/* * Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation. * Copyright 2001-2012 IBM Corporation. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #ifndef _POWERPC_EEH_H #define _POWERPC_EEH_H #ifdef __KERNEL__ #include #include #include #include #include struct pci_dev; struct pci_bus; struct device_node; #ifdef CONFIG_EEH /* EEH subsystem flags */ #define EEH_ENABLED 0x01 /* EEH enabled */ #define EEH_FORCE_DISABLED 0x02 /* EEH disabled */ #define EEH_PROBE_MODE_DEV 0x04 /* From PCI device */ #define EEH_PROBE_MODE_DEVTREE 0x08 /* From device tree */ #define EEH_ENABLE_IO_FOR_LOG 0x10 /* Enable IO for log */ /* * Delay for PE reset, all in ms * * PCI specification has reset hold time of 100 milliseconds. * We have 250 milliseconds here. The PCI bus settlement time * is specified as 1.5 seconds and we have 1.8 seconds. */ #define EEH_PE_RST_HOLD_TIME 250 #define EEH_PE_RST_SETTLE_TIME 1800 /* * The struct is used to trace PE related EEH functionality. * In theory, there will have one instance of the struct to * be created against particular PE. In nature, PEs corelate * to each other. the struct has to reflect that hierarchy in * order to easily pick up those affected PEs when one particular * PE has EEH errors. * * Also, one particular PE might be composed of PCI device, PCI * bus and its subordinate components. The struct also need ship * the information. Further more, one particular PE is only meaingful * in the corresponding PHB. Therefore, the root PEs should be created * against existing PHBs in on-to-one fashion. */ #define EEH_PE_INVALID (1 << 0) /* Invalid */ #define EEH_PE_PHB (1 << 1) /* PHB PE */ #define EEH_PE_DEVICE (1 << 2) /* Device PE */ #define EEH_PE_BUS (1 << 3) /* Bus PE */ #define EEH_PE_ISOLATED (1 << 0) /* Isolated PE */ #define EEH_PE_RECOVERING (1 << 1) /* Recovering PE */ #define EEH_PE_RESET (1 << 2) /* PE reset in progress */ #define EEH_PE_KEEP (1 << 8) /* Keep PE on hotplug */ struct eeh_pe { int type; /* PE type: PHB/Bus/Device */ int state; /* PE EEH dependent mode */ int config_addr; /* Traditional PCI address */ int addr; /* PE configuration address */ struct pci_controller *phb; /* Associated PHB */ struct pci_bus *bus; /* Top PCI bus for bus PE */ int check_count; /* Times of ignored error */ int freeze_count; /* Times of froze up */ struct timeval tstamp; /* Time on first-time freeze */ int false_positives; /* Times of reported #ff's */ atomic_t pass_dev_cnt; /* Count of passed through devs */ struct eeh_pe *parent; /* Parent PE */ void *data; /* PE auxillary data */ struct list_head child_list; /* Link PE to the child list */ struct list_head edevs; /* Link list of EEH devices */ struct list_head child; /* Child PEs */ }; #define eeh_pe_for_each_dev(pe, edev, tmp) \ list_for_each_entry_safe(edev, tmp, &pe->edevs, list) static inline bool eeh_pe_passed(struct eeh_pe *pe) { return pe ? !!atomic_read(&pe->pass_dev_cnt) : false; } /* * The struct is used to trace EEH state for the associated * PCI device node or PCI device. In future, it might * represent PE as well so that the EEH device to form * another tree except the currently existing tree of PCI * buses and PCI devices */ #define EEH_DEV_BRIDGE (1 << 0) /* PCI bridge */ #define EEH_DEV_ROOT_PORT (1 << 1) /* PCIe root port */ #define EEH_DEV_DS_PORT (1 << 2) /* Downstream port */ #define EEH_DEV_IRQ_DISABLED (1 << 3) /* Interrupt disabled */ #define EEH_DEV_DISCONNECTED (1 << 4) /* Removing from PE */ #define EEH_DEV_NO_HANDLER (1 << 8) /* No error handler */ #define EEH_DEV_SYSFS (1 << 9) /* Sysfs created */ #define EEH_DEV_REMOVED (1 << 10) /* Removed permanently */ struct eeh_dev { int mode; /* EEH mode */ int class_code; /* Class code of the device */ int config_addr; /* Config address */ int pe_config_addr; /* PE config address */ u32 config_space[16]; /* Saved PCI config space */ int pcix_cap; /* Saved PCIx capability */ int pcie_cap; /* Saved PCIe capability */ int aer_cap; /* Saved AER capability */ struct eeh_pe *pe; /* Associated PE */ struct list_head list; /* Form link list in the PE */ struct pci_controller *phb; /* Associated PHB */ struct device_node *dn; /* Associated device node */ struct pci_dev *pdev; /* Associated PCI device */ struct pci_bus *bus; /* PCI bus for partial hotplug */ }; static inline struct device_node *eeh_dev_to_of_node(struct eeh_dev *edev) { return edev ? edev->dn : NULL; } static inline struct pci_dev *eeh_dev_to_pci_dev(struct eeh_dev *edev) { return edev ? edev->pdev : NULL; } static inline struct eeh_pe *eeh_dev_to_pe(struct eeh_dev* edev) { return edev ? edev->pe : NULL; } /* Return values from eeh_ops::next_error */ enum { EEH_NEXT_ERR_NONE = 0, EEH_NEXT_ERR_INF, EEH_NEXT_ERR_FROZEN_PE, EEH_NEXT_ERR_FENCED_PHB, EEH_NEXT_ERR_DEAD_PHB, EEH_NEXT_ERR_DEAD_IOC }; /* * The struct is used to trace the registered EEH operation * callback functions. Actually, those operation callback * functions are heavily platform dependent. That means the * platform should register its own EEH operation callback * functions before any EEH further operations. */ #define EEH_OPT_DISABLE 0 /* EEH disable */ #define EEH_OPT_ENABLE 1 /* EEH enable */ #define EEH_OPT_THAW_MMIO 2 /* MMIO enable */ #define EEH_OPT_THAW_DMA 3 /* DMA enable */ #define EEH_STATE_UNAVAILABLE (1 << 0) /* State unavailable */ #define EEH_STATE_NOT_SUPPORT (1 << 1) /* EEH not supported */ #define EEH_STATE_RESET_ACTIVE (1 << 2) /* Active reset */ #define EEH_STATE_MMIO_ACTIVE (1 << 3) /* Active MMIO */ #define EEH_STATE_DMA_ACTIVE (1 << 4) /* Active DMA */ #define EEH_STATE_MMIO_ENABLED (1 << 5) /* MMIO enabled */ #define EEH_STATE_DMA_ENABLED (1 << 6) /* DMA enabled */ #define EEH_PE_STATE_NORMAL 0 /* Normal state */ #define EEH_PE_STATE_RESET 1 /* PE reset asserted */ #define EEH_PE_STATE_STOPPED_IO_DMA 2 /* Frozen PE */ #define EEH_PE_STATE_STOPPED_DMA 4 /* Stopped DMA, Enabled IO */ #define EEH_PE_STATE_UNAVAIL 5 /* Unavailable */ #define EEH_RESET_DEACTIVATE 0 /* Deactivate the PE reset */ #define EEH_RESET_HOT 1 /* Hot reset */ #define EEH_RESET_FUNDAMENTAL 3 /* Fundamental reset */ #define EEH_LOG_TEMP 1 /* EEH temporary error log */ #define EEH_LOG_PERM 2 /* EEH permanent error log */ struct eeh_ops { char *name; int (*init)(void); int (*post_init)(void); void* (*of_probe)(struct device_node *dn, void *flag); int (*dev_probe)(struct pci_dev *dev, void *flag); int (*set_option)(struct eeh_pe *pe, int option); int (*get_pe_addr)(struct eeh_pe *pe); int (*get_state)(struct eeh_pe *pe, int *state); int (*reset)(struct eeh_pe *pe, int option); int (*wait_state)(struct eeh_pe *pe, int max_wait); int (*get_log)(struct eeh_pe *pe, int severity, char *drv_log, unsigned long len); int (*configure_bridge)(struct eeh_pe *pe); int (*read_config)(struct device_node *dn, int where, int size, u32 *val); int (*write_config)(struct device_node *dn, int where, int size, u32 val); int (*next_error)(struct eeh_pe **pe); int (*restore_config)(struct device_node *dn); }; extern int eeh_subsystem_flags; extern struct eeh_ops *eeh_ops; extern raw_spinlock_t confirm_error_lock; static inline void eeh_add_flag(int flag) { eeh_subsystem_flags |= flag; } static inline void eeh_clear_flag(int flag) { eeh_subsystem_flags &= ~flag; } static inline bool eeh_has_flag(int flag) { return !!(eeh_subsystem_flags & flag); } static inline bool eeh_enabled(void) { if (eeh_has_flag(EEH_FORCE_DISABLED) || !eeh_has_flag(EEH_ENABLED)) return false; return true; } static inline void eeh_serialize_lock(unsigned long *flags) { raw_spin_lock_irqsave(&confirm_error_lock, *flags); } static inline void eeh_serialize_unlock(unsigned long flags) { raw_spin_unlock_irqrestore(&confirm_error_lock, flags); } /* * Max number of EEH freezes allowed before we consider the device * to be permanently disabled. */ #define EEH_MAX_ALLOWED_FREEZES 5 typedef void *(*eeh_traverse_func)(void *data, void *flag); void eeh_set_pe_aux_size(int size); int eeh_phb_pe_create(struct pci_controller *phb); struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb); struct eeh_pe *eeh_pe_get(struct eeh_dev *edev); int eeh_add_to_parent_pe(struct eeh_dev *edev); int eeh_rmv_from_parent_pe(struct eeh_dev *edev); void eeh_pe_update_time_stamp(struct eeh_pe *pe); void *eeh_pe_traverse(struct eeh_pe *root, eeh_traverse_func fn, void *flag); void *eeh_pe_dev_traverse(struct eeh_pe *root, eeh_traverse_func fn, void *flag); void eeh_pe_restore_bars(struct eeh_pe *pe); const char *eeh_pe_loc_get(struct eeh_pe *pe); struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe); void *eeh_dev_init(struct device_node *dn, void *data); void eeh_dev_phb_init_dynamic(struct pci_controller *phb); int eeh_init(void); int __init eeh_ops_register(struct eeh_ops *ops); int __exit eeh_ops_unregister(const char *name); int eeh_check_failure(const volatile void __iomem *token); int eeh_dev_check_failure(struct eeh_dev *edev); void eeh_addr_cache_build(void); void eeh_add_device_early(struct device_node *); void eeh_add_device_tree_early(struct device_node *); void eeh_add_device_late(struct pci_dev *); void eeh_add_device_tree_late(struct pci_bus *); void eeh_add_sysfs_files(struct pci_bus *); void eeh_remove_device(struct pci_dev *); int eeh_dev_open(struct pci_dev *pdev); void eeh_dev_release(struct pci_dev *pdev); struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group); int eeh_pe_set_option(struct eeh_pe *pe, int option); int eeh_pe_get_state(struct eeh_pe *pe); int eeh_pe_reset(struct eeh_pe *pe, int option); int eeh_pe_configure(struct eeh_pe *pe); /** * EEH_POSSIBLE_ERROR() -- test for possible MMIO failure. * * If this macro yields TRUE, the caller relays to eeh_check_failure() * which does further tests out of line. */ #define EEH_POSSIBLE_ERROR(val, type) ((val) == (type)~0 && eeh_enabled()) /* * Reads from a device which has been isolated by EEH will return * all 1s. This macro gives an all-1s value of the given size (in * bytes: 1, 2, or 4) for comparing with the result of a read. */ #define EEH_IO_ERROR_VALUE(size) (~0U >> ((4 - (size)) * 8)) #else /* !CONFIG_EEH */ static inline bool eeh_enabled(void) { return false; } static inline int eeh_init(void) { return 0; } static inline void *eeh_dev_init(struct device_node *dn, void *data) { return NULL; } static inline void eeh_dev_phb_init_dynamic(struct pci_controller *phb) { } static inline int eeh_check_failure(const volatile void __iomem *token) { return 0; } #define eeh_dev_check_failure(x) (0) static inline void eeh_addr_cache_build(void) { } static inline void eeh_add_device_early(struct device_node *dn) { } static inline void eeh_add_device_tree_early(struct device_node *dn) { } static inline void eeh_add_device_late(struct pci_dev *dev) { } static inline void eeh_add_device_tree_late(struct pci_bus *bus) { } static inline void eeh_add_sysfs_files(struct pci_bus *bus) { } static inline void eeh_remove_device(struct pci_dev *dev) { } #define EEH_POSSIBLE_ERROR(val, type) (0) #define EEH_IO_ERROR_VALUE(size) (-1UL) #endif /* CONFIG_EEH */ #ifdef CONFIG_PPC64 /* * MMIO read/write operations with EEH support. */ static inline u8 eeh_readb(const volatile void __iomem *addr) { u8 val = in_8(addr); if (EEH_POSSIBLE_ERROR(val, u8)) eeh_check_failure(addr); return val; } static inline u16 eeh_readw(const volatile void __iomem *addr) { u16 val = in_le16(addr); if (EEH_POSSIBLE_ERROR(val, u16)) eeh_check_failure(addr); return val; } static inline u32 eeh_readl(const volatile void __iomem *addr) { u32 val = in_le32(addr); if (EEH_POSSIBLE_ERROR(val, u32)) eeh_check_failure(addr); return val; } static inline u64 eeh_readq(const volatile void __iomem *addr) { u64 val = in_le64(addr); if (EEH_POSSIBLE_ERROR(val, u64)) eeh_check_failure(addr); return val; } static inline u16 eeh_readw_be(const volatile void __iomem *addr) { u16 val = in_be16(addr); if (EEH_POSSIBLE_ERROR(val, u16)) eeh_check_failure(addr); return val; } static inline u32 eeh_readl_be(const volatile void __iomem *addr) { u32 val = in_be32(addr); if (EEH_POSSIBLE_ERROR(val, u32)) eeh_check_failure(addr); return val; } static inline u64 eeh_readq_be(const volatile void __iomem *addr) { u64 val = in_be64(addr); if (EEH_POSSIBLE_ERROR(val, u64)) eeh_check_failure(addr); return val; } static inline void eeh_memcpy_fromio(void *dest, const volatile void __iomem *src, unsigned long n) { _memcpy_fromio(dest, src, n); /* Look for ffff's here at dest[n]. Assume that at least 4 bytes * were copied. Check all four bytes. */ if (n >= 4 && EEH_POSSIBLE_ERROR(*((u32 *)(dest + n - 4)), u32)) eeh_check_failure(src); } /* in-string eeh macros */ static inline void eeh_readsb(const volatile void __iomem *addr, void * buf, int ns) { _insb(addr, buf, ns); if (EEH_POSSIBLE_ERROR((*(((u8*)buf)+ns-1)), u8)) eeh_check_failure(addr); } static inline void eeh_readsw(const volatile void __iomem *addr, void * buf, int ns) { _insw(addr, buf, ns); if (EEH_POSSIBLE_ERROR((*(((u16*)buf)+ns-1)), u16)) eeh_check_failure(addr); } static inline void eeh_readsl(const volatile void __iomem *addr, void * buf, int nl) { _insl(addr, buf, nl); if (EEH_POSSIBLE_ERROR((*(((u32*)buf)+nl-1)), u32)) eeh_check_failure(addr); } #endif /* CONFIG_PPC64 */ #endif /* __KERNEL__ */ #endif /* _POWERPC_EEH_H */