/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_BLKDEV_H #define _LINUX_BLKDEV_H #include #include #ifdef CONFIG_BLOCK #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct module; struct scsi_ioctl_command; struct request_queue; struct elevator_queue; struct blk_trace; struct request; struct sg_io_hdr; struct bsg_job; struct blkcg_gq; struct blk_flush_queue; struct pr_ops; struct rq_qos; struct blk_queue_stats; struct blk_stat_callback; #define BLKDEV_MIN_RQ 4 #define BLKDEV_MAX_RQ 128 /* Default maximum */ /* Must be consistent with blk_mq_poll_stats_bkt() */ #define BLK_MQ_POLL_STATS_BKTS 16 /* * Maximum number of blkcg policies allowed to be registered concurrently. * Defined here to simplify include dependency. */ #define BLKCG_MAX_POLS 5 typedef void (rq_end_io_fn)(struct request *, blk_status_t); #define BLK_RL_SYNCFULL (1U << 0) #define BLK_RL_ASYNCFULL (1U << 1) struct request_list { struct request_queue *q; /* the queue this rl belongs to */ #ifdef CONFIG_BLK_CGROUP struct blkcg_gq *blkg; /* blkg this request pool belongs to */ #endif /* * count[], starved[], and wait[] are indexed by * BLK_RW_SYNC/BLK_RW_ASYNC */ int count[2]; int starved[2]; mempool_t *rq_pool; wait_queue_head_t wait[2]; unsigned int flags; }; /* * request flags */ typedef __u32 __bitwise req_flags_t; /* elevator knows about this request */ #define RQF_SORTED ((__force req_flags_t)(1 << 0)) /* drive already may have started this one */ #define RQF_STARTED ((__force req_flags_t)(1 << 1)) /* uses tagged queueing */ #define RQF_QUEUED ((__force req_flags_t)(1 << 2)) /* may not be passed by ioscheduler */ #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3)) /* request for flush sequence */ #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4)) /* merge of different types, fail separately */ #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5)) /* track inflight for MQ */ #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6)) /* don't call prep for this one */ #define RQF_DONTPREP ((__force req_flags_t)(1 << 7)) /* set for "ide_preempt" requests and also for requests for which the SCSI "quiesce" state must be ignored. */ #define RQF_PREEMPT ((__force req_flags_t)(1 << 8)) /* contains copies of user pages */ #define RQF_COPY_USER ((__force req_flags_t)(1 << 9)) /* vaguely specified driver internal error. Ignored by the block layer */ #define RQF_FAILED ((__force req_flags_t)(1 << 10)) /* don't warn about errors */ #define RQF_QUIET ((__force req_flags_t)(1 << 11)) /* elevator private data attached */ #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12)) /* account I/O stat */ #define RQF_IO_STAT ((__force req_flags_t)(1 << 13)) /* request came from our alloc pool */ #define RQF_ALLOCED ((__force req_flags_t)(1 << 14)) /* runtime pm request */ #define RQF_PM ((__force req_flags_t)(1 << 15)) /* on IO scheduler merge hash */ #define RQF_HASHED ((__force req_flags_t)(1 << 16)) /* IO stats tracking on */ #define RQF_STATS ((__force req_flags_t)(1 << 17)) /* Look at ->special_vec for the actual data payload instead of the bio chain. */ #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18)) /* The per-zone write lock is held for this request */ #define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19)) /* already slept for hybrid poll */ #define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20)) /* ->timeout has been called, don't expire again */ #define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21)) /* flags that prevent us from merging requests: */ #define RQF_NOMERGE_FLAGS \ (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD) /* * Request state for blk-mq. */ enum mq_rq_state { MQ_RQ_IDLE = 0, MQ_RQ_IN_FLIGHT = 1, MQ_RQ_COMPLETE = 2, }; /* * Try to put the fields that are referenced together in the same cacheline. * * If you modify this structure, make sure to update blk_rq_init() and * especially blk_mq_rq_ctx_init() to take care of the added fields. */ struct request { struct request_queue *q; struct blk_mq_ctx *mq_ctx; struct blk_mq_hw_ctx *mq_hctx; int cpu; unsigned int cmd_flags; /* op and common flags */ req_flags_t rq_flags; int internal_tag; /* the following two fields are internal, NEVER access directly */ unsigned int __data_len; /* total data len */ int tag; sector_t __sector; /* sector cursor */ struct bio *bio; struct bio *biotail; struct list_head queuelist; /* * The hash is used inside the scheduler, and killed once the * request reaches the dispatch list. The ipi_list is only used * to queue the request for softirq completion, which is long * after the request has been unhashed (and even removed from * the dispatch list). */ union { struct hlist_node hash; /* merge hash */ struct list_head ipi_list; }; /* * The rb_node is only used inside the io scheduler, requests * are pruned when moved to the dispatch queue. So let the * completion_data share space with the rb_node. */ union { struct rb_node rb_node; /* sort/lookup */ struct bio_vec special_vec; void *completion_data; int error_count; /* for legacy drivers, don't use */ }; /* * Three pointers are available for the IO schedulers, if they need * more they have to dynamically allocate it. Flush requests are * never put on the IO scheduler. So let the flush fields share * space with the elevator data. */ union { struct { struct io_cq *icq; void *priv[2]; } elv; struct { unsigned int seq; struct list_head list; rq_end_io_fn *saved_end_io; } flush; }; struct gendisk *rq_disk; struct hd_struct *part; #ifdef CONFIG_BLK_RQ_ALLOC_TIME /* Time that the first bio started allocating this request. */ u64 alloc_time_ns; #endif /* Time that this request was allocated for this IO. */ u64 start_time_ns; /* Time that I/O was submitted to the device. */ u64 io_start_time_ns; #ifdef CONFIG_BLK_WBT unsigned short wbt_flags; #endif /* * rq sectors used for blk stats. It has the same value * with blk_rq_sectors(rq), except that it never be zeroed * by completion. */ unsigned short stats_sectors; /* * Number of scatter-gather DMA addr+len pairs after * physical address coalescing is performed. */ unsigned short nr_phys_segments; #if defined(CONFIG_BLK_DEV_INTEGRITY) unsigned short nr_integrity_segments; #endif unsigned short write_hint; unsigned short ioprio; void *special; /* opaque pointer available for LLD use */ unsigned int extra_len; /* length of alignment and padding */ enum mq_rq_state state; refcount_t ref; unsigned int timeout; /* access through blk_rq_set_deadline, blk_rq_deadline */ unsigned long __deadline; struct list_head timeout_list; union { struct __call_single_data csd; u64 fifo_time; }; /* * completion callback. */ rq_end_io_fn *end_io; void *end_io_data; /* for bidi */ struct request *next_rq; #ifdef CONFIG_BLK_CGROUP struct request_list *rl; /* rl this rq is alloced from */ #endif }; static inline bool blk_op_is_scsi(unsigned int op) { return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT; } static inline bool blk_op_is_private(unsigned int op) { return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; } static inline bool blk_rq_is_scsi(struct request *rq) { return blk_op_is_scsi(req_op(rq)); } static inline bool blk_rq_is_private(struct request *rq) { return blk_op_is_private(req_op(rq)); } static inline bool blk_rq_is_passthrough(struct request *rq) { return blk_rq_is_scsi(rq) || blk_rq_is_private(rq); } static inline bool bio_is_passthrough(struct bio *bio) { unsigned op = bio_op(bio); return blk_op_is_scsi(op) || blk_op_is_private(op); } static inline unsigned short req_get_ioprio(struct request *req) { return req->ioprio; } #include struct blk_queue_ctx; typedef void (request_fn_proc) (struct request_queue *q); typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio); typedef int (prep_rq_fn) (struct request_queue *, struct request *); typedef void (unprep_rq_fn) (struct request_queue *, struct request *); struct bio_vec; typedef void (softirq_done_fn)(struct request *); typedef int (dma_drain_needed_fn)(struct request *); typedef int (lld_busy_fn) (struct request_queue *q); typedef int (bsg_job_fn) (struct bsg_job *); typedef int (init_rq_fn)(struct request_queue *, struct request *, gfp_t); typedef void (exit_rq_fn)(struct request_queue *, struct request *); enum blk_eh_timer_return { BLK_EH_DONE, /* drivers has completed the command */ BLK_EH_RESET_TIMER, /* reset timer and try again */ }; typedef enum blk_eh_timer_return (rq_timed_out_fn)(struct request *); enum blk_queue_state { Queue_down, Queue_up, }; struct blk_queue_tag { struct request **tag_index; /* map of busy tags */ unsigned long *tag_map; /* bit map of free/busy tags */ int max_depth; /* what we will send to device */ int real_max_depth; /* what the array can hold */ atomic_t refcnt; /* map can be shared */ int alloc_policy; /* tag allocation policy */ int next_tag; /* next tag */ }; #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */ #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */ #define BLK_SCSI_MAX_CMDS (256) #define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8)) /* * Zoned block device models (zoned limit). */ enum blk_zoned_model { BLK_ZONED_NONE, /* Regular block device */ BLK_ZONED_HA, /* Host-aware zoned block device */ BLK_ZONED_HM, /* Host-managed zoned block device */ }; struct queue_limits { unsigned long bounce_pfn; unsigned long seg_boundary_mask; unsigned long virt_boundary_mask; unsigned int max_hw_sectors; unsigned int max_dev_sectors; unsigned int chunk_sectors; unsigned int max_sectors; unsigned int max_segment_size; unsigned int physical_block_size; unsigned int logical_block_size; unsigned int alignment_offset; unsigned int io_min; unsigned int io_opt; unsigned int max_discard_sectors; unsigned int max_hw_discard_sectors; unsigned int max_write_same_sectors; unsigned int max_write_zeroes_sectors; unsigned int discard_granularity; unsigned int discard_alignment; unsigned short max_segments; unsigned short max_integrity_segments; unsigned short max_discard_segments; unsigned char misaligned; unsigned char discard_misaligned; unsigned char cluster; unsigned char raid_partial_stripes_expensive; enum blk_zoned_model zoned; ALI_HOTFIX_RESERVE(1) ALI_HOTFIX_RESERVE(2) }; #ifdef CONFIG_BLK_DEV_ZONED struct blk_zone_report_hdr { unsigned int nr_zones; u8 padding[60]; }; extern int blkdev_report_zones(struct block_device *bdev, sector_t sector, struct blk_zone *zones, unsigned int *nr_zones, gfp_t gfp_mask); extern int blkdev_reset_zones(struct block_device *bdev, sector_t sectors, sector_t nr_sectors, gfp_t gfp_mask); extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg); extern int blkdev_reset_zones_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg); #else /* CONFIG_BLK_DEV_ZONED */ static inline int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) { return -ENOTTY; } static inline int blkdev_reset_zones_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) { return -ENOTTY; } #endif /* CONFIG_BLK_DEV_ZONED */ /* * default request hang threshold, unit is millisecond. If one request does * not complete in this threashold time, consider this request as hang. */ #define BLK_REQ_HANG_THRESHOLD 5000 struct request_queue { /* * Together with queue_head for cacheline sharing */ struct list_head queue_head; struct request *last_merge; struct elevator_queue *elevator; int nr_rqs[2]; /* # allocated [a]sync rqs */ int nr_rqs_elvpriv; /* # allocated rqs w/ elvpriv */ struct blk_queue_stats *stats; struct rq_qos *rq_qos; /* * If blkcg is not used, @q->root_rl serves all requests. If blkcg * is used, root blkg allocates from @q->root_rl and all other * blkgs from their own blkg->rl. Which one to use should be * determined using bio_request_list(). */ struct request_list root_rl; request_fn_proc *request_fn; make_request_fn *make_request_fn; prep_rq_fn *prep_rq_fn; unprep_rq_fn *unprep_rq_fn; softirq_done_fn *softirq_done_fn; rq_timed_out_fn *rq_timed_out_fn; dma_drain_needed_fn *dma_drain_needed; lld_busy_fn *lld_busy_fn; /* Called just after a request is allocated */ init_rq_fn *init_rq_fn; /* Called just before a request is freed */ exit_rq_fn *exit_rq_fn; /* Called from inside blk_get_request() */ void (*initialize_rq_fn)(struct request *rq); const struct blk_mq_ops *mq_ops; /* sw queues */ struct blk_mq_ctx __percpu *queue_ctx; unsigned int nr_queues; unsigned int queue_depth; /* hw dispatch queues */ struct blk_mq_hw_ctx **queue_hw_ctx; unsigned int nr_hw_queues; /* * Dispatch queue sorting */ sector_t end_sector; struct request *boundary_rq; /* * Delayed queue handling */ struct delayed_work delay_work; struct backing_dev_info *backing_dev_info; /* * The queue owner gets to use this for whatever they like. * ll_rw_blk doesn't touch it. */ void *queuedata; /* * various queue flags, see QUEUE_* below */ unsigned long queue_flags; /* * Number of contexts that have called blk_set_pm_only(). If this * counter is above zero then only RQF_PM and RQF_PREEMPT requests are * processed. */ atomic_t pm_only; /* * ida allocated id for this queue. Used to index queues from * ioctx. */ int id; /* * queue needs bounce pages for pages above this limit */ gfp_t bounce_gfp; /* * protects queue structures from reentrancy. ->__queue_lock should * _never_ be used directly, it is queue private. always use * ->queue_lock. */ spinlock_t __queue_lock; spinlock_t *queue_lock; /* * queue kobject */ struct kobject kobj; /* * mq queue kobject */ struct kobject *mq_kobj; #ifdef CONFIG_BLK_DEV_INTEGRITY struct blk_integrity integrity; #endif /* CONFIG_BLK_DEV_INTEGRITY */ #ifdef CONFIG_PM struct device *dev; int rpm_status; unsigned int nr_pending; #endif /* * queue settings */ unsigned long nr_requests; /* Max # of requests */ unsigned int nr_congestion_on; unsigned int nr_congestion_off; unsigned int nr_batching; unsigned int dma_drain_size; void *dma_drain_buffer; unsigned int dma_pad_mask; unsigned int dma_alignment; struct blk_queue_tag *queue_tags; unsigned int nr_sorted; unsigned int in_flight[2]; /* * Number of active block driver functions for which blk_drain_queue() * must wait. Must be incremented around functions that unlock the * queue_lock internally, e.g. scsi_request_fn(). */ unsigned int request_fn_active; unsigned int rq_timeout; unsigned int rq_hang_threshold; int poll_nsec; struct blk_stat_callback *poll_cb; struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS]; struct timer_list timeout; struct work_struct timeout_work; struct list_head timeout_list; struct list_head icq_list; #ifdef CONFIG_BLK_CGROUP DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); struct blkcg_gq *root_blkg; struct list_head blkg_list; #endif struct queue_limits limits; #ifdef CONFIG_BLK_DEV_ZONED /* * Zoned block device information for request dispatch control. * nr_zones is the total number of zones of the device. This is always * 0 for regular block devices. seq_zones_bitmap is a bitmap of nr_zones * bits which indicates if a zone is conventional (bit clear) or * sequential (bit set). seq_zones_wlock is a bitmap of nr_zones * bits which indicates if a zone is write locked, that is, if a write * request targeting the zone was dispatched. All three fields are * initialized by the low level device driver (e.g. scsi/sd.c). * Stacking drivers (device mappers) may or may not initialize * these fields. * * Reads of this information must be protected with blk_queue_enter() / * blk_queue_exit(). Modifying this information is only allowed while * no requests are being processed. See also blk_mq_freeze_queue() and * blk_mq_unfreeze_queue(). */ unsigned int nr_zones; unsigned long *seq_zones_bitmap; unsigned long *seq_zones_wlock; #endif /* CONFIG_BLK_DEV_ZONED */ /* * sg stuff */ unsigned int sg_timeout; unsigned int sg_reserved_size; int node; #ifdef CONFIG_BLK_DEV_IO_TRACE struct blk_trace __rcu *blk_trace; struct mutex blk_trace_mutex; #endif /* * for flush operations */ struct blk_flush_queue *fq; struct list_head requeue_list; spinlock_t requeue_lock; struct delayed_work requeue_work; struct mutex sysfs_lock; int bypass_depth; atomic_t mq_freeze_depth; #if defined(CONFIG_BLK_DEV_BSG) bsg_job_fn *bsg_job_fn; struct bsg_class_device bsg_dev; #endif #ifdef CONFIG_BLK_DEV_THROTTLING /* Throttle data */ struct throtl_data *td; #endif struct rcu_head rcu_head; wait_queue_head_t mq_freeze_wq; struct percpu_ref q_usage_counter; struct list_head all_q_node; struct blk_mq_tag_set *tag_set; struct list_head tag_set_list; struct bio_set bio_split; #ifdef CONFIG_BLK_DEBUG_FS struct dentry *debugfs_dir; struct dentry *sched_debugfs_dir; #endif bool mq_sysfs_init_done; size_t cmd_size; void *rq_alloc_data; struct work_struct release_work; #define BLK_MAX_WRITE_HINTS 5 u64 write_hints[BLK_MAX_WRITE_HINTS]; ALI_HOTFIX_RESERVE(1) ALI_HOTFIX_RESERVE(2) ALI_HOTFIX_RESERVE(3) ALI_HOTFIX_RESERVE(4) }; #define QUEUE_FLAG_QUEUED 0 /* uses generic tag queueing */ #define QUEUE_FLAG_STOPPED 1 /* queue is stopped */ #define QUEUE_FLAG_DYING 2 /* queue being torn down */ #define QUEUE_FLAG_BYPASS 3 /* act as dumb FIFO queue */ #define QUEUE_FLAG_BIDI 4 /* queue supports bidi requests */ #define QUEUE_FLAG_NOMERGES 5 /* disable merge attempts */ #define QUEUE_FLAG_SAME_COMP 6 /* complete on same CPU-group */ #define QUEUE_FLAG_FAIL_IO 7 /* fake timeout */ #define QUEUE_FLAG_NONROT 9 /* non-rotational device (SSD) */ #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ #define QUEUE_FLAG_IO_STAT 10 /* do IO stats */ #define QUEUE_FLAG_DISCARD 11 /* supports DISCARD */ #define QUEUE_FLAG_NOXMERGES 12 /* No extended merges */ #define QUEUE_FLAG_ADD_RANDOM 13 /* Contributes to random pool */ #define QUEUE_FLAG_SECERASE 14 /* supports secure erase */ #define QUEUE_FLAG_SAME_FORCE 15 /* force complete on same CPU */ #define QUEUE_FLAG_DEAD 16 /* queue tear-down finished */ #define QUEUE_FLAG_INIT_DONE 17 /* queue is initialized */ #define QUEUE_FLAG_NO_SG_MERGE 18 /* don't attempt to merge SG segments*/ #define QUEUE_FLAG_POLL 19 /* IO polling enabled if set */ #define QUEUE_FLAG_WC 20 /* Write back caching */ #define QUEUE_FLAG_FUA 21 /* device supports FUA writes */ #define QUEUE_FLAG_FLUSH_NQ 22 /* flush not queueuable */ #define QUEUE_FLAG_DAX 23 /* device supports DAX */ #define QUEUE_FLAG_STATS 24 /* track rq completion times */ #define QUEUE_FLAG_POLL_STATS 25 /* collecting stats for hybrid polling */ #define QUEUE_FLAG_REGISTERED 26 /* queue has been registered to a disk */ #define QUEUE_FLAG_SCSI_PASSTHROUGH 27 /* queue supports SCSI commands */ #define QUEUE_FLAG_QUIESCED 28 /* queue has been quiesced */ #define QUEUE_FLAG_RQ_ALLOC_TIME 29 /* record rq->alloc_time_ns */ #define QUEUE_FLAG_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ (1 << QUEUE_FLAG_SAME_COMP) | \ (1 << QUEUE_FLAG_ADD_RANDOM)) #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ (1 << QUEUE_FLAG_SAME_COMP)) void blk_queue_flag_set(unsigned int flag, struct request_queue *q); void blk_queue_flag_clear(unsigned int flag, struct request_queue *q); bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q); bool blk_queue_flag_test_and_clear(unsigned int flag, struct request_queue *q); #define blk_queue_tagged(q) test_bit(QUEUE_FLAG_QUEUED, &(q)->queue_flags) #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags) #define blk_queue_bypass(q) test_bit(QUEUE_FLAG_BYPASS, &(q)->queue_flags) #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) #define blk_queue_noxmerges(q) \ test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags) #define blk_queue_secure_erase(q) \ (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags)) #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) #define blk_queue_scsi_passthrough(q) \ test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags) #ifdef CONFIG_BLK_RQ_ALLOC_TIME #define blk_queue_rq_alloc_time(q) \ test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags) #else #define blk_queue_rq_alloc_time(q) false #endif #define blk_noretry_request(rq) \ ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ REQ_FAILFAST_DRIVER)) #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only) #define blk_queue_fua(q) test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags) extern void blk_set_pm_only(struct request_queue *q); extern void blk_clear_pm_only(struct request_queue *q); static inline int queue_in_flight(struct request_queue *q) { return q->in_flight[0] + q->in_flight[1]; } static inline bool blk_account_rq(struct request *rq) { return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq); } #define blk_rq_cpu_valid(rq) ((rq)->cpu != -1) #define blk_bidi_rq(rq) ((rq)->next_rq != NULL) /* rq->queuelist of dequeued request must be list_empty() */ #define blk_queued_rq(rq) (!list_empty(&(rq)->queuelist)) #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ) #define rq_dma_dir(rq) \ (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE) #define dma_map_bvec(dev, bv, dir, attrs) \ dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \ (dir), (attrs)) /* * Driver can handle struct request, if it either has an old style * request_fn defined, or is blk-mq based. */ static inline bool queue_is_rq_based(struct request_queue *q) { return q->request_fn || q->mq_ops; } static inline unsigned int blk_queue_cluster(struct request_queue *q) { return q->limits.cluster; } static inline enum blk_zoned_model blk_queue_zoned_model(struct request_queue *q) { return q->limits.zoned; } static inline bool blk_queue_is_zoned(struct request_queue *q) { switch (blk_queue_zoned_model(q)) { case BLK_ZONED_HA: case BLK_ZONED_HM: return true; default: return false; } } static inline unsigned int blk_queue_zone_sectors(struct request_queue *q) { return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0; } #ifdef CONFIG_BLK_DEV_ZONED static inline unsigned int blk_queue_zone_no(struct request_queue *q, sector_t sector) { if (!blk_queue_is_zoned(q)) return 0; return sector >> ilog2(q->limits.chunk_sectors); } static inline bool blk_queue_zone_is_seq(struct request_queue *q, sector_t sector) { if (!blk_queue_is_zoned(q) || !q->seq_zones_bitmap) return false; return test_bit(blk_queue_zone_no(q, sector), q->seq_zones_bitmap); } #endif /* CONFIG_BLK_DEV_ZONED */ static inline bool rq_is_sync(struct request *rq) { return op_is_sync(rq->cmd_flags); } static inline bool blk_rl_full(struct request_list *rl, bool sync) { unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL; return rl->flags & flag; } static inline void blk_set_rl_full(struct request_list *rl, bool sync) { unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL; rl->flags |= flag; } static inline void blk_clear_rl_full(struct request_list *rl, bool sync) { unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL; rl->flags &= ~flag; } static inline bool rq_mergeable(struct request *rq) { if (blk_rq_is_passthrough(rq)) return false; if (req_op(rq) == REQ_OP_FLUSH) return false; if (req_op(rq) == REQ_OP_WRITE_ZEROES) return false; if (rq->cmd_flags & REQ_NOMERGE_FLAGS) return false; if (rq->rq_flags & RQF_NOMERGE_FLAGS) return false; return true; } static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b) { if (bio_page(a) == bio_page(b) && bio_offset(a) == bio_offset(b)) return true; return false; } static inline unsigned int blk_queue_depth(struct request_queue *q) { if (q->queue_depth) return q->queue_depth; return q->nr_requests; } /* * q->prep_rq_fn return values */ enum { BLKPREP_OK, /* serve it */ BLKPREP_KILL, /* fatal error, kill, return -EIO */ BLKPREP_DEFER, /* leave on queue */ BLKPREP_INVALID, /* invalid command, kill, return -EREMOTEIO */ }; extern unsigned long blk_max_low_pfn, blk_max_pfn; /* * standard bounce addresses: * * BLK_BOUNCE_HIGH : bounce all highmem pages * BLK_BOUNCE_ANY : don't bounce anything * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary */ #if BITS_PER_LONG == 32 #define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT) #else #define BLK_BOUNCE_HIGH -1ULL #endif #define BLK_BOUNCE_ANY (-1ULL) #define BLK_BOUNCE_ISA (DMA_BIT_MASK(24)) /* * default timeout for SG_IO if none specified */ #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) #define BLK_MIN_SG_TIMEOUT (7 * HZ) struct rq_map_data { struct page **pages; int page_order; int nr_entries; unsigned long offset; int null_mapped; int from_user; }; struct req_iterator { struct bvec_iter iter; struct bio *bio; }; /* This should not be used directly - use rq_for_each_segment */ #define for_each_bio(_bio) \ for (; _bio; _bio = _bio->bi_next) #define __rq_for_each_bio(_bio, rq) \ if ((rq->bio)) \ for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next) #define rq_for_each_segment(bvl, _rq, _iter) \ __rq_for_each_bio(_iter.bio, _rq) \ bio_for_each_segment(bvl, _iter.bio, _iter.iter) #define rq_iter_last(bvec, _iter) \ (_iter.bio->bi_next == NULL && \ bio_iter_last(bvec, _iter.iter)) #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform" #endif #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE extern void rq_flush_dcache_pages(struct request *rq); #else static inline void rq_flush_dcache_pages(struct request *rq) { } #endif extern int blk_register_queue(struct gendisk *disk); extern void blk_unregister_queue(struct gendisk *disk); extern blk_qc_t generic_make_request(struct bio *bio); extern blk_qc_t direct_make_request(struct bio *bio); extern void blk_rq_init(struct request_queue *q, struct request *rq); extern void blk_init_request_from_bio(struct request *req, struct bio *bio); extern void blk_put_request(struct request *); extern void __blk_put_request(struct request_queue *, struct request *); extern struct request *blk_get_request(struct request_queue *, unsigned int op, blk_mq_req_flags_t flags); extern void blk_requeue_request(struct request_queue *, struct request *); extern int blk_lld_busy(struct request_queue *q); extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src, struct bio_set *bs, gfp_t gfp_mask, int (*bio_ctr)(struct bio *, struct bio *, void *), void *data); extern void blk_rq_unprep_clone(struct request *rq); extern blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq); extern int blk_rq_append_bio(struct request *rq, struct bio **bio); extern void blk_delay_queue(struct request_queue *, unsigned long); extern void blk_queue_split(struct request_queue *, struct bio **); extern void blk_recount_segments(struct request_queue *, struct bio *); extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int); extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t, unsigned int, void __user *); extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t, unsigned int, void __user *); extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t, struct scsi_ioctl_command __user *); extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); extern void blk_queue_exit(struct request_queue *q); extern void blk_start_queue(struct request_queue *q); extern void blk_start_queue_async(struct request_queue *q); extern void blk_stop_queue(struct request_queue *q); extern void blk_sync_queue(struct request_queue *q); extern void __blk_stop_queue(struct request_queue *q); extern void __blk_run_queue(struct request_queue *q); extern void __blk_run_queue_uncond(struct request_queue *q); extern void blk_run_queue(struct request_queue *); extern void blk_run_queue_async(struct request_queue *q); extern int blk_rq_map_user(struct request_queue *, struct request *, struct rq_map_data *, void __user *, unsigned long, gfp_t); extern int blk_rq_unmap_user(struct bio *); extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t); extern int blk_rq_map_user_iov(struct request_queue *, struct request *, struct rq_map_data *, const struct iov_iter *, gfp_t); extern void blk_execute_rq(struct request_queue *, struct gendisk *, struct request *, int); extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *, struct request *, int, rq_end_io_fn *); int blk_status_to_errno(blk_status_t status); blk_status_t errno_to_blk_status(int errno); int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin); static inline struct request_queue *bdev_get_queue(struct block_device *bdev) { return bdev->bd_disk->queue; /* this is never NULL */ } /* * The basic unit of block I/O is a sector. It is used in a number of contexts * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9 * bytes. Variables of type sector_t represent an offset or size that is a * multiple of 512 bytes. Hence these two constants. */ #ifndef SECTOR_SHIFT #define SECTOR_SHIFT 9 #endif #ifndef SECTOR_SIZE #define SECTOR_SIZE (1 << SECTOR_SHIFT) #endif /* * blk_rq_pos() : the current sector * blk_rq_bytes() : bytes left in the entire request * blk_rq_cur_bytes() : bytes left in the current segment * blk_rq_err_bytes() : bytes left till the next error boundary * blk_rq_sectors() : sectors left in the entire request * blk_rq_cur_sectors() : sectors left in the current segment * blk_rq_stats_sectors() : sectors of the entire request used for stats */ static inline sector_t blk_rq_pos(const struct request *rq) { return rq->__sector; } static inline unsigned int blk_rq_bytes(const struct request *rq) { return rq->__data_len; } static inline int blk_rq_cur_bytes(const struct request *rq) { return rq->bio ? bio_cur_bytes(rq->bio) : 0; } extern unsigned int blk_rq_err_bytes(const struct request *rq); static inline unsigned int blk_rq_sectors(const struct request *rq) { return blk_rq_bytes(rq) >> SECTOR_SHIFT; } static inline unsigned int blk_rq_cur_sectors(const struct request *rq) { return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT; } static inline unsigned int blk_rq_stats_sectors(const struct request *rq) { return rq->stats_sectors; } #ifdef CONFIG_BLK_DEV_ZONED static inline unsigned int blk_rq_zone_no(struct request *rq) { return blk_queue_zone_no(rq->q, blk_rq_pos(rq)); } static inline unsigned int blk_rq_zone_is_seq(struct request *rq) { return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq)); } #endif /* CONFIG_BLK_DEV_ZONED */ /* * Some commands like WRITE SAME have a payload or data transfer size which * is different from the size of the request. Any driver that supports such * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to * calculate the data transfer size. */ static inline unsigned int blk_rq_payload_bytes(struct request *rq) { if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) return rq->special_vec.bv_len; return blk_rq_bytes(rq); } /* * Return the first full biovec in the request. The caller needs to check that * there are any bvecs before calling this helper. */ static inline struct bio_vec req_bvec(struct request *rq) { if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) return rq->special_vec; return bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter); } static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, int op) { if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) return min(q->limits.max_discard_sectors, UINT_MAX >> SECTOR_SHIFT); if (unlikely(op == REQ_OP_WRITE_SAME)) return q->limits.max_write_same_sectors; if (unlikely(op == REQ_OP_WRITE_ZEROES)) return q->limits.max_write_zeroes_sectors; return q->limits.max_sectors; } /* * Return maximum size of a request at given offset. Only valid for * file system requests. */ static inline unsigned int blk_max_size_offset(struct request_queue *q, sector_t offset) { if (!q->limits.chunk_sectors) return q->limits.max_sectors; return min(q->limits.max_sectors, (unsigned int)(q->limits.chunk_sectors - (offset & (q->limits.chunk_sectors - 1)))); } static inline unsigned int blk_rq_get_max_sectors(struct request *rq, sector_t offset) { struct request_queue *q = rq->q; if (blk_rq_is_passthrough(rq)) return q->limits.max_hw_sectors; if (!q->limits.chunk_sectors || req_op(rq) == REQ_OP_DISCARD || req_op(rq) == REQ_OP_SECURE_ERASE) return blk_queue_get_max_sectors(q, req_op(rq)); return min(blk_max_size_offset(q, offset), blk_queue_get_max_sectors(q, req_op(rq))); } static inline unsigned int blk_rq_count_bios(struct request *rq) { unsigned int nr_bios = 0; struct bio *bio; __rq_for_each_bio(bio, rq) nr_bios++; return nr_bios; } /* * Request issue related functions. */ extern struct request *blk_peek_request(struct request_queue *q); extern void blk_start_request(struct request *rq); extern struct request *blk_fetch_request(struct request_queue *q); void blk_steal_bios(struct bio_list *list, struct request *rq); /* * Request completion related functions. * * blk_update_request() completes given number of bytes and updates * the request without completing it. * * blk_end_request() and friends. __blk_end_request() must be called * with the request queue spinlock acquired. * * Several drivers define their own end_request and call * blk_end_request() for parts of the original function. * This prevents code duplication in drivers. */ extern bool blk_update_request(struct request *rq, blk_status_t error, unsigned int nr_bytes); extern void blk_finish_request(struct request *rq, blk_status_t error); extern bool blk_end_request(struct request *rq, blk_status_t error, unsigned int nr_bytes); extern void blk_end_request_all(struct request *rq, blk_status_t error); extern bool __blk_end_request(struct request *rq, blk_status_t error, unsigned int nr_bytes); extern void __blk_end_request_all(struct request *rq, blk_status_t error); extern bool __blk_end_request_cur(struct request *rq, blk_status_t error); extern void blk_complete_request(struct request *); extern void __blk_complete_request(struct request *); extern void blk_abort_request(struct request *); extern void blk_unprep_request(struct request *); /* * Access functions for manipulating queue properties */ extern struct request_queue *blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id); extern struct request_queue *blk_init_queue(request_fn_proc *, spinlock_t *); extern int blk_init_allocated_queue(struct request_queue *); extern void blk_cleanup_queue(struct request_queue *); extern void blk_queue_make_request(struct request_queue *, make_request_fn *); extern void blk_queue_bounce_limit(struct request_queue *, u64); extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); extern void blk_queue_max_segments(struct request_queue *, unsigned short); extern void blk_queue_max_discard_segments(struct request_queue *, unsigned short); extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); extern void blk_queue_max_discard_sectors(struct request_queue *q, unsigned int max_discard_sectors); extern void blk_queue_max_write_same_sectors(struct request_queue *q, unsigned int max_write_same_sectors); extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, unsigned int max_write_same_sectors); extern void blk_queue_logical_block_size(struct request_queue *, unsigned int); extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); extern void blk_queue_alignment_offset(struct request_queue *q, unsigned int alignment); extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); extern void blk_queue_io_min(struct request_queue *q, unsigned int min); extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); extern void blk_set_default_limits(struct queue_limits *lim); extern void blk_set_stacking_limits(struct queue_limits *lim); extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, sector_t offset); extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev, sector_t offset); extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, sector_t offset); extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b); extern void blk_queue_dma_pad(struct request_queue *, unsigned int); extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); extern int blk_queue_dma_drain(struct request_queue *q, dma_drain_needed_fn *dma_drain_needed, void *buf, unsigned int size); extern void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn); extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); extern void blk_queue_prep_rq(struct request_queue *, prep_rq_fn *pfn); extern void blk_queue_unprep_rq(struct request_queue *, unprep_rq_fn *ufn); extern void blk_queue_dma_alignment(struct request_queue *, int); extern void blk_queue_update_dma_alignment(struct request_queue *, int); extern void blk_queue_softirq_done(struct request_queue *, softirq_done_fn *); extern void blk_queue_rq_timed_out(struct request_queue *, rq_timed_out_fn *); extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); extern void blk_queue_flush_queueable(struct request_queue *q, bool queueable); extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); extern void blk_queue_rq_hang_threshold(struct request_queue *q, unsigned int threshold); /* * Number of physical segments as sent to the device. * * Normally this is the number of discontiguous data segments sent by the * submitter. But for data-less command like discard we might have no * actual data segments submitted, but the driver might have to add it's * own special payload. In that case we still return 1 here so that this * special payload will be mapped. */ static inline unsigned short blk_rq_nr_phys_segments(struct request *rq) { if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) return 1; return rq->nr_phys_segments; } /* * Number of discard segments (or ranges) the driver needs to fill in. * Each discard bio merged into a request is counted as one segment. */ static inline unsigned short blk_rq_nr_discard_segments(struct request *rq) { return max_t(unsigned short, rq->nr_phys_segments, 1); } extern int blk_rq_map_sg(struct request_queue *, struct request *, struct scatterlist *); extern void blk_dump_rq_flags(struct request *, char *); extern long nr_blockdev_pages(void); bool __must_check blk_get_queue(struct request_queue *); struct request_queue *blk_alloc_queue(gfp_t); struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id, spinlock_t *lock); extern void blk_put_queue(struct request_queue *); extern void blk_set_queue_dying(struct request_queue *); /* * block layer runtime pm functions */ #ifdef CONFIG_PM extern void blk_pm_runtime_init(struct request_queue *q, struct device *dev); extern int blk_pre_runtime_suspend(struct request_queue *q); extern void blk_post_runtime_suspend(struct request_queue *q, int err); extern void blk_pre_runtime_resume(struct request_queue *q); extern void blk_post_runtime_resume(struct request_queue *q, int err); extern void blk_set_runtime_active(struct request_queue *q); #else static inline void blk_pm_runtime_init(struct request_queue *q, struct device *dev) {} static inline int blk_pre_runtime_suspend(struct request_queue *q) { return -ENOSYS; } static inline void blk_post_runtime_suspend(struct request_queue *q, int err) {} static inline void blk_pre_runtime_resume(struct request_queue *q) {} static inline void blk_post_runtime_resume(struct request_queue *q, int err) {} static inline void blk_set_runtime_active(struct request_queue *q) {} #endif /* * blk_plug permits building a queue of related requests by holding the I/O * fragments for a short period. This allows merging of sequential requests * into single larger request. As the requests are moved from a per-task list to * the device's request_queue in a batch, this results in improved scalability * as the lock contention for request_queue lock is reduced. * * It is ok not to disable preemption when adding the request to the plug list * or when attempting a merge, because blk_schedule_flush_list() will only flush * the plug list when the task sleeps by itself. For details, please see * schedule() where blk_schedule_flush_plug() is called. */ struct blk_plug { struct list_head list; /* requests */ struct list_head mq_list; /* blk-mq requests */ struct list_head cb_list; /* md requires an unplug callback */ bool multiple_queues; }; #define BLK_MAX_REQUEST_COUNT 16 #define BLK_PLUG_FLUSH_SIZE (128 * 1024) struct blk_plug_cb; typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); struct blk_plug_cb { struct list_head list; blk_plug_cb_fn callback; void *data; }; extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, int size); extern void blk_start_plug(struct blk_plug *); extern void blk_finish_plug(struct blk_plug *); extern void blk_flush_plug_list(struct blk_plug *, bool); static inline void blk_flush_plug(struct task_struct *tsk) { struct blk_plug *plug = tsk->plug; if (plug) blk_flush_plug_list(plug, false); } static inline void blk_schedule_flush_plug(struct task_struct *tsk) { struct blk_plug *plug = tsk->plug; if (plug) blk_flush_plug_list(plug, true); } static inline bool blk_needs_flush_plug(struct task_struct *tsk) { struct blk_plug *plug = tsk->plug; return plug && (!list_empty(&plug->list) || !list_empty(&plug->mq_list) || !list_empty(&plug->cb_list)); } /* * tag stuff */ extern int blk_queue_start_tag(struct request_queue *, struct request *); extern struct request *blk_queue_find_tag(struct request_queue *, int); extern void blk_queue_end_tag(struct request_queue *, struct request *); extern int blk_queue_init_tags(struct request_queue *, int, struct blk_queue_tag *, int); extern void blk_queue_free_tags(struct request_queue *); extern int blk_queue_resize_tags(struct request_queue *, int); extern struct blk_queue_tag *blk_init_tags(int, int); extern void blk_free_tags(struct blk_queue_tag *); static inline struct request *blk_map_queue_find_tag(struct blk_queue_tag *bqt, int tag) { if (unlikely(bqt == NULL || tag >= bqt->real_max_depth)) return NULL; return bqt->tag_index[tag]; } extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *); extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector, sector_t nr_sects, gfp_t gfp_mask, struct page *page); #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */ extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector, sector_t nr_sects, gfp_t gfp_mask, unsigned long flags); extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, sector_t nr_sects, gfp_t gfp_mask, int flags, struct bio **biop); #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, unsigned flags); extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, sector_t nr_sects, gfp_t gfp_mask, unsigned flags); static inline int sb_issue_discard(struct super_block *sb, sector_t block, sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) { return blkdev_issue_discard(sb->s_bdev, block << (sb->s_blocksize_bits - SECTOR_SHIFT), nr_blocks << (sb->s_blocksize_bits - SECTOR_SHIFT), gfp_mask, flags); } static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, sector_t nr_blocks, gfp_t gfp_mask) { return blkdev_issue_zeroout(sb->s_bdev, block << (sb->s_blocksize_bits - SECTOR_SHIFT), nr_blocks << (sb->s_blocksize_bits - SECTOR_SHIFT), gfp_mask, 0); } extern int blk_verify_command(unsigned char *cmd, fmode_t mode); enum blk_default_limits { BLK_MAX_SEGMENTS = 128, BLK_SAFE_MAX_SECTORS = 255, BLK_DEF_MAX_SECTORS = 2560, BLK_MAX_SEGMENT_SIZE = 65536, BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, }; static inline unsigned long queue_segment_boundary(struct request_queue *q) { return q->limits.seg_boundary_mask; } static inline unsigned long queue_virt_boundary(struct request_queue *q) { return q->limits.virt_boundary_mask; } static inline unsigned int queue_max_sectors(struct request_queue *q) { return q->limits.max_sectors; } static inline unsigned int queue_max_hw_sectors(struct request_queue *q) { return q->limits.max_hw_sectors; } static inline unsigned short queue_max_segments(struct request_queue *q) { return q->limits.max_segments; } static inline unsigned short queue_max_discard_segments(struct request_queue *q) { return q->limits.max_discard_segments; } static inline unsigned int queue_max_segment_size(struct request_queue *q) { return q->limits.max_segment_size; } static inline unsigned queue_logical_block_size(struct request_queue *q) { int retval = 512; if (q && q->limits.logical_block_size) retval = q->limits.logical_block_size; return retval; } static inline unsigned int bdev_logical_block_size(struct block_device *bdev) { return queue_logical_block_size(bdev_get_queue(bdev)); } static inline unsigned int queue_physical_block_size(struct request_queue *q) { return q->limits.physical_block_size; } static inline unsigned int bdev_physical_block_size(struct block_device *bdev) { return queue_physical_block_size(bdev_get_queue(bdev)); } static inline unsigned int queue_io_min(struct request_queue *q) { return q->limits.io_min; } static inline int bdev_io_min(struct block_device *bdev) { return queue_io_min(bdev_get_queue(bdev)); } static inline unsigned int queue_io_opt(struct request_queue *q) { return q->limits.io_opt; } static inline int bdev_io_opt(struct block_device *bdev) { return queue_io_opt(bdev_get_queue(bdev)); } static inline int queue_alignment_offset(struct request_queue *q) { if (q->limits.misaligned) return -1; return q->limits.alignment_offset; } static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector) { unsigned int granularity = max(lim->physical_block_size, lim->io_min); unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT) << SECTOR_SHIFT; return (granularity + lim->alignment_offset - alignment) % granularity; } static inline int bdev_alignment_offset(struct block_device *bdev) { struct request_queue *q = bdev_get_queue(bdev); if (q->limits.misaligned) return -1; if (bdev != bdev->bd_contains) return bdev->bd_part->alignment_offset; return q->limits.alignment_offset; } static inline int queue_discard_alignment(struct request_queue *q) { if (q->limits.discard_misaligned) return -1; return q->limits.discard_alignment; } static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector) { unsigned int alignment, granularity, offset; if (!lim->max_discard_sectors) return 0; /* Why are these in bytes, not sectors? */ alignment = lim->discard_alignment >> SECTOR_SHIFT; granularity = lim->discard_granularity >> SECTOR_SHIFT; if (!granularity) return 0; /* Offset of the partition start in 'granularity' sectors */ offset = sector_div(sector, granularity); /* And why do we do this modulus *again* in blkdev_issue_discard()? */ offset = (granularity + alignment - offset) % granularity; /* Turn it back into bytes, gaah */ return offset << SECTOR_SHIFT; } static inline int bdev_discard_alignment(struct block_device *bdev) { struct request_queue *q = bdev_get_queue(bdev); if (bdev != bdev->bd_contains) return bdev->bd_part->discard_alignment; return q->limits.discard_alignment; } static inline unsigned int bdev_write_same(struct block_device *bdev) { struct request_queue *q = bdev_get_queue(bdev); if (q) return q->limits.max_write_same_sectors; return 0; } static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) { struct request_queue *q = bdev_get_queue(bdev); if (q) return q->limits.max_write_zeroes_sectors; return 0; } static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) { struct request_queue *q = bdev_get_queue(bdev); if (q) return blk_queue_zoned_model(q); return BLK_ZONED_NONE; } static inline bool bdev_is_zoned(struct block_device *bdev) { struct request_queue *q = bdev_get_queue(bdev); if (q) return blk_queue_is_zoned(q); return false; } static inline unsigned int bdev_zone_sectors(struct block_device *bdev) { struct request_queue *q = bdev_get_queue(bdev); if (q) return blk_queue_zone_sectors(q); return 0; } static inline int queue_dma_alignment(struct request_queue *q) { return q ? q->dma_alignment : 511; } static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, unsigned int len) { unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; return !(addr & alignment) && !(len & alignment); } /* assumes size > 256 */ static inline unsigned int blksize_bits(unsigned int size) { unsigned int bits = 8; do { bits++; size >>= 1; } while (size > 256); return bits; } static inline unsigned int block_size(struct block_device *bdev) { return bdev->bd_block_size; } static inline bool queue_flush_queueable(struct request_queue *q) { return !test_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags); } typedef struct {struct page *v;} Sector; unsigned char *read_dev_sector(struct block_device *, sector_t, Sector *); static inline void put_dev_sector(Sector p) { put_page(p.v); } static inline bool __bvec_gap_to_prev(struct request_queue *q, struct bio_vec *bprv, unsigned int offset) { return offset || ((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q)); } /* * Check if adding a bio_vec after bprv with offset would create a gap in * the SG list. Most drivers don't care about this, but some do. */ static inline bool bvec_gap_to_prev(struct request_queue *q, struct bio_vec *bprv, unsigned int offset) { if (!queue_virt_boundary(q)) return false; return __bvec_gap_to_prev(q, bprv, offset); } /* * Check if the two bvecs from two bios can be merged to one segment. * If yes, no need to check gap between the two bios since the 1st bio * and the 1st bvec in the 2nd bio can be handled in one segment. */ static inline bool bios_segs_mergeable(struct request_queue *q, struct bio *prev, struct bio_vec *prev_last_bv, struct bio_vec *next_first_bv) { if (!BIOVEC_PHYS_MERGEABLE(prev_last_bv, next_first_bv)) return false; if (!BIOVEC_SEG_BOUNDARY(q, prev_last_bv, next_first_bv)) return false; if (prev->bi_seg_back_size + next_first_bv->bv_len > queue_max_segment_size(q)) return false; return true; } static inline bool bio_will_gap(struct request_queue *q, struct request *prev_rq, struct bio *prev, struct bio *next) { if (bio_has_data(prev) && queue_virt_boundary(q)) { struct bio_vec pb, nb; /* * don't merge if the 1st bio starts with non-zero * offset, otherwise it is quite difficult to respect * sg gap limit. We work hard to merge a huge number of small * single bios in case of mkfs. */ if (prev_rq) bio_get_first_bvec(prev_rq->bio, &pb); else bio_get_first_bvec(prev, &pb); if (pb.bv_offset) return true; /* * We don't need to worry about the situation that the * merged segment ends in unaligned virt boundary: * * - if 'pb' ends aligned, the merged segment ends aligned * - if 'pb' ends unaligned, the next bio must include * one single bvec of 'nb', otherwise the 'nb' can't * merge with 'pb' */ bio_get_last_bvec(prev, &pb); bio_get_first_bvec(next, &nb); if (!bios_segs_mergeable(q, prev, &pb, &nb)) return __bvec_gap_to_prev(q, &pb, nb.bv_offset); } return false; } static inline bool req_gap_back_merge(struct request *req, struct bio *bio) { return bio_will_gap(req->q, req, req->biotail, bio); } static inline bool req_gap_front_merge(struct request *req, struct bio *bio) { return bio_will_gap(req->q, NULL, bio, req->bio); } int kblockd_schedule_work(struct work_struct *work); int kblockd_schedule_work_on(int cpu, struct work_struct *work); int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); #define MODULE_ALIAS_BLOCKDEV(major,minor) \ MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ MODULE_ALIAS("block-major-" __stringify(major) "-*") #if defined(CONFIG_BLK_DEV_INTEGRITY) enum blk_integrity_flags { BLK_INTEGRITY_VERIFY = 1 << 0, BLK_INTEGRITY_GENERATE = 1 << 1, BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2, BLK_INTEGRITY_IP_CHECKSUM = 1 << 3, }; struct blk_integrity_iter { void *prot_buf; void *data_buf; sector_t seed; unsigned int data_size; unsigned short interval; const char *disk_name; }; typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *); struct blk_integrity_profile { integrity_processing_fn *generate_fn; integrity_processing_fn *verify_fn; const char *name; }; extern void blk_integrity_register(struct gendisk *, struct blk_integrity *); extern void blk_integrity_unregister(struct gendisk *); extern int blk_integrity_compare(struct gendisk *, struct gendisk *); extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *, struct scatterlist *); extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *); extern bool blk_integrity_merge_rq(struct request_queue *, struct request *, struct request *); extern bool blk_integrity_merge_bio(struct request_queue *, struct request *, struct bio *); static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) { struct blk_integrity *bi = &disk->queue->integrity; if (!bi->profile) return NULL; return bi; } static inline struct blk_integrity *bdev_get_integrity(struct block_device *bdev) { return blk_get_integrity(bdev->bd_disk); } static inline bool blk_integrity_rq(struct request *rq) { return rq->cmd_flags & REQ_INTEGRITY; } static inline void blk_queue_max_integrity_segments(struct request_queue *q, unsigned int segs) { q->limits.max_integrity_segments = segs; } static inline unsigned short queue_max_integrity_segments(struct request_queue *q) { return q->limits.max_integrity_segments; } static inline bool integrity_req_gap_back_merge(struct request *req, struct bio *next) { struct bio_integrity_payload *bip = bio_integrity(req->bio); struct bio_integrity_payload *bip_next = bio_integrity(next); return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1], bip_next->bip_vec[0].bv_offset); } static inline bool integrity_req_gap_front_merge(struct request *req, struct bio *bio) { struct bio_integrity_payload *bip = bio_integrity(bio); struct bio_integrity_payload *bip_next = bio_integrity(req->bio); return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1], bip_next->bip_vec[0].bv_offset); } /** * bio_integrity_intervals - Return number of integrity intervals for a bio * @bi: blk_integrity profile for device * @sectors: Size of the bio in 512-byte sectors * * Description: The block layer calculates everything in 512 byte * sectors but integrity metadata is done in terms of the data integrity * interval size of the storage device. Convert the block layer sectors * to the appropriate number of integrity intervals. */ static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, unsigned int sectors) { return sectors >> (bi->interval_exp - 9); } static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, unsigned int sectors) { return bio_integrity_intervals(bi, sectors) * bi->tuple_size; } /* * Return the first bvec that contains integrity data. Only drivers that are * limited to a single integrity segment should use this helper. */ static inline struct bio_vec *rq_integrity_vec(struct request *rq) { if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1)) return NULL; return rq->bio->bi_integrity->bip_vec; } #else /* CONFIG_BLK_DEV_INTEGRITY */ struct bio; struct block_device; struct gendisk; struct blk_integrity; static inline int blk_integrity_rq(struct request *rq) { return 0; } static inline int blk_rq_count_integrity_sg(struct request_queue *q, struct bio *b) { return 0; } static inline int blk_rq_map_integrity_sg(struct request_queue *q, struct bio *b, struct scatterlist *s) { return 0; } static inline struct blk_integrity *bdev_get_integrity(struct block_device *b) { return NULL; } static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) { return NULL; } static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b) { return 0; } static inline void blk_integrity_register(struct gendisk *d, struct blk_integrity *b) { } static inline void blk_integrity_unregister(struct gendisk *d) { } static inline void blk_queue_max_integrity_segments(struct request_queue *q, unsigned int segs) { } static inline unsigned short queue_max_integrity_segments(struct request_queue *q) { return 0; } static inline bool blk_integrity_merge_rq(struct request_queue *rq, struct request *r1, struct request *r2) { return true; } static inline bool blk_integrity_merge_bio(struct request_queue *rq, struct request *r, struct bio *b) { return true; } static inline bool integrity_req_gap_back_merge(struct request *req, struct bio *next) { return false; } static inline bool integrity_req_gap_front_merge(struct request *req, struct bio *bio) { return false; } static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, unsigned int sectors) { return 0; } static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, unsigned int sectors) { return 0; } static inline struct bio_vec *rq_integrity_vec(struct request *rq) { return NULL; } #endif /* CONFIG_BLK_DEV_INTEGRITY */ struct block_device_operations { int (*open) (struct block_device *, fmode_t); void (*release) (struct gendisk *, fmode_t); int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int); int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); unsigned int (*check_events) (struct gendisk *disk, unsigned int clearing); /* ->media_changed() is DEPRECATED, use ->check_events() instead */ int (*media_changed) (struct gendisk *); void (*unlock_native_capacity) (struct gendisk *); int (*revalidate_disk) (struct gendisk *); int (*getgeo)(struct block_device *, struct hd_geometry *); /* this callback is with swap_lock and sometimes page table lock held */ void (*swap_slot_free_notify) (struct block_device *, unsigned long); struct module *owner; const struct pr_ops *pr_ops; }; extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int, unsigned long); extern int bdev_read_page(struct block_device *, sector_t, struct page *); extern int bdev_write_page(struct block_device *, sector_t, struct page *, struct writeback_control *); #ifdef CONFIG_BLK_DEV_ZONED bool blk_req_needs_zone_write_lock(struct request *rq); void __blk_req_zone_write_lock(struct request *rq); void __blk_req_zone_write_unlock(struct request *rq); static inline void blk_req_zone_write_lock(struct request *rq) { if (blk_req_needs_zone_write_lock(rq)) __blk_req_zone_write_lock(rq); } static inline void blk_req_zone_write_unlock(struct request *rq) { if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED) __blk_req_zone_write_unlock(rq); } static inline bool blk_req_zone_is_write_locked(struct request *rq) { return rq->q->seq_zones_wlock && test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock); } static inline bool blk_req_can_dispatch_to_zone(struct request *rq) { if (!blk_req_needs_zone_write_lock(rq)) return true; return !blk_req_zone_is_write_locked(rq); } #else static inline bool blk_req_needs_zone_write_lock(struct request *rq) { return false; } static inline void blk_req_zone_write_lock(struct request *rq) { } static inline void blk_req_zone_write_unlock(struct request *rq) { } static inline bool blk_req_zone_is_write_locked(struct request *rq) { return false; } static inline bool blk_req_can_dispatch_to_zone(struct request *rq) { return true; } #endif /* CONFIG_BLK_DEV_ZONED */ #else /* CONFIG_BLOCK */ struct block_device; /* * stubs for when the block layer is configured out */ #define buffer_heads_over_limit 0 static inline long nr_blockdev_pages(void) { return 0; } struct blk_plug { }; static inline void blk_start_plug(struct blk_plug *plug) { } static inline void blk_finish_plug(struct blk_plug *plug) { } static inline void blk_flush_plug(struct task_struct *task) { } static inline void blk_schedule_flush_plug(struct task_struct *task) { } static inline bool blk_needs_flush_plug(struct task_struct *tsk) { return false; } static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask, sector_t *error_sector) { return 0; } #endif /* CONFIG_BLOCK */ #endif