/* * NVM Express device driver * Copyright (c) 2011-2014, Intel Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "nvme.h" #include "fabrics.h" #define NVME_MINORS (1U << MINORBITS) unsigned char admin_timeout = 60; module_param(admin_timeout, byte, 0644); MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); EXPORT_SYMBOL_GPL(admin_timeout); unsigned char nvme_io_timeout = 30; module_param_named(io_timeout, nvme_io_timeout, byte, 0644); MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); EXPORT_SYMBOL_GPL(nvme_io_timeout); unsigned char shutdown_timeout = 5; module_param(shutdown_timeout, byte, 0644); MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); static u8 nvme_max_retries = 5; module_param_named(max_retries, nvme_max_retries, byte, 0644); MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); static int nvme_char_major; module_param(nvme_char_major, int, 0); static unsigned long default_ps_max_latency_us = 100000; module_param(default_ps_max_latency_us, ulong, 0644); MODULE_PARM_DESC(default_ps_max_latency_us, "max power saving latency for new devices; use PM QOS to change per device"); static bool force_apst; module_param(force_apst, bool, 0644); MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); struct workqueue_struct *nvme_wq; EXPORT_SYMBOL_GPL(nvme_wq); static LIST_HEAD(nvme_ctrl_list); static DEFINE_SPINLOCK(dev_list_lock); static struct class *nvme_class; static blk_status_t nvme_error_status(struct request *req) { switch (nvme_req(req)->status & 0x7ff) { case NVME_SC_SUCCESS: return BLK_STS_OK; case NVME_SC_CAP_EXCEEDED: return BLK_STS_NOSPC; case NVME_SC_ONCS_NOT_SUPPORTED: return BLK_STS_NOTSUPP; case NVME_SC_WRITE_FAULT: case NVME_SC_READ_ERROR: case NVME_SC_UNWRITTEN_BLOCK: return BLK_STS_MEDIUM; default: return BLK_STS_IOERR; } } static inline bool nvme_req_needs_retry(struct request *req) { if (blk_noretry_request(req)) return false; if (nvme_req(req)->status & NVME_SC_DNR) return false; if (jiffies - req->start_time >= req->timeout) return false; if (nvme_req(req)->retries >= nvme_max_retries) return false; return true; } void nvme_complete_rq(struct request *req) { if (unlikely(nvme_req(req)->status && nvme_req_needs_retry(req))) { nvme_req(req)->retries++; blk_mq_requeue_request(req, !blk_mq_queue_stopped(req->q)); return; } blk_mq_end_request(req, nvme_error_status(req)); } EXPORT_SYMBOL_GPL(nvme_complete_rq); void nvme_cancel_request(struct request *req, void *data, bool reserved) { int status; if (!blk_mq_request_started(req)) return; dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, "Cancelling I/O %d", req->tag); status = NVME_SC_ABORT_REQ; if (blk_queue_dying(req->q)) status |= NVME_SC_DNR; nvme_req(req)->status = status; blk_mq_complete_request(req); } EXPORT_SYMBOL_GPL(nvme_cancel_request); bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, enum nvme_ctrl_state new_state) { enum nvme_ctrl_state old_state; bool changed = false; spin_lock_irq(&ctrl->lock); old_state = ctrl->state; switch (new_state) { case NVME_CTRL_LIVE: switch (old_state) { case NVME_CTRL_NEW: case NVME_CTRL_RESETTING: case NVME_CTRL_RECONNECTING: changed = true; /* FALLTHRU */ default: break; } break; case NVME_CTRL_RESETTING: switch (old_state) { case NVME_CTRL_NEW: case NVME_CTRL_LIVE: changed = true; /* FALLTHRU */ default: break; } break; case NVME_CTRL_RECONNECTING: switch (old_state) { case NVME_CTRL_LIVE: changed = true; /* FALLTHRU */ default: break; } break; case NVME_CTRL_DELETING: switch (old_state) { case NVME_CTRL_LIVE: case NVME_CTRL_RESETTING: case NVME_CTRL_RECONNECTING: changed = true; /* FALLTHRU */ default: break; } break; case NVME_CTRL_DEAD: switch (old_state) { case NVME_CTRL_DELETING: changed = true; /* FALLTHRU */ default: break; } break; default: break; } if (changed) ctrl->state = new_state; spin_unlock_irq(&ctrl->lock); return changed; } EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); static void nvme_free_ns(struct kref *kref) { struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); if (ns->ndev) nvme_nvm_unregister(ns); if (ns->disk) { spin_lock(&dev_list_lock); ns->disk->private_data = NULL; spin_unlock(&dev_list_lock); } put_disk(ns->disk); ida_simple_remove(&ns->ctrl->ns_ida, ns->instance); nvme_put_ctrl(ns->ctrl); kfree(ns); } static void nvme_put_ns(struct nvme_ns *ns) { kref_put(&ns->kref, nvme_free_ns); } static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk) { struct nvme_ns *ns; spin_lock(&dev_list_lock); ns = disk->private_data; if (ns) { if (!kref_get_unless_zero(&ns->kref)) goto fail; if (!try_module_get(ns->ctrl->ops->module)) goto fail_put_ns; } spin_unlock(&dev_list_lock); return ns; fail_put_ns: kref_put(&ns->kref, nvme_free_ns); fail: spin_unlock(&dev_list_lock); return NULL; } struct request *nvme_alloc_request(struct request_queue *q, struct nvme_command *cmd, unsigned int flags, int qid) { unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN; struct request *req; if (qid == NVME_QID_ANY) { req = blk_mq_alloc_request(q, op, flags); } else { req = blk_mq_alloc_request_hctx(q, op, flags, qid ? qid - 1 : 0); } if (IS_ERR(req)) return req; req->cmd_flags |= REQ_FAILFAST_DRIVER; nvme_req(req)->cmd = cmd; return req; } EXPORT_SYMBOL_GPL(nvme_alloc_request); static inline void nvme_setup_flush(struct nvme_ns *ns, struct nvme_command *cmnd) { memset(cmnd, 0, sizeof(*cmnd)); cmnd->common.opcode = nvme_cmd_flush; cmnd->common.nsid = cpu_to_le32(ns->ns_id); } static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, struct nvme_command *cmnd) { unsigned short segments = blk_rq_nr_discard_segments(req), n = 0; struct nvme_dsm_range *range; struct bio *bio; range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC); if (!range) return BLK_STS_RESOURCE; __rq_for_each_bio(bio, req) { u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector); u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift; range[n].cattr = cpu_to_le32(0); range[n].nlb = cpu_to_le32(nlb); range[n].slba = cpu_to_le64(slba); n++; } if (WARN_ON_ONCE(n != segments)) { kfree(range); return BLK_STS_IOERR; } memset(cmnd, 0, sizeof(*cmnd)); cmnd->dsm.opcode = nvme_cmd_dsm; cmnd->dsm.nsid = cpu_to_le32(ns->ns_id); cmnd->dsm.nr = cpu_to_le32(segments - 1); cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); req->special_vec.bv_page = virt_to_page(range); req->special_vec.bv_offset = offset_in_page(range); req->special_vec.bv_len = sizeof(*range) * segments; req->rq_flags |= RQF_SPECIAL_PAYLOAD; return BLK_STS_OK; } static inline void nvme_setup_rw(struct nvme_ns *ns, struct request *req, struct nvme_command *cmnd) { u16 control = 0; u32 dsmgmt = 0; if (req->cmd_flags & REQ_FUA) control |= NVME_RW_FUA; if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) control |= NVME_RW_LR; if (req->cmd_flags & REQ_RAHEAD) dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; memset(cmnd, 0, sizeof(*cmnd)); cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read); cmnd->rw.nsid = cpu_to_le32(ns->ns_id); cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req))); cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1); if (ns->ms) { switch (ns->pi_type) { case NVME_NS_DPS_PI_TYPE3: control |= NVME_RW_PRINFO_PRCHK_GUARD; break; case NVME_NS_DPS_PI_TYPE1: case NVME_NS_DPS_PI_TYPE2: control |= NVME_RW_PRINFO_PRCHK_GUARD | NVME_RW_PRINFO_PRCHK_REF; cmnd->rw.reftag = cpu_to_le32( nvme_block_nr(ns, blk_rq_pos(req))); break; } if (!blk_integrity_rq(req)) control |= NVME_RW_PRINFO_PRACT; } cmnd->rw.control = cpu_to_le16(control); cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); } blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req, struct nvme_command *cmd) { blk_status_t ret = BLK_STS_OK; if (!(req->rq_flags & RQF_DONTPREP)) { nvme_req(req)->retries = 0; nvme_req(req)->flags = 0; req->rq_flags |= RQF_DONTPREP; } switch (req_op(req)) { case REQ_OP_DRV_IN: case REQ_OP_DRV_OUT: memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd)); break; case REQ_OP_FLUSH: nvme_setup_flush(ns, cmd); break; case REQ_OP_WRITE_ZEROES: /* currently only aliased to deallocate for a few ctrls: */ case REQ_OP_DISCARD: ret = nvme_setup_discard(ns, req, cmd); break; case REQ_OP_READ: case REQ_OP_WRITE: nvme_setup_rw(ns, req, cmd); break; default: WARN_ON_ONCE(1); return BLK_STS_IOERR; } cmd->common.command_id = req->tag; return ret; } EXPORT_SYMBOL_GPL(nvme_setup_cmd); /* * Returns 0 on success. If the result is negative, it's a Linux error code; * if the result is positive, it's an NVM Express status code */ int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, union nvme_result *result, void *buffer, unsigned bufflen, unsigned timeout, int qid, int at_head, int flags) { struct request *req; int ret; req = nvme_alloc_request(q, cmd, flags, qid); if (IS_ERR(req)) return PTR_ERR(req); req->timeout = timeout ? timeout : ADMIN_TIMEOUT; if (buffer && bufflen) { ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); if (ret) goto out; } blk_execute_rq(req->q, NULL, req, at_head); if (result) *result = nvme_req(req)->result; if (nvme_req(req)->flags & NVME_REQ_CANCELLED) ret = -EINTR; else ret = nvme_req(req)->status; out: blk_mq_free_request(req); return ret; } EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, void *buffer, unsigned bufflen) { return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0, NVME_QID_ANY, 0, 0); } EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd, void __user *ubuffer, unsigned bufflen, void __user *meta_buffer, unsigned meta_len, u32 meta_seed, u32 *result, unsigned timeout) { bool write = nvme_is_write(cmd); struct nvme_ns *ns = q->queuedata; struct gendisk *disk = ns ? ns->disk : NULL; struct request *req; struct bio *bio = NULL; void *meta = NULL; int ret; req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY); if (IS_ERR(req)) return PTR_ERR(req); req->timeout = timeout ? timeout : ADMIN_TIMEOUT; if (ubuffer && bufflen) { ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, GFP_KERNEL); if (ret) goto out; bio = req->bio; if (!disk) goto submit; bio->bi_bdev = bdget_disk(disk, 0); if (!bio->bi_bdev) { ret = -ENODEV; goto out_unmap; } if (meta_buffer && meta_len) { struct bio_integrity_payload *bip; meta = kmalloc(meta_len, GFP_KERNEL); if (!meta) { ret = -ENOMEM; goto out_unmap; } if (write) { if (copy_from_user(meta, meta_buffer, meta_len)) { ret = -EFAULT; goto out_free_meta; } } bip = bio_integrity_alloc(bio, GFP_KERNEL, 1); if (IS_ERR(bip)) { ret = PTR_ERR(bip); goto out_free_meta; } bip->bip_iter.bi_size = meta_len; bip->bip_iter.bi_sector = meta_seed; ret = bio_integrity_add_page(bio, virt_to_page(meta), meta_len, offset_in_page(meta)); if (ret != meta_len) { ret = -ENOMEM; goto out_free_meta; } } } submit: blk_execute_rq(req->q, disk, req, 0); if (nvme_req(req)->flags & NVME_REQ_CANCELLED) ret = -EINTR; else ret = nvme_req(req)->status; if (result) *result = le32_to_cpu(nvme_req(req)->result.u32); if (meta && !ret && !write) { if (copy_to_user(meta_buffer, meta, meta_len)) ret = -EFAULT; } out_free_meta: kfree(meta); out_unmap: if (bio) { if (disk && bio->bi_bdev) bdput(bio->bi_bdev); blk_rq_unmap_user(bio); } out: blk_mq_free_request(req); return ret; } int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd, void __user *ubuffer, unsigned bufflen, u32 *result, unsigned timeout) { return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0, result, timeout); } static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status) { struct nvme_ctrl *ctrl = rq->end_io_data; blk_mq_free_request(rq); if (status) { dev_err(ctrl->device, "failed nvme_keep_alive_end_io error=%d\n", status); return; } schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); } static int nvme_keep_alive(struct nvme_ctrl *ctrl) { struct nvme_command c; struct request *rq; memset(&c, 0, sizeof(c)); c.common.opcode = nvme_admin_keep_alive; rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED, NVME_QID_ANY); if (IS_ERR(rq)) return PTR_ERR(rq); rq->timeout = ctrl->kato * HZ; rq->end_io_data = ctrl; blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io); return 0; } static void nvme_keep_alive_work(struct work_struct *work) { struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), struct nvme_ctrl, ka_work); if (nvme_keep_alive(ctrl)) { /* allocation failure, reset the controller */ dev_err(ctrl->device, "keep-alive failed\n"); ctrl->ops->reset_ctrl(ctrl); return; } } void nvme_start_keep_alive(struct nvme_ctrl *ctrl) { if (unlikely(ctrl->kato == 0)) return; INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ); } EXPORT_SYMBOL_GPL(nvme_start_keep_alive); void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) { if (unlikely(ctrl->kato == 0)) return; cancel_delayed_work_sync(&ctrl->ka_work); } EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) { struct nvme_command c = { }; int error; /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ c.identify.opcode = nvme_admin_identify; c.identify.cns = NVME_ID_CNS_CTRL; *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); if (!*id) return -ENOMEM; error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, sizeof(struct nvme_id_ctrl)); if (error) kfree(*id); return error; } static int nvme_identify_ns_descs(struct nvme_ns *ns, unsigned nsid) { struct nvme_command c = { }; int status; void *data; int pos; int len; c.identify.opcode = nvme_admin_identify; c.identify.nsid = cpu_to_le32(nsid); c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); if (!data) return -ENOMEM; status = nvme_submit_sync_cmd(ns->ctrl->admin_q, &c, data, NVME_IDENTIFY_DATA_SIZE); if (status) goto free_data; for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { struct nvme_ns_id_desc *cur = data + pos; if (cur->nidl == 0) break; switch (cur->nidt) { case NVME_NIDT_EUI64: if (cur->nidl != NVME_NIDT_EUI64_LEN) { dev_warn(ns->ctrl->device, "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n", cur->nidl); goto free_data; } len = NVME_NIDT_EUI64_LEN; memcpy(ns->eui, data + pos + sizeof(*cur), len); break; case NVME_NIDT_NGUID: if (cur->nidl != NVME_NIDT_NGUID_LEN) { dev_warn(ns->ctrl->device, "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n", cur->nidl); goto free_data; } len = NVME_NIDT_NGUID_LEN; memcpy(ns->nguid, data + pos + sizeof(*cur), len); break; case NVME_NIDT_UUID: if (cur->nidl != NVME_NIDT_UUID_LEN) { dev_warn(ns->ctrl->device, "ctrl returned bogus length: %d for NVME_NIDT_UUID\n", cur->nidl); goto free_data; } len = NVME_NIDT_UUID_LEN; uuid_copy(&ns->uuid, data + pos + sizeof(*cur)); break; default: /* Skip unnkown types */ len = cur->nidl; break; } len += sizeof(*cur); } free_data: kfree(data); return status; } static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list) { struct nvme_command c = { }; c.identify.opcode = nvme_admin_identify; c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST; c.identify.nsid = cpu_to_le32(nsid); return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000); } int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid, struct nvme_id_ns **id) { struct nvme_command c = { }; int error; /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ c.identify.opcode = nvme_admin_identify; c.identify.nsid = cpu_to_le32(nsid); c.identify.cns = NVME_ID_CNS_NS; *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL); if (!*id) return -ENOMEM; error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, sizeof(struct nvme_id_ns)); if (error) kfree(*id); return error; } int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid, void *buffer, size_t buflen, u32 *result) { struct nvme_command c; union nvme_result res; int ret; memset(&c, 0, sizeof(c)); c.features.opcode = nvme_admin_get_features; c.features.nsid = cpu_to_le32(nsid); c.features.fid = cpu_to_le32(fid); ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, buffer, buflen, 0, NVME_QID_ANY, 0, 0); if (ret >= 0 && result) *result = le32_to_cpu(res.u32); return ret; } int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11, void *buffer, size_t buflen, u32 *result) { struct nvme_command c; union nvme_result res; int ret; memset(&c, 0, sizeof(c)); c.features.opcode = nvme_admin_set_features; c.features.fid = cpu_to_le32(fid); c.features.dword11 = cpu_to_le32(dword11); ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, buffer, buflen, 0, NVME_QID_ANY, 0, 0); if (ret >= 0 && result) *result = le32_to_cpu(res.u32); return ret; } int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log) { struct nvme_command c = { }; int error; c.common.opcode = nvme_admin_get_log_page, c.common.nsid = cpu_to_le32(0xFFFFFFFF), c.common.cdw10[0] = cpu_to_le32( (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) | NVME_LOG_SMART), *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL); if (!*log) return -ENOMEM; error = nvme_submit_sync_cmd(dev->admin_q, &c, *log, sizeof(struct nvme_smart_log)); if (error) kfree(*log); return error; } int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) { u32 q_count = (*count - 1) | ((*count - 1) << 16); u32 result; int status, nr_io_queues; status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, &result); if (status < 0) return status; /* * Degraded controllers might return an error when setting the queue * count. We still want to be able to bring them online and offer * access to the admin queue, as that might be only way to fix them up. */ if (status > 0) { dev_err(ctrl->dev, "Could not set queue count (%d)\n", status); *count = 0; } else { nr_io_queues = min(result & 0xffff, result >> 16) + 1; *count = min(*count, nr_io_queues); } return 0; } EXPORT_SYMBOL_GPL(nvme_set_queue_count); static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio) { struct nvme_user_io io; struct nvme_command c; unsigned length, meta_len; void __user *metadata; if (copy_from_user(&io, uio, sizeof(io))) return -EFAULT; if (io.flags) return -EINVAL; switch (io.opcode) { case nvme_cmd_write: case nvme_cmd_read: case nvme_cmd_compare: break; default: return -EINVAL; } length = (io.nblocks + 1) << ns->lba_shift; meta_len = (io.nblocks + 1) * ns->ms; metadata = (void __user *)(uintptr_t)io.metadata; if (ns->ext) { length += meta_len; meta_len = 0; } else if (meta_len) { if ((io.metadata & 3) || !io.metadata) return -EINVAL; } memset(&c, 0, sizeof(c)); c.rw.opcode = io.opcode; c.rw.flags = io.flags; c.rw.nsid = cpu_to_le32(ns->ns_id); c.rw.slba = cpu_to_le64(io.slba); c.rw.length = cpu_to_le16(io.nblocks); c.rw.control = cpu_to_le16(io.control); c.rw.dsmgmt = cpu_to_le32(io.dsmgmt); c.rw.reftag = cpu_to_le32(io.reftag); c.rw.apptag = cpu_to_le16(io.apptag); c.rw.appmask = cpu_to_le16(io.appmask); return __nvme_submit_user_cmd(ns->queue, &c, (void __user *)(uintptr_t)io.addr, length, metadata, meta_len, io.slba, NULL, 0); } static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns, struct nvme_passthru_cmd __user *ucmd) { struct nvme_passthru_cmd cmd; struct nvme_command c; unsigned timeout = 0; int status; if (!capable(CAP_SYS_ADMIN)) return -EACCES; if (copy_from_user(&cmd, ucmd, sizeof(cmd))) return -EFAULT; if (cmd.flags) return -EINVAL; memset(&c, 0, sizeof(c)); c.common.opcode = cmd.opcode; c.common.flags = cmd.flags; c.common.nsid = cpu_to_le32(cmd.nsid); c.common.cdw2[0] = cpu_to_le32(cmd.cdw2); c.common.cdw2[1] = cpu_to_le32(cmd.cdw3); c.common.cdw10[0] = cpu_to_le32(cmd.cdw10); c.common.cdw10[1] = cpu_to_le32(cmd.cdw11); c.common.cdw10[2] = cpu_to_le32(cmd.cdw12); c.common.cdw10[3] = cpu_to_le32(cmd.cdw13); c.common.cdw10[4] = cpu_to_le32(cmd.cdw14); c.common.cdw10[5] = cpu_to_le32(cmd.cdw15); if (cmd.timeout_ms) timeout = msecs_to_jiffies(cmd.timeout_ms); status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c, (void __user *)(uintptr_t)cmd.addr, cmd.data_len, &cmd.result, timeout); if (status >= 0) { if (put_user(cmd.result, &ucmd->result)) return -EFAULT; } return status; } static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) { struct nvme_ns *ns = bdev->bd_disk->private_data; switch (cmd) { case NVME_IOCTL_ID: force_successful_syscall_return(); return ns->ns_id; case NVME_IOCTL_ADMIN_CMD: return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg); case NVME_IOCTL_IO_CMD: return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg); case NVME_IOCTL_SUBMIT_IO: return nvme_submit_io(ns, (void __user *)arg); #ifdef CONFIG_BLK_DEV_NVME_SCSI case SG_GET_VERSION_NUM: return nvme_sg_get_version_num((void __user *)arg); case SG_IO: return nvme_sg_io(ns, (void __user *)arg); #endif default: #ifdef CONFIG_NVM if (ns->ndev) return nvme_nvm_ioctl(ns, cmd, arg); #endif if (is_sed_ioctl(cmd)) return sed_ioctl(ns->ctrl->opal_dev, cmd, (void __user *) arg); return -ENOTTY; } } #ifdef CONFIG_COMPAT static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) { switch (cmd) { case SG_IO: return -ENOIOCTLCMD; } return nvme_ioctl(bdev, mode, cmd, arg); } #else #define nvme_compat_ioctl NULL #endif static int nvme_open(struct block_device *bdev, fmode_t mode) { return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO; } static void nvme_release(struct gendisk *disk, fmode_t mode) { struct nvme_ns *ns = disk->private_data; module_put(ns->ctrl->ops->module); nvme_put_ns(ns); } static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) { /* some standard values */ geo->heads = 1 << 6; geo->sectors = 1 << 5; geo->cylinders = get_capacity(bdev->bd_disk) >> 11; return 0; } #ifdef CONFIG_BLK_DEV_INTEGRITY static void nvme_prep_integrity(struct gendisk *disk, struct nvme_id_ns *id, u16 bs) { struct nvme_ns *ns = disk->private_data; u16 old_ms = ns->ms; u8 pi_type = 0; ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms); ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT); /* PI implementation requires metadata equal t10 pi tuple size */ if (ns->ms == sizeof(struct t10_pi_tuple)) pi_type = id->dps & NVME_NS_DPS_PI_MASK; if (blk_get_integrity(disk) && (ns->pi_type != pi_type || ns->ms != old_ms || bs != queue_logical_block_size(disk->queue) || (ns->ms && ns->ext))) blk_integrity_unregister(disk); ns->pi_type = pi_type; } static void nvme_init_integrity(struct nvme_ns *ns) { struct blk_integrity integrity; memset(&integrity, 0, sizeof(integrity)); switch (ns->pi_type) { case NVME_NS_DPS_PI_TYPE3: integrity.profile = &t10_pi_type3_crc; integrity.tag_size = sizeof(u16) + sizeof(u32); integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; break; case NVME_NS_DPS_PI_TYPE1: case NVME_NS_DPS_PI_TYPE2: integrity.profile = &t10_pi_type1_crc; integrity.tag_size = sizeof(u16); integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; break; default: integrity.profile = NULL; break; } integrity.tuple_size = ns->ms; blk_integrity_register(ns->disk, &integrity); blk_queue_max_integrity_segments(ns->queue, 1); } #else static void nvme_prep_integrity(struct gendisk *disk, struct nvme_id_ns *id, u16 bs) { } static void nvme_init_integrity(struct nvme_ns *ns) { } #endif /* CONFIG_BLK_DEV_INTEGRITY */ static void nvme_config_discard(struct nvme_ns *ns) { struct nvme_ctrl *ctrl = ns->ctrl; u32 logical_block_size = queue_logical_block_size(ns->queue); BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) < NVME_DSM_MAX_RANGES); ns->queue->limits.discard_alignment = logical_block_size; ns->queue->limits.discard_granularity = logical_block_size; blk_queue_max_discard_sectors(ns->queue, UINT_MAX); blk_queue_max_discard_segments(ns->queue, NVME_DSM_MAX_RANGES); queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue); if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) blk_queue_max_write_zeroes_sectors(ns->queue, UINT_MAX); } static int nvme_revalidate_ns(struct nvme_ns *ns, struct nvme_id_ns **id) { if (nvme_identify_ns(ns->ctrl, ns->ns_id, id)) { dev_warn(ns->ctrl->dev, "%s: Identify failure\n", __func__); return -ENODEV; } if ((*id)->ncap == 0) { kfree(*id); return -ENODEV; } if (ns->ctrl->vs >= NVME_VS(1, 1, 0)) memcpy(ns->eui, (*id)->eui64, sizeof(ns->eui)); if (ns->ctrl->vs >= NVME_VS(1, 2, 0)) memcpy(ns->nguid, (*id)->nguid, sizeof(ns->nguid)); if (ns->ctrl->vs >= NVME_VS(1, 3, 0)) { /* Don't treat error as fatal we potentially * already have a NGUID or EUI-64 */ if (nvme_identify_ns_descs(ns, ns->ns_id)) dev_warn(ns->ctrl->device, "%s: Identify Descriptors failed\n", __func__); } return 0; } static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id) { struct nvme_ns *ns = disk->private_data; u16 bs; /* * If identify namespace failed, use default 512 byte block size so * block layer can use before failing read/write for 0 capacity. */ ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds; if (ns->lba_shift == 0) ns->lba_shift = 9; bs = 1 << ns->lba_shift; blk_mq_freeze_queue(disk->queue); if (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED) nvme_prep_integrity(disk, id, bs); blk_queue_logical_block_size(ns->queue, bs); if (ns->ms && !blk_get_integrity(disk) && !ns->ext) nvme_init_integrity(ns); if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk)) set_capacity(disk, 0); else set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9)); if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM) nvme_config_discard(ns); blk_mq_unfreeze_queue(disk->queue); } static int nvme_revalidate_disk(struct gendisk *disk) { struct nvme_ns *ns = disk->private_data; struct nvme_id_ns *id = NULL; int ret; if (test_bit(NVME_NS_DEAD, &ns->flags)) { set_capacity(disk, 0); return -ENODEV; } ret = nvme_revalidate_ns(ns, &id); if (ret) return ret; __nvme_revalidate_disk(disk, id); kfree(id); return 0; } static char nvme_pr_type(enum pr_type type) { switch (type) { case PR_WRITE_EXCLUSIVE: return 1; case PR_EXCLUSIVE_ACCESS: return 2; case PR_WRITE_EXCLUSIVE_REG_ONLY: return 3; case PR_EXCLUSIVE_ACCESS_REG_ONLY: return 4; case PR_WRITE_EXCLUSIVE_ALL_REGS: return 5; case PR_EXCLUSIVE_ACCESS_ALL_REGS: return 6; default: return 0; } }; static int nvme_pr_command(struct block_device *bdev, u32 cdw10, u64 key, u64 sa_key, u8 op) { struct nvme_ns *ns = bdev->bd_disk->private_data; struct nvme_command c; u8 data[16] = { 0, }; put_unaligned_le64(key, &data[0]); put_unaligned_le64(sa_key, &data[8]); memset(&c, 0, sizeof(c)); c.common.opcode = op; c.common.nsid = cpu_to_le32(ns->ns_id); c.common.cdw10[0] = cpu_to_le32(cdw10); return nvme_submit_sync_cmd(ns->queue, &c, data, 16); } static int nvme_pr_register(struct block_device *bdev, u64 old, u64 new, unsigned flags) { u32 cdw10; if (flags & ~PR_FL_IGNORE_KEY) return -EOPNOTSUPP; cdw10 = old ? 2 : 0; cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0; cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */ return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register); } static int nvme_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, unsigned flags) { u32 cdw10; if (flags & ~PR_FL_IGNORE_KEY) return -EOPNOTSUPP; cdw10 = nvme_pr_type(type) << 8; cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0); return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire); } static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new, enum pr_type type, bool abort) { u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1; return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire); } static int nvme_pr_clear(struct block_device *bdev, u64 key) { u32 cdw10 = 1 | (key ? 1 << 3 : 0); return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register); } static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type) { u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0; return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release); } static const struct pr_ops nvme_pr_ops = { .pr_register = nvme_pr_register, .pr_reserve = nvme_pr_reserve, .pr_release = nvme_pr_release, .pr_preempt = nvme_pr_preempt, .pr_clear = nvme_pr_clear, }; #ifdef CONFIG_BLK_SED_OPAL int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, bool send) { struct nvme_ctrl *ctrl = data; struct nvme_command cmd; memset(&cmd, 0, sizeof(cmd)); if (send) cmd.common.opcode = nvme_admin_security_send; else cmd.common.opcode = nvme_admin_security_recv; cmd.common.nsid = 0; cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); cmd.common.cdw10[1] = cpu_to_le32(len); return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0); } EXPORT_SYMBOL_GPL(nvme_sec_submit); #endif /* CONFIG_BLK_SED_OPAL */ static const struct block_device_operations nvme_fops = { .owner = THIS_MODULE, .ioctl = nvme_ioctl, .compat_ioctl = nvme_compat_ioctl, .open = nvme_open, .release = nvme_release, .getgeo = nvme_getgeo, .revalidate_disk= nvme_revalidate_disk, .pr_ops = &nvme_pr_ops, }; static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled) { unsigned long timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies; u32 csts, bit = enabled ? NVME_CSTS_RDY : 0; int ret; while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { if (csts == ~0) return -ENODEV; if ((csts & NVME_CSTS_RDY) == bit) break; msleep(100); if (fatal_signal_pending(current)) return -EINTR; if (time_after(jiffies, timeout)) { dev_err(ctrl->device, "Device not ready; aborting %s\n", enabled ? "initialisation" : "reset"); return -ENODEV; } } return ret; } /* * If the device has been passed off to us in an enabled state, just clear * the enabled bit. The spec says we should set the 'shutdown notification * bits', but doing so may cause the device to complete commands to the * admin queue ... and we don't know what memory that might be pointing at! */ int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap) { int ret; ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; ctrl->ctrl_config &= ~NVME_CC_ENABLE; ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); if (ret) return ret; if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) msleep(NVME_QUIRK_DELAY_AMOUNT); return nvme_wait_ready(ctrl, cap, false); } EXPORT_SYMBOL_GPL(nvme_disable_ctrl); int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap) { /* * Default to a 4K page size, with the intention to update this * path in the future to accomodate architectures with differing * kernel and IO page sizes. */ unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12; int ret; if (page_shift < dev_page_min) { dev_err(ctrl->device, "Minimum device page size %u too large for host (%u)\n", 1 << dev_page_min, 1 << page_shift); return -ENODEV; } ctrl->page_size = 1 << page_shift; ctrl->ctrl_config = NVME_CC_CSS_NVM; ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT; ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE; ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; ctrl->ctrl_config |= NVME_CC_ENABLE; ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); if (ret) return ret; return nvme_wait_ready(ctrl, cap, true); } EXPORT_SYMBOL_GPL(nvme_enable_ctrl); int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl) { unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies; u32 csts; int ret; ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); if (ret) return ret; while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT) break; msleep(100); if (fatal_signal_pending(current)) return -EINTR; if (time_after(jiffies, timeout)) { dev_err(ctrl->device, "Device shutdown incomplete; abort shutdown\n"); return -ENODEV; } } return ret; } EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl); static void nvme_set_queue_limits(struct nvme_ctrl *ctrl, struct request_queue *q) { bool vwc = false; if (ctrl->max_hw_sectors) { u32 max_segments = (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1; blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors); blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX)); } if (ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) blk_queue_chunk_sectors(q, ctrl->max_hw_sectors); blk_queue_virt_boundary(q, ctrl->page_size - 1); if (ctrl->vwc & NVME_CTRL_VWC_PRESENT) vwc = true; blk_queue_write_cache(q, vwc, vwc); } static void nvme_configure_apst(struct nvme_ctrl *ctrl) { /* * APST (Autonomous Power State Transition) lets us program a * table of power state transitions that the controller will * perform automatically. We configure it with a simple * heuristic: we are willing to spend at most 2% of the time * transitioning between power states. Therefore, when running * in any given state, we will enter the next lower-power * non-operational state after waiting 50 * (enlat + exlat) * microseconds, as long as that state's exit latency is under * the requested maximum latency. * * We will not autonomously enter any non-operational state for * which the total latency exceeds ps_max_latency_us. Users * can set ps_max_latency_us to zero to turn off APST. */ unsigned apste; struct nvme_feat_auto_pst *table; u64 max_lat_us = 0; int max_ps = -1; int ret; /* * If APST isn't supported or if we haven't been initialized yet, * then don't do anything. */ if (!ctrl->apsta) return; if (ctrl->npss > 31) { dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); return; } table = kzalloc(sizeof(*table), GFP_KERNEL); if (!table) return; if (ctrl->ps_max_latency_us == 0) { /* Turn off APST. */ apste = 0; dev_dbg(ctrl->device, "APST disabled\n"); } else { __le64 target = cpu_to_le64(0); int state; /* * Walk through all states from lowest- to highest-power. * According to the spec, lower-numbered states use more * power. NPSS, despite the name, is the index of the * lowest-power state, not the number of states. */ for (state = (int)ctrl->npss; state >= 0; state--) { u64 total_latency_us, exit_latency_us, transition_ms; if (target) table->entries[state] = target; /* * Don't allow transitions to the deepest state * if it's quirked off. */ if (state == ctrl->npss && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) continue; /* * Is this state a useful non-operational state for * higher-power states to autonomously transition to? */ if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE)) continue; exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat); if (exit_latency_us > ctrl->ps_max_latency_us) continue; total_latency_us = exit_latency_us + le32_to_cpu(ctrl->psd[state].entry_lat); /* * This state is good. Use it as the APST idle * target for higher power states. */ transition_ms = total_latency_us + 19; do_div(transition_ms, 20); if (transition_ms > (1 << 24) - 1) transition_ms = (1 << 24) - 1; target = cpu_to_le64((state << 3) | (transition_ms << 8)); if (max_ps == -1) max_ps = state; if (total_latency_us > max_lat_us) max_lat_us = total_latency_us; } apste = 1; if (max_ps == -1) { dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); } else { dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", max_ps, max_lat_us, (int)sizeof(*table), table); } } ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, table, sizeof(*table), NULL); if (ret) dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); kfree(table); } static void nvme_set_latency_tolerance(struct device *dev, s32 val) { struct nvme_ctrl *ctrl = dev_get_drvdata(dev); u64 latency; switch (val) { case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: case PM_QOS_LATENCY_ANY: latency = U64_MAX; break; default: latency = val; } if (ctrl->ps_max_latency_us != latency) { ctrl->ps_max_latency_us = latency; nvme_configure_apst(ctrl); } } struct nvme_core_quirk_entry { /* * NVMe model and firmware strings are padded with spaces. For * simplicity, strings in the quirk table are padded with NULLs * instead. */ u16 vid; const char *mn; const char *fr; unsigned long quirks; }; static const struct nvme_core_quirk_entry core_quirks[] = { { /* * This Toshiba device seems to die using any APST states. See: * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 */ .vid = 0x1179, .mn = "THNSF5256GPUK TOSHIBA", .quirks = NVME_QUIRK_NO_APST, } }; /* match is null-terminated but idstr is space-padded. */ static bool string_matches(const char *idstr, const char *match, size_t len) { size_t matchlen; if (!match) return true; matchlen = strlen(match); WARN_ON_ONCE(matchlen > len); if (memcmp(idstr, match, matchlen)) return false; for (; matchlen < len; matchlen++) if (idstr[matchlen] != ' ') return false; return true; } static bool quirk_matches(const struct nvme_id_ctrl *id, const struct nvme_core_quirk_entry *q) { return q->vid == le16_to_cpu(id->vid) && string_matches(id->mn, q->mn, sizeof(id->mn)) && string_matches(id->fr, q->fr, sizeof(id->fr)); } /* * Initialize the cached copies of the Identify data and various controller * register in our nvme_ctrl structure. This should be called as soon as * the admin queue is fully up and running. */ int nvme_init_identify(struct nvme_ctrl *ctrl) { struct nvme_id_ctrl *id; u64 cap; int ret, page_shift; u32 max_hw_sectors; u8 prev_apsta; ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); if (ret) { dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); return ret; } ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap); if (ret) { dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); return ret; } page_shift = NVME_CAP_MPSMIN(cap) + 12; if (ctrl->vs >= NVME_VS(1, 1, 0)) ctrl->subsystem = NVME_CAP_NSSRC(cap); ret = nvme_identify_ctrl(ctrl, &id); if (ret) { dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); return -EIO; } if (!ctrl->identified) { /* * Check for quirks. Quirk can depend on firmware version, * so, in principle, the set of quirks present can change * across a reset. As a possible future enhancement, we * could re-scan for quirks every time we reinitialize * the device, but we'd have to make sure that the driver * behaves intelligently if the quirks change. */ int i; for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { if (quirk_matches(id, &core_quirks[i])) ctrl->quirks |= core_quirks[i].quirks; } } if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { dev_warn(ctrl->dev, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; } ctrl->oacs = le16_to_cpu(id->oacs); ctrl->vid = le16_to_cpu(id->vid); ctrl->oncs = le16_to_cpup(&id->oncs); atomic_set(&ctrl->abort_limit, id->acl + 1); ctrl->vwc = id->vwc; ctrl->cntlid = le16_to_cpup(&id->cntlid); memcpy(ctrl->serial, id->sn, sizeof(id->sn)); memcpy(ctrl->model, id->mn, sizeof(id->mn)); memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr)); if (id->mdts) max_hw_sectors = 1 << (id->mdts + page_shift - 9); else max_hw_sectors = UINT_MAX; ctrl->max_hw_sectors = min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); nvme_set_queue_limits(ctrl, ctrl->admin_q); ctrl->sgls = le32_to_cpu(id->sgls); ctrl->kas = le16_to_cpu(id->kas); ctrl->npss = id->npss; prev_apsta = ctrl->apsta; if (ctrl->quirks & NVME_QUIRK_NO_APST) { if (force_apst && id->apsta) { dev_warn(ctrl->dev, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); ctrl->apsta = 1; } else { ctrl->apsta = 0; } } else { ctrl->apsta = id->apsta; } memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); if (ctrl->ops->flags & NVME_F_FABRICS) { ctrl->icdoff = le16_to_cpu(id->icdoff); ctrl->ioccsz = le32_to_cpu(id->ioccsz); ctrl->iorcsz = le32_to_cpu(id->iorcsz); ctrl->maxcmd = le16_to_cpu(id->maxcmd); /* * In fabrics we need to verify the cntlid matches the * admin connect */ if (ctrl->cntlid != le16_to_cpu(id->cntlid)) ret = -EINVAL; if (!ctrl->opts->discovery_nqn && !ctrl->kas) { dev_err(ctrl->dev, "keep-alive support is mandatory for fabrics\n"); ret = -EINVAL; } } else { ctrl->cntlid = le16_to_cpu(id->cntlid); ctrl->hmpre = le32_to_cpu(id->hmpre); ctrl->hmmin = le32_to_cpu(id->hmmin); } kfree(id); if (ctrl->apsta && !prev_apsta) dev_pm_qos_expose_latency_tolerance(ctrl->device); else if (!ctrl->apsta && prev_apsta) dev_pm_qos_hide_latency_tolerance(ctrl->device); nvme_configure_apst(ctrl); ctrl->identified = true; return ret; } EXPORT_SYMBOL_GPL(nvme_init_identify); static int nvme_dev_open(struct inode *inode, struct file *file) { struct nvme_ctrl *ctrl; int instance = iminor(inode); int ret = -ENODEV; spin_lock(&dev_list_lock); list_for_each_entry(ctrl, &nvme_ctrl_list, node) { if (ctrl->instance != instance) continue; if (!ctrl->admin_q) { ret = -EWOULDBLOCK; break; } if (!kref_get_unless_zero(&ctrl->kref)) break; file->private_data = ctrl; ret = 0; break; } spin_unlock(&dev_list_lock); return ret; } static int nvme_dev_release(struct inode *inode, struct file *file) { nvme_put_ctrl(file->private_data); return 0; } static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp) { struct nvme_ns *ns; int ret; mutex_lock(&ctrl->namespaces_mutex); if (list_empty(&ctrl->namespaces)) { ret = -ENOTTY; goto out_unlock; } ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list); if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) { dev_warn(ctrl->device, "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n"); ret = -EINVAL; goto out_unlock; } dev_warn(ctrl->device, "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n"); kref_get(&ns->kref); mutex_unlock(&ctrl->namespaces_mutex); ret = nvme_user_cmd(ctrl, ns, argp); nvme_put_ns(ns); return ret; out_unlock: mutex_unlock(&ctrl->namespaces_mutex); return ret; } static long nvme_dev_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct nvme_ctrl *ctrl = file->private_data; void __user *argp = (void __user *)arg; switch (cmd) { case NVME_IOCTL_ADMIN_CMD: return nvme_user_cmd(ctrl, NULL, argp); case NVME_IOCTL_IO_CMD: return nvme_dev_user_cmd(ctrl, argp); case NVME_IOCTL_RESET: dev_warn(ctrl->device, "resetting controller\n"); return ctrl->ops->reset_ctrl(ctrl); case NVME_IOCTL_SUBSYS_RESET: return nvme_reset_subsystem(ctrl); case NVME_IOCTL_RESCAN: nvme_queue_scan(ctrl); return 0; default: return -ENOTTY; } } static const struct file_operations nvme_dev_fops = { .owner = THIS_MODULE, .open = nvme_dev_open, .release = nvme_dev_release, .unlocked_ioctl = nvme_dev_ioctl, .compat_ioctl = nvme_dev_ioctl, }; static ssize_t nvme_sysfs_reset(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct nvme_ctrl *ctrl = dev_get_drvdata(dev); int ret; ret = ctrl->ops->reset_ctrl(ctrl); if (ret < 0) return ret; return count; } static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset); static ssize_t nvme_sysfs_rescan(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct nvme_ctrl *ctrl = dev_get_drvdata(dev); nvme_queue_scan(ctrl); return count; } static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan); static ssize_t wwid_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nvme_ns *ns = nvme_get_ns_from_dev(dev); struct nvme_ctrl *ctrl = ns->ctrl; int serial_len = sizeof(ctrl->serial); int model_len = sizeof(ctrl->model); if (memchr_inv(ns->nguid, 0, sizeof(ns->nguid))) return sprintf(buf, "eui.%16phN\n", ns->nguid); if (memchr_inv(ns->eui, 0, sizeof(ns->eui))) return sprintf(buf, "eui.%8phN\n", ns->eui); while (ctrl->serial[serial_len - 1] == ' ') serial_len--; while (ctrl->model[model_len - 1] == ' ') model_len--; return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid, serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id); } static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL); static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nvme_ns *ns = nvme_get_ns_from_dev(dev); return sprintf(buf, "%pU\n", ns->nguid); } static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL); static ssize_t eui_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nvme_ns *ns = nvme_get_ns_from_dev(dev); return sprintf(buf, "%8phd\n", ns->eui); } static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL); static ssize_t nsid_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nvme_ns *ns = nvme_get_ns_from_dev(dev); return sprintf(buf, "%d\n", ns->ns_id); } static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL); static struct attribute *nvme_ns_attrs[] = { &dev_attr_wwid.attr, &dev_attr_uuid.attr, &dev_attr_eui.attr, &dev_attr_nsid.attr, NULL, }; static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj, struct attribute *a, int n) { struct device *dev = container_of(kobj, struct device, kobj); struct nvme_ns *ns = nvme_get_ns_from_dev(dev); if (a == &dev_attr_uuid.attr) { if (!memchr_inv(ns->nguid, 0, sizeof(ns->nguid))) return 0; } if (a == &dev_attr_eui.attr) { if (!memchr_inv(ns->eui, 0, sizeof(ns->eui))) return 0; } return a->mode; } static const struct attribute_group nvme_ns_attr_group = { .attrs = nvme_ns_attrs, .is_visible = nvme_ns_attrs_are_visible, }; #define nvme_show_str_function(field) \ static ssize_t field##_show(struct device *dev, \ struct device_attribute *attr, char *buf) \ { \ struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field); \ } \ static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); #define nvme_show_int_function(field) \ static ssize_t field##_show(struct device *dev, \ struct device_attribute *attr, char *buf) \ { \ struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \ return sprintf(buf, "%d\n", ctrl->field); \ } \ static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL); nvme_show_str_function(model); nvme_show_str_function(serial); nvme_show_str_function(firmware_rev); nvme_show_int_function(cntlid); static ssize_t nvme_sysfs_delete(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct nvme_ctrl *ctrl = dev_get_drvdata(dev); if (device_remove_file_self(dev, attr)) ctrl->ops->delete_ctrl(ctrl); return count; } static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete); static ssize_t nvme_sysfs_show_transport(struct device *dev, struct device_attribute *attr, char *buf) { struct nvme_ctrl *ctrl = dev_get_drvdata(dev); return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name); } static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL); static ssize_t nvme_sysfs_show_state(struct device *dev, struct device_attribute *attr, char *buf) { struct nvme_ctrl *ctrl = dev_get_drvdata(dev); static const char *const state_name[] = { [NVME_CTRL_NEW] = "new", [NVME_CTRL_LIVE] = "live", [NVME_CTRL_RESETTING] = "resetting", [NVME_CTRL_RECONNECTING]= "reconnecting", [NVME_CTRL_DELETING] = "deleting", [NVME_CTRL_DEAD] = "dead", }; if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) && state_name[ctrl->state]) return sprintf(buf, "%s\n", state_name[ctrl->state]); return sprintf(buf, "unknown state\n"); } static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL); static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev, struct device_attribute *attr, char *buf) { struct nvme_ctrl *ctrl = dev_get_drvdata(dev); return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->get_subsysnqn(ctrl)); } static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL); static ssize_t nvme_sysfs_show_address(struct device *dev, struct device_attribute *attr, char *buf) { struct nvme_ctrl *ctrl = dev_get_drvdata(dev); return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE); } static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL); static struct attribute *nvme_dev_attrs[] = { &dev_attr_reset_controller.attr, &dev_attr_rescan_controller.attr, &dev_attr_model.attr, &dev_attr_serial.attr, &dev_attr_firmware_rev.attr, &dev_attr_cntlid.attr, &dev_attr_delete_controller.attr, &dev_attr_transport.attr, &dev_attr_subsysnqn.attr, &dev_attr_address.attr, &dev_attr_state.attr, NULL }; #define CHECK_ATTR(ctrl, a, name) \ if ((a) == &dev_attr_##name.attr && \ !(ctrl)->ops->get_##name) \ return 0 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj, struct attribute *a, int n) { struct device *dev = container_of(kobj, struct device, kobj); struct nvme_ctrl *ctrl = dev_get_drvdata(dev); if (a == &dev_attr_delete_controller.attr) { if (!ctrl->ops->delete_ctrl) return 0; } CHECK_ATTR(ctrl, a, subsysnqn); CHECK_ATTR(ctrl, a, address); return a->mode; } static struct attribute_group nvme_dev_attrs_group = { .attrs = nvme_dev_attrs, .is_visible = nvme_dev_attrs_are_visible, }; static const struct attribute_group *nvme_dev_attr_groups[] = { &nvme_dev_attrs_group, NULL, }; static int ns_cmp(void *priv, struct list_head *a, struct list_head *b) { struct nvme_ns *nsa = container_of(a, struct nvme_ns, list); struct nvme_ns *nsb = container_of(b, struct nvme_ns, list); return nsa->ns_id - nsb->ns_id; } static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) { struct nvme_ns *ns, *ret = NULL; mutex_lock(&ctrl->namespaces_mutex); list_for_each_entry(ns, &ctrl->namespaces, list) { if (ns->ns_id == nsid) { kref_get(&ns->kref); ret = ns; break; } if (ns->ns_id > nsid) break; } mutex_unlock(&ctrl->namespaces_mutex); return ret; } static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid) { struct nvme_ns *ns; struct gendisk *disk; struct nvme_id_ns *id; char disk_name[DISK_NAME_LEN]; int node = dev_to_node(ctrl->dev); ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); if (!ns) return; ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL); if (ns->instance < 0) goto out_free_ns; ns->queue = blk_mq_init_queue(ctrl->tagset); if (IS_ERR(ns->queue)) goto out_release_instance; queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue); ns->queue->queuedata = ns; ns->ctrl = ctrl; kref_init(&ns->kref); ns->ns_id = nsid; ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */ blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift); nvme_set_queue_limits(ctrl, ns->queue); sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->instance); if (nvme_revalidate_ns(ns, &id)) goto out_free_queue; if (nvme_nvm_ns_supported(ns, id) && nvme_nvm_register(ns, disk_name, node)) { dev_warn(ctrl->dev, "%s: LightNVM init failure\n", __func__); goto out_free_id; } disk = alloc_disk_node(0, node); if (!disk) goto out_free_id; disk->fops = &nvme_fops; disk->private_data = ns; disk->queue = ns->queue; disk->flags = GENHD_FL_EXT_DEVT; memcpy(disk->disk_name, disk_name, DISK_NAME_LEN); ns->disk = disk; __nvme_revalidate_disk(disk, id); mutex_lock(&ctrl->namespaces_mutex); list_add_tail(&ns->list, &ctrl->namespaces); mutex_unlock(&ctrl->namespaces_mutex); kref_get(&ctrl->kref); kfree(id); device_add_disk(ctrl->device, ns->disk); if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj, &nvme_ns_attr_group)) pr_warn("%s: failed to create sysfs group for identification\n", ns->disk->disk_name); if (ns->ndev && nvme_nvm_register_sysfs(ns)) pr_warn("%s: failed to register lightnvm sysfs group for identification\n", ns->disk->disk_name); return; out_free_id: kfree(id); out_free_queue: blk_cleanup_queue(ns->queue); out_release_instance: ida_simple_remove(&ctrl->ns_ida, ns->instance); out_free_ns: kfree(ns); } static void nvme_ns_remove(struct nvme_ns *ns) { if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags)) return; if (ns->disk && ns->disk->flags & GENHD_FL_UP) { if (blk_get_integrity(ns->disk)) blk_integrity_unregister(ns->disk); sysfs_remove_group(&disk_to_dev(ns->disk)->kobj, &nvme_ns_attr_group); if (ns->ndev) nvme_nvm_unregister_sysfs(ns); del_gendisk(ns->disk); blk_cleanup_queue(ns->queue); } mutex_lock(&ns->ctrl->namespaces_mutex); list_del_init(&ns->list); mutex_unlock(&ns->ctrl->namespaces_mutex); nvme_put_ns(ns); } static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid) { struct nvme_ns *ns; ns = nvme_find_get_ns(ctrl, nsid); if (ns) { if (ns->disk && revalidate_disk(ns->disk)) nvme_ns_remove(ns); nvme_put_ns(ns); } else nvme_alloc_ns(ctrl, nsid); } static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, unsigned nsid) { struct nvme_ns *ns, *next; list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { if (ns->ns_id > nsid) nvme_ns_remove(ns); } } static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn) { struct nvme_ns *ns; __le32 *ns_list; unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024); int ret = 0; ns_list = kzalloc(0x1000, GFP_KERNEL); if (!ns_list) return -ENOMEM; for (i = 0; i < num_lists; i++) { ret = nvme_identify_ns_list(ctrl, prev, ns_list); if (ret) goto free; for (j = 0; j < min(nn, 1024U); j++) { nsid = le32_to_cpu(ns_list[j]); if (!nsid) goto out; nvme_validate_ns(ctrl, nsid); while (++prev < nsid) { ns = nvme_find_get_ns(ctrl, prev); if (ns) { nvme_ns_remove(ns); nvme_put_ns(ns); } } } nn -= j; } out: nvme_remove_invalid_namespaces(ctrl, prev); free: kfree(ns_list); return ret; } static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn) { unsigned i; for (i = 1; i <= nn; i++) nvme_validate_ns(ctrl, i); nvme_remove_invalid_namespaces(ctrl, nn); } static void nvme_scan_work(struct work_struct *work) { struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, scan_work); struct nvme_id_ctrl *id; unsigned nn; if (ctrl->state != NVME_CTRL_LIVE) return; if (nvme_identify_ctrl(ctrl, &id)) return; nn = le32_to_cpu(id->nn); if (ctrl->vs >= NVME_VS(1, 1, 0) && !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) { if (!nvme_scan_ns_list(ctrl, nn)) goto done; } nvme_scan_ns_sequential(ctrl, nn); done: mutex_lock(&ctrl->namespaces_mutex); list_sort(NULL, &ctrl->namespaces, ns_cmp); mutex_unlock(&ctrl->namespaces_mutex); kfree(id); } void nvme_queue_scan(struct nvme_ctrl *ctrl) { /* * Do not queue new scan work when a controller is reset during * removal. */ if (ctrl->state == NVME_CTRL_LIVE) queue_work(nvme_wq, &ctrl->scan_work); } EXPORT_SYMBOL_GPL(nvme_queue_scan); /* * This function iterates the namespace list unlocked to allow recovery from * controller failure. It is up to the caller to ensure the namespace list is * not modified by scan work while this function is executing. */ void nvme_remove_namespaces(struct nvme_ctrl *ctrl) { struct nvme_ns *ns, *next; /* * The dead states indicates the controller was not gracefully * disconnected. In that case, we won't be able to flush any data while * removing the namespaces' disks; fail all the queues now to avoid * potentially having to clean up the failed sync later. */ if (ctrl->state == NVME_CTRL_DEAD) nvme_kill_queues(ctrl); list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) nvme_ns_remove(ns); } EXPORT_SYMBOL_GPL(nvme_remove_namespaces); static void nvme_async_event_work(struct work_struct *work) { struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, async_event_work); spin_lock_irq(&ctrl->lock); while (ctrl->event_limit > 0) { int aer_idx = --ctrl->event_limit; spin_unlock_irq(&ctrl->lock); ctrl->ops->submit_async_event(ctrl, aer_idx); spin_lock_irq(&ctrl->lock); } spin_unlock_irq(&ctrl->lock); } void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, union nvme_result *res) { u32 result = le32_to_cpu(res->u32); bool done = true; switch (le16_to_cpu(status) >> 1) { case NVME_SC_SUCCESS: done = false; /*FALLTHRU*/ case NVME_SC_ABORT_REQ: ++ctrl->event_limit; queue_work(nvme_wq, &ctrl->async_event_work); break; default: break; } if (done) return; switch (result & 0xff07) { case NVME_AER_NOTICE_NS_CHANGED: dev_info(ctrl->device, "rescanning\n"); nvme_queue_scan(ctrl); break; default: dev_warn(ctrl->device, "async event result %08x\n", result); } } EXPORT_SYMBOL_GPL(nvme_complete_async_event); void nvme_queue_async_events(struct nvme_ctrl *ctrl) { ctrl->event_limit = NVME_NR_AERS; queue_work(nvme_wq, &ctrl->async_event_work); } EXPORT_SYMBOL_GPL(nvme_queue_async_events); static DEFINE_IDA(nvme_instance_ida); static int nvme_set_instance(struct nvme_ctrl *ctrl) { int instance, error; do { if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL)) return -ENODEV; spin_lock(&dev_list_lock); error = ida_get_new(&nvme_instance_ida, &instance); spin_unlock(&dev_list_lock); } while (error == -EAGAIN); if (error) return -ENODEV; ctrl->instance = instance; return 0; } static void nvme_release_instance(struct nvme_ctrl *ctrl) { spin_lock(&dev_list_lock); ida_remove(&nvme_instance_ida, ctrl->instance); spin_unlock(&dev_list_lock); } void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) { flush_work(&ctrl->async_event_work); flush_work(&ctrl->scan_work); nvme_remove_namespaces(ctrl); device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance)); spin_lock(&dev_list_lock); list_del(&ctrl->node); spin_unlock(&dev_list_lock); } EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); static void nvme_free_ctrl(struct kref *kref) { struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref); put_device(ctrl->device); nvme_release_instance(ctrl); ida_destroy(&ctrl->ns_ida); ctrl->ops->free_ctrl(ctrl); } void nvme_put_ctrl(struct nvme_ctrl *ctrl) { kref_put(&ctrl->kref, nvme_free_ctrl); } EXPORT_SYMBOL_GPL(nvme_put_ctrl); /* * Initialize a NVMe controller structures. This needs to be called during * earliest initialization so that we have the initialized structured around * during probing. */ int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, const struct nvme_ctrl_ops *ops, unsigned long quirks) { int ret; ctrl->state = NVME_CTRL_NEW; spin_lock_init(&ctrl->lock); INIT_LIST_HEAD(&ctrl->namespaces); mutex_init(&ctrl->namespaces_mutex); kref_init(&ctrl->kref); ctrl->dev = dev; ctrl->ops = ops; ctrl->quirks = quirks; INIT_WORK(&ctrl->scan_work, nvme_scan_work); INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); ret = nvme_set_instance(ctrl); if (ret) goto out; ctrl->device = device_create_with_groups(nvme_class, ctrl->dev, MKDEV(nvme_char_major, ctrl->instance), ctrl, nvme_dev_attr_groups, "nvme%d", ctrl->instance); if (IS_ERR(ctrl->device)) { ret = PTR_ERR(ctrl->device); goto out_release_instance; } get_device(ctrl->device); ida_init(&ctrl->ns_ida); spin_lock(&dev_list_lock); list_add_tail(&ctrl->node, &nvme_ctrl_list); spin_unlock(&dev_list_lock); /* * Initialize latency tolerance controls. The sysfs files won't * be visible to userspace unless the device actually supports APST. */ ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; dev_pm_qos_update_user_latency_tolerance(ctrl->device, min(default_ps_max_latency_us, (unsigned long)S32_MAX)); return 0; out_release_instance: nvme_release_instance(ctrl); out: return ret; } EXPORT_SYMBOL_GPL(nvme_init_ctrl); /** * nvme_kill_queues(): Ends all namespace queues * @ctrl: the dead controller that needs to end * * Call this function when the driver determines it is unable to get the * controller in a state capable of servicing IO. */ void nvme_kill_queues(struct nvme_ctrl *ctrl) { struct nvme_ns *ns; mutex_lock(&ctrl->namespaces_mutex); /* Forcibly start all queues to avoid having stuck requests */ blk_mq_start_hw_queues(ctrl->admin_q); list_for_each_entry(ns, &ctrl->namespaces, list) { /* * Revalidating a dead namespace sets capacity to 0. This will * end buffered writers dirtying pages that can't be synced. */ if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags)) continue; revalidate_disk(ns->disk); blk_set_queue_dying(ns->queue); /* * Forcibly start all queues to avoid having stuck requests. * Note that we must ensure the queues are not stopped * when the final removal happens. */ blk_mq_start_hw_queues(ns->queue); /* draining requests in requeue list */ blk_mq_kick_requeue_list(ns->queue); } mutex_unlock(&ctrl->namespaces_mutex); } EXPORT_SYMBOL_GPL(nvme_kill_queues); void nvme_unfreeze(struct nvme_ctrl *ctrl) { struct nvme_ns *ns; mutex_lock(&ctrl->namespaces_mutex); list_for_each_entry(ns, &ctrl->namespaces, list) blk_mq_unfreeze_queue(ns->queue); mutex_unlock(&ctrl->namespaces_mutex); } EXPORT_SYMBOL_GPL(nvme_unfreeze); void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) { struct nvme_ns *ns; mutex_lock(&ctrl->namespaces_mutex); list_for_each_entry(ns, &ctrl->namespaces, list) { timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout); if (timeout <= 0) break; } mutex_unlock(&ctrl->namespaces_mutex); } EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); void nvme_wait_freeze(struct nvme_ctrl *ctrl) { struct nvme_ns *ns; mutex_lock(&ctrl->namespaces_mutex); list_for_each_entry(ns, &ctrl->namespaces, list) blk_mq_freeze_queue_wait(ns->queue); mutex_unlock(&ctrl->namespaces_mutex); } EXPORT_SYMBOL_GPL(nvme_wait_freeze); void nvme_start_freeze(struct nvme_ctrl *ctrl) { struct nvme_ns *ns; mutex_lock(&ctrl->namespaces_mutex); list_for_each_entry(ns, &ctrl->namespaces, list) blk_freeze_queue_start(ns->queue); mutex_unlock(&ctrl->namespaces_mutex); } EXPORT_SYMBOL_GPL(nvme_start_freeze); void nvme_stop_queues(struct nvme_ctrl *ctrl) { struct nvme_ns *ns; mutex_lock(&ctrl->namespaces_mutex); list_for_each_entry(ns, &ctrl->namespaces, list) blk_mq_quiesce_queue(ns->queue); mutex_unlock(&ctrl->namespaces_mutex); } EXPORT_SYMBOL_GPL(nvme_stop_queues); void nvme_start_queues(struct nvme_ctrl *ctrl) { struct nvme_ns *ns; mutex_lock(&ctrl->namespaces_mutex); list_for_each_entry(ns, &ctrl->namespaces, list) { blk_mq_start_stopped_hw_queues(ns->queue, true); blk_mq_kick_requeue_list(ns->queue); } mutex_unlock(&ctrl->namespaces_mutex); } EXPORT_SYMBOL_GPL(nvme_start_queues); int __init nvme_core_init(void) { int result; nvme_wq = alloc_workqueue("nvme-wq", WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); if (!nvme_wq) return -ENOMEM; result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme", &nvme_dev_fops); if (result < 0) goto destroy_wq; else if (result > 0) nvme_char_major = result; nvme_class = class_create(THIS_MODULE, "nvme"); if (IS_ERR(nvme_class)) { result = PTR_ERR(nvme_class); goto unregister_chrdev; } return 0; unregister_chrdev: __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme"); destroy_wq: destroy_workqueue(nvme_wq); return result; } void nvme_core_exit(void) { class_destroy(nvme_class); __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme"); destroy_workqueue(nvme_wq); } MODULE_LICENSE("GPL"); MODULE_VERSION("1.0"); module_init(nvme_core_init); module_exit(nvme_core_exit);