memory ranges match and one of * the memory types is UC, the UC memory type used. */ if (curr_type == MTRR_TYPE_UNCACHABLE) return MTRR_TYPE_UNCACHABLE; /* * If two or more variable memory ranges match and the * memory types are WT and WB, the WT memory type is used. */ if (((1 << type) & wt_wb_mask) && ((1 << curr_type) & wt_wb_mask)) { type = MTRR_TYPE_WRTHROUGH; continue; } /* * For overlaps not defined by the above rules, processor * behavior is undefined. */ /* We use WB for this undefined behavior. :( */ return MTRR_TYPE_WRBACK; } if (type != -1) return type; return mtrr_default_type(mtrr_state); } EXPORT_SYMBOL_GPL(kvm_mtrr_get_guest_memory_type);