/* * Procedures for creating, accessing and interpreting the device tree. * * Paul Mackerras August 1996. * Copyright (C) 1996-2005 Paul Mackerras. * * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. * {engebret|bergner}@us.ibm.com * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #undef DEBUG #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DEBUG #define DBG(fmt...) printk(KERN_ERR fmt) #else #define DBG(fmt...) #endif static int __initdata dt_root_addr_cells; static int __initdata dt_root_size_cells; #ifdef CONFIG_PPC64 int __initdata iommu_is_off; int __initdata iommu_force_on; unsigned long tce_alloc_start, tce_alloc_end; #endif typedef u32 cell_t; #if 0 static struct boot_param_header *initial_boot_params __initdata; #else struct boot_param_header *initial_boot_params; #endif static struct device_node *allnodes = NULL; /* use when traversing tree through the allnext, child, sibling, * or parent members of struct device_node. */ static DEFINE_RWLOCK(devtree_lock); /* export that to outside world */ struct device_node *of_chosen; struct device_node *dflt_interrupt_controller; int num_interrupt_controllers; /* * Wrapper for allocating memory for various data that needs to be * attached to device nodes as they are processed at boot or when * added to the device tree later (e.g. DLPAR). At boot there is * already a region reserved so we just increment *mem_start by size; * otherwise we call kmalloc. */ static void * prom_alloc(unsigned long size, unsigned long *mem_start) { unsigned long tmp; if (!mem_start) return kmalloc(size, GFP_KERNEL); tmp = *mem_start; *mem_start += size; return (void *)tmp; } /* * Find the device_node with a given phandle. */ static struct device_node * find_phandle(phandle ph) { struct device_node *np; for (np = allnodes; np != 0; np = np->allnext) if (np->linux_phandle == ph) return np; return NULL; } /* * Find the interrupt parent of a node. */ static struct device_node * __devinit intr_parent(struct device_node *p) { phandle *parp; parp = (phandle *) get_property(p, "interrupt-parent", NULL); if (parp == NULL) return p->parent; p = find_phandle(*parp); if (p != NULL) return p; /* * On a powermac booted with BootX, we don't get to know the * phandles for any nodes, so find_phandle will return NULL. * Fortunately these machines only have one interrupt controller * so there isn't in fact any ambiguity. -- paulus */ if (num_interrupt_controllers == 1) p = dflt_interrupt_controller; return p; } /* * Find out the size of each entry of the interrupts property * for a node. */ int __devinit prom_n_intr_cells(struct device_node *np) { struct device_node *p; unsigned int *icp; for (p = np; (p = intr_parent(p)) != NULL; ) { icp = (unsigned int *) get_property(p, "#interrupt-cells", NULL); if (icp != NULL) return *icp; if (get_property(p, "interrupt-controller", NULL) != NULL || get_property(p, "interrupt-map", NULL) != NULL) { printk("oops, node %s doesn't have #interrupt-cells\n", p->full_name); return 1; } } #ifdef DEBUG_IRQ printk("prom_n_intr_cells failed for %s\n", np->full_name); #endif return 1; } /* * Map an interrupt from a device up to the platform interrupt * descriptor. */ static int __devinit map_interrupt(unsigned int **irq, struct device_node **ictrler, struct device_node *np, unsigned int *ints, int nintrc) { struct device_node *p, *ipar; unsigned int *imap, *imask, *ip; int i, imaplen, match; int newintrc = 0, newaddrc = 0; unsigned int *reg; int naddrc; reg = (unsigned int *) get_property(np, "reg", NULL); naddrc = prom_n_addr_cells(np); p = intr_parent(np); while (p != NULL) { if (get_property(p, "interrupt-controller", NULL) != NULL) /* this node is an interrupt controller, stop here */ break; imap = (unsigned int *) get_property(p, "interrupt-map", &imaplen); if (imap == NULL) { p = intr_parent(p); continue; } imask = (unsigned int *) get_property(p, "interrupt-map-mask", NULL); if (imask == NULL) { printk("oops, %s has interrupt-map but no mask\n", p->full_name); return 0; } imaplen /= sizeof(unsigned int); match = 0; ipar = NULL; while (imaplen > 0 && !match) { /* check the child-interrupt field */ match = 1; for (i = 0; i < naddrc && match; ++i) match = ((reg[i] ^ imap[i]) & imask[i]) == 0; for (; i < naddrc + nintrc && match; ++i) match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0; imap += naddrc + nintrc; imaplen -= naddrc + nintrc; /* grab the interrupt parent */ ipar = find_phandle((phandle) *imap++); --imaplen; if (ipar == NULL && num_interrupt_controllers == 1) /* cope with BootX not giving us phandles */ ipar = dflt_interrupt_controller; if (ipar == NULL) { printk("oops, no int parent %x in map of %s\n", imap[-1], p->full_name); return 0; } /* find the parent's # addr and intr cells */ ip = (unsigned int *) get_property(ipar, "#interrupt-cells", NULL); if (ip == NULL) { printk("oops, no #interrupt-cells on %s\n", ipar->full_name); return 0; } newintrc = *ip; ip = (unsigned int *) get_property(ipar, "#address-cells", NULL); newaddrc = (ip == NULL)? 0: *ip; imap += newaddrc + newintrc; imaplen -= newaddrc + newintrc; } if (imaplen < 0) { printk("oops, error decoding int-map on %s, len=%d\n", p->full_name, imaplen); return 0; } if (!match) { #ifdef DEBUG_IRQ printk("oops, no match in %s int-map for %s\n", p->full_name, np->full_name); #endif return 0; } p = ipar; naddrc = newaddrc; nintrc = newintrc; ints = imap - nintrc; reg = ints - naddrc; } if (p == NULL) { #ifdef DEBUG_IRQ printk("hmmm, int tree for %s doesn't have ctrler\n", np->full_name); #endif return 0; } *irq = ints; *ictrler = p; return nintrc; } static unsigned char map_isa_senses[4] = { IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE, IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE, IRQ_SENSE_EDGE | IRQ_POLARITY_NEGATIVE, IRQ_SENSE_EDGE | IRQ_POLARITY_POSITIVE }; static unsigned char map_mpic_senses[4] = { IRQ_SENSE_EDGE | IRQ_POLARITY_POSITIVE, IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE, /* 2 seems to be used for the 8259 cascade... */ IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE, IRQ_SENSE_EDGE | IRQ_POLARITY_NEGATIVE, }; static int __devinit finish_node_interrupts(struct device_node *np, unsigned long *mem_start, int measure_only) { unsigned int *ints; int intlen, intrcells, intrcount; int i, j, n, sense; unsigned int *irq, virq; struct device_node *ic; int trace = 0; //#define TRACE(fmt...) do { if (trace) { printk(fmt); mdelay(1000); } } while(0) #define TRACE(fmt...) if (!strcmp(np->name, "smu-doorbell")) trace = 1; TRACE("Finishing SMU doorbell ! num_interrupt_controllers = %d\n", num_interrupt_controllers); if (num_interrupt_controllers == 0) { /* * Old machines just have a list of interrupt numbers * and no interrupt-controller nodes. */ ints = (unsigned int *) get_property(np, "AAPL,interrupts", &intlen); /* XXX old interpret_pci_props looked in parent too */ /* XXX old interpret_macio_props looked for interrupts before AAPL,interrupts */ if (ints == NULL) ints = (unsigned int *) get_property(np, "interrupts", &intlen); if (ints == NULL) return 0; np->n_intrs = intlen / sizeof(unsigned int); np->intrs = prom_alloc(np->n_intrs * sizeof(np->intrs[0]), mem_start); if (!np->intrs) return -ENOMEM; if (measure_only) return 0; for (i = 0; i < np->n_intrs; ++i) { np->intrs[i].line = *ints++; np->intrs[i].sense = IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE; } return 0; } ints = (unsigned int *) get_property(np, "interrupts", &intlen); TRACE("ints=%p, intlen=%d\n", ints, intlen); if (ints == NULL) return 0; intrcells = prom_n_intr_cells(np); intlen /= intrcells * sizeof(unsigned int); TRACE("intrcells=%d, new intlen=%d\n", intrcells, intlen); np->intrs = prom_alloc(intlen * sizeof(*(np->intrs)), mem_start); if (!np->intrs) return -ENOMEM; if (measure_only) return 0; intrcount = 0; for (i = 0; i < intlen; ++i, ints += intrcells) { n = map_interrupt(&irq, &ic, np, ints, intrcells); TRACE("map, irq=%d, ic=%p, n=%d\n", irq, ic, n); if (n <= 0) continue; /* don't map IRQ numbers under a cascaded 8259 controller */ if (ic && device_is_compatible(ic, "chrp,iic")) { np->intrs[intrcount].line = irq[0]; sense = (n > 1)? (irq[1] & 3): 3; np->intrs[intrcount].sense = map_isa_senses[sense]; } else { virq = virt_irq_create_mapping(irq[0]); TRACE("virq=%d\n", virq); #ifdef CONFIG_PPC64 if (virq == NO_IRQ) { printk(KERN_CRIT "Could not allocate interrupt" " number for %s\n", np->full_name); continue; } #endif np->intrs[intrcount].line = irq_offset_up(virq); sense = (n > 1)? (irq[1] & 3): 1; /* Apple uses bits in there in a different way, let's * only keep the real sense bit on macs */ if (machine_is(powermac)) sense &= 0x1; np->intrs[intrcount].sense = map_mpic_senses[sense]; } #ifdef CONFIG_PPC64 /* We offset irq numbers for the u3 MPIC by 128 in PowerMac */ if (machine_is(powermac) && ic && ic->parent) { char *name = get_property(ic->parent, "name", NULL); if (name && !strcmp(name, "u3")) np->intrs[intrcount].line += 128; else if (!(name && (!strcmp(name, "mac-io") || !strcmp(name, "u4")))) /* ignore other cascaded controllers, such as the k2-sata-root */ break; } #endif /* CONFIG_PPC64 */ if (n > 2) { printk("hmmm, got %d intr cells for %s:", n, np->full_name); for (j = 0; j < n; ++j) printk(" %d", irq[j]); printk("\n"); } ++intrcount; } np->n_intrs = intrcount; return 0; } static int __devinit finish_node(struct device_node *np, unsigned long *mem_start, int measure_only) { struct device_node *child; int rc = 0; rc = finish_node_interrupts(np, mem_start, measure_only); if (rc) goto out; for (child = np->child; child != NULL; child = child->sibling) { rc = finish_node(child, mem_start, measure_only); if (rc) goto out; } out: return rc; } static void __init scan_interrupt_controllers(void) { struct device_node *np; int n = 0; char *name, *ic; int iclen; for (np = allnodes; np != NULL; np = np->allnext) { ic = get_property(np, "interrupt-controller", &iclen); name = get_property(np, "name", NULL); /* checking iclen makes sure we don't get a false match on /chosen.interrupt_controller */ if ((name != NULL && strcmp(name, "interrupt-controller") == 0) || (ic != NULL && iclen == 0 && strcmp(name, "AppleKiwi"))) { if (n == 0) dflt_interrupt_controller = np; ++n; } } num_interrupt_controllers = n; } /** * finish_device_tree is called once things are running normally * (i.e. with text and data mapped to the address they were linked at). * It traverses the device tree and fills in some of the additional, * fields in each node like {n_}addrs and {n_}intrs, the virt interrupt * mapping is also initialized at this point. */ void __init finish_device_tree(void) { unsigned long start, end, size = 0; DBG(" -> finish_device_tree\n"); #ifdef CONFIG_PPC64 /* Initialize virtual IRQ map */ virt_irq_init(); #endif scan_interrupt_controllers(); /* * Finish device-tree (pre-parsing some properties etc...) * We do this in 2 passes. One with "measure_only" set, which * will only measure the amount of memory needed, then we can * allocate that memory, and call finish_node again. However, * we must be careful as most routines will fail nowadays when * prom_alloc() returns 0, so we must make sure our first pass * doesn't start at 0. We pre-initialize size to 16 for that * reason and then remove those additional 16 bytes */ size = 16; finish_node(allnodes, &size, 1); size -= 16; if (0 == size) end = start = 0; else end = start = (unsigned long)__va(lmb_alloc(size, 128)); finish_node(allnodes, &end, 0); BUG_ON(end != start + size); DBG(" <- finish_device_tree\n"); } static inline char *find_flat_dt_string(u32 offset) { return ((char *)initial_boot_params) + initial_boot_params->off_dt_strings + offset; } /** * This function is used to scan the flattened device-tree, it is * used to extract the memory informations at boot before we can * unflatten the tree */ int __init of_scan_flat_dt(int (*it)(unsigned long node, const char *uname, int depth, void *data), void *data) { unsigned long p = ((unsigned long)initial_boot_params) + initial_boot_params->off_dt_struct; int rc = 0; int depth = -1; do { u32 tag = *((u32 *)p); char *pathp; p += 4; if (tag == OF_DT_END_NODE) { depth --; continue; } if (tag == OF_DT_NOP) continue; if (tag == OF_DT_END) break; if (tag == OF_DT_PROP) { u32 sz = *((u32 *)p); p += 8; if (initial_boot_params->version < 0x10) p = _ALIGN(p, sz >= 8 ? 8 : 4); p += sz; p = _ALIGN(p, 4); continue; } if (tag != OF_DT_BEGIN_NODE) { printk(KERN_WARNING "Invalid tag %x scanning flattened" " device tree !\n", tag); return -EINVAL; } depth++; pathp = (char *)p; p = _ALIGN(p + strlen(pathp) + 1, 4); if ((*pathp) == '/') { char *lp, *np; for (lp = NULL, np = pathp; *np; np++) if ((*np) == '/') lp = np+1; if (lp != NULL) pathp = lp; } rc = it(p, pathp, depth, data); if (rc != 0) break; } while(1); return rc; } unsigned long __init of_get_flat_dt_root(void) { unsigned long p = ((unsigned long)initial_boot_params) + initial_boot_params->off_dt_struct; while(*((u32 *)p) == OF_DT_NOP) p += 4; BUG_ON (*((u32 *)p) != OF_DT_BEGIN_NODE); p += 4; return _ALIGN(p + strlen((char *)p) + 1, 4); } /** * This function can be used within scan_flattened_dt callback to get * access to properties */ void* __init of_get_flat_dt_prop(unsigned long node, const char *name, unsigned long *size) { unsigned long p = node; do { u32 tag = *((u32 *)p); u32 sz, noff; const char *nstr; p += 4; if (tag == OF_DT_NOP) continue; if (tag != OF_DT_PROP) return NULL; sz = *((u32 *)p); noff = *((u32 *)(p + 4)); p += 8; if (initial_boot_params->version < 0x10) p = _ALIGN(p, sz >= 8 ? 8 : 4); nstr = find_flat_dt_string(noff); if (nstr == NULL) { printk(KERN_WARNING "Can't find property index" " name !\n"); return NULL; } if (strcmp(name, nstr) == 0) { if (size) *size = sz; return (void *)p; } p += sz; p = _ALIGN(p, 4); } while(1); } int __init of_flat_dt_is_compatible(unsigned long node, const char *compat) { const char* cp; unsigned long cplen, l; cp = of_get_flat_dt_prop(node, "compatible", &cplen); if (cp == NULL) return 0; while (cplen > 0) { if (strncasecmp(cp, compat, strlen(compat)) == 0) return 1; l = strlen(cp) + 1; cp += l; cplen -= l; } return 0; } static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size, unsigned long align) { void *res; *mem = _ALIGN(*mem, align); res = (void *)*mem; *mem += size; return res; } static unsigned long __init unflatten_dt_node(unsigned long mem, unsigned long *p, struct device_node *dad, struct device_node ***allnextpp, unsigned long fpsize) { struct device_node *np; struct property *pp, **prev_pp = NULL; char *pathp; u32 tag; unsigned int l, allocl; int has_name = 0; int new_format = 0; tag = *((u32 *)(*p)); if (tag != OF_DT_BEGIN_NODE) { printk("Weird tag at start of node: %x\n", tag); return mem; } *p += 4; pathp = (char *)*p; l = allocl = strlen(pathp) + 1; *p = _ALIGN(*p + l, 4); /* version 0x10 has a more compact unit name here instead of the full * path. we accumulate the full path size using "fpsize", we'll rebuild * it later. We detect this because the first character of the name is * not '/'. */ if ((*pathp) != '/') { new_format = 1; if (fpsize == 0) { /* root node: special case. fpsize accounts for path * plus terminating zero. root node only has '/', so * fpsize should be 2, but we want to avoid the first * level nodes to have two '/' so we use fpsize 1 here */ fpsize = 1; allocl = 2; } else { /* account for '/' and path size minus terminal 0 * already in 'l' */ fpsize += l; allocl = fpsize; } } np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl, __alignof__(struct device_node)); if (allnextpp) { memset(np, 0, sizeof(*np)); np->full_name = ((char*)np) + sizeof(struct device_node); if (new_format) { char *p = np->full_name; /* rebuild full path for new format */ if (dad && dad->parent) { strcpy(p, dad->full_name); #ifdef DEBUG if ((strlen(p) + l + 1) != allocl) { DBG("%s: p: %d, l: %d, a: %d\n", pathp, (int)strlen(p), l, allocl); } #endif p += strlen(p); } *(p++) = '/'; memcpy(p, pathp, l); } else memcpy(np->full_name, pathp, l); prev_pp = &np->properties; **allnextpp = np; *allnextpp = &np->allnext; if (dad != NULL) { np->parent = dad; /* we temporarily use the next field as `last_child'*/ if (dad->next == 0) dad->child = np; else dad->next->sibling = np; dad->next = np; } kref_init(&np->kref); } while(1) { u32 sz, noff; char *pname; tag = *((u32 *)(*p)); if (tag == OF_DT_NOP) { *p += 4; continue; } if (tag != OF_DT_PROP) break; *p += 4; sz = *((u32 *)(*p)); noff = *((u32 *)((*p) + 4)); *p += 8; if (initial_boot_params->version < 0x10) *p = _ALIGN(*p, sz >= 8 ? 8 : 4); pname = find_flat_dt_string(noff); if (pname == NULL) { printk("Can't find property name in list !\n"); break; } if (strcmp(pname, "name") == 0) has_name = 1; l = strlen(pname) + 1; pp = unflatten_dt_alloc(&mem, sizeof(struct property), __alignof__(struct property)); if (allnextpp) { if (strcmp(pname, "linux,phandle") == 0) { np->node = *((u32 *)*p); if (np->linux_phandle == 0) np->linux_phandle = np->node; } if (strcmp(pname, "ibm,phandle") == 0) np->linux_phandle = *((u32 *)*p); pp->name = pname; pp->length = sz; pp->value = (void *)*p; *prev_pp = pp; prev_pp = &pp->next; } *p = _ALIGN((*p) + sz, 4); } /* with version 0x10 we may not have the name property, recreate * it here from the unit name if absent */ if (!has_name) { char *p = pathp, *ps = pathp, *pa = NULL; int sz; while (*p) { if ((*p) == '@') pa = p; if ((*p) == '/') ps = p + 1; p++; } if (pa < ps) pa = p; sz = (pa - ps) + 1; pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz, __alignof__(struct property)); if (allnextpp) { pp->name = "name"; pp->length = sz; pp->value = (unsigned char *)(pp + 1); *prev_pp = pp; prev_pp = &pp->next; memcpy(pp->value, ps, sz - 1); ((char *)pp->value)[sz - 1] = 0; DBG("fixed up name for %s -> %s\n", pathp, pp->value); } } if (allnextpp) { *prev_pp = NULL; np->name = get_property(np, "name", NULL); np->type = get_property(np, "device_type", NULL); if (!np->name) np->name = ""; if (!np->type) np->type = ""; } while (tag == OF_DT_BEGIN_NODE) { mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize); tag = *((u32 *)(*p)); } if (tag != OF_DT_END_NODE) { printk("Weird tag at end of node: %x\n", tag); return mem; } *p += 4; return mem; } static int __init early_parse_mem(char *p) { if (!p) return 1; memory_limit = PAGE_ALIGN(memparse(p, &p)); DBG("memory limit = 0x%lx\n", memory_limit); return 0; } early_param("mem", early_parse_mem); /* * The device tree may be allocated below our memory limit, or inside the * crash kernel region for kdump. If so, move it out now. */ static void move_device_tree(void) { unsigned long start, size; void *p; DBG("-> move_device_tree\n"); start = __pa(initial_boot_params); size = initial_boot_params->totalsize; if ((memory_limit && (start + size) > memory_limit) || overlaps_crashkernel(start, size)) { p = __va(lmb_alloc_base(size, PAGE_SIZE, lmb.rmo_size)); memcpy(p, initial_boot_params, size); initial_boot_params = (struct boot_param_header *)p; DBG("Moved device tree to 0x%p\n", p); } DBG("<- move_device_tree\n"); } /** * unflattens the device-tree passed by the firmware, creating the * tree of struct device_node. It also fills the "name" and "type" * pointers of the nodes so the normal device-tree walking functions * can be used (this used to be done by finish_device_tree) */ void __init unflatten_device_tree(void) { unsigned long start, mem, size; struct device_node **allnextp = &allnodes; DBG(" -> unflatten_device_tree()\n"); /* First pass, scan for size */ start = ((unsigned long)initial_boot_params) + initial_boot_params->off_dt_struct; size = unflatten_dt_node(0, &start, NULL, NULL, 0); size = (size | 3) + 1; DBG(" size is %lx, allocating...\n", size); /* Allocate memory for the expanded device tree */ mem = lmb_alloc(size + 4, __alignof__(struct device_node)); mem = (unsigned long) __va(mem); ((u32 *)mem)[size / 4] = 0xdeadbeef; DBG(" unflattening %lx...\n", mem); /* Second pass, do actual unflattening */ start = ((unsigned long)initial_boot_params) + initial_boot_params->off_dt_struct; unflatten_dt_node(mem, &start, NULL, &allnextp, 0); if (*((u32 *)start) != OF_DT_END) printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start)); if (((u32 *)mem)[size / 4] != 0xdeadbeef) printk(KERN_WARNING "End of tree marker overwritten: %08x\n", ((u32 *)mem)[size / 4] ); *allnextp = NULL; /* Get pointer to OF "/chosen" node for use everywhere */ of_chosen = of_find_node_by_path("/chosen"); if (of_chosen == NULL) of_chosen = of_find_node_by_path("/chosen@0"); DBG(" <- unflatten_device_tree()\n"); } /* * ibm,pa-features is a per-cpu property that contains a string of * attribute descriptors, each of which has a 2 byte header plus up * to 254 bytes worth of processor attribute bits. First header * byte specifies the number of bytes following the header. * Second header byte is an "attribute-specifier" type, of which * zero is the only currently-defined value. * Implementation: Pass in the byte and bit offset for the feature * that we are interested in. The function will return -1 if the * pa-features property is missing, or a 1/0 to indicate if the feature * is supported/not supported. Note that the bit numbers are * big-endian to match the definition in PAPR. */ static struct ibm_pa_feature { unsigned long cpu_features; /* CPU_FTR_xxx bit */ unsigned int cpu_user_ftrs; /* PPC_FEATURE_xxx bit */ unsigned char pabyte; /* byte number in ibm,pa-features */ unsigned char pabit; /* bit number (big-endian) */ unsigned char invert; /* if 1, pa bit set => clear feature */ } ibm_pa_features[] __initdata = { {0, PPC_FEATURE_HAS_MMU, 0, 0, 0}, {0, PPC_FEATURE_HAS_FPU, 0, 1, 0}, {CPU_FTR_SLB, 0, 0, 2, 0}, {CPU_FTR_CTRL, 0, 0, 3, 0}, {CPU_FTR_NOEXECUTE, 0, 0, 6, 0}, {CPU_FTR_NODSISRALIGN, 0, 1, 1, 1}, {CPU_FTR_CI_LARGE_PAGE, 0, 1, 2, 0}, }; static void __init check_cpu_pa_features(unsigned long node) { unsigned char *pa_ftrs; unsigned long len, tablelen, i, bit; pa_ftrs = of_get_flat_dt_prop(node, "ibm,pa-features", &tablelen); if (pa_ftrs == NULL) return; /* find descriptor with type == 0 */ for (;;) { if (tablelen < 3) return; len = 2 + pa_ftrs[0]; if (tablelen < len) return; /* descriptor 0 not found */ if (pa_ftrs[1] == 0) break; tablelen -= len; pa_ftrs += len; } /* loop over bits we know about */ for (i = 0; i < ARRAY_SIZE(ibm_pa_features); ++i) { struct ibm_pa_feature *fp = &ibm_pa_features[i]; if (fp->pabyte >= pa_ftrs[0]) continue; bit = (pa_ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1; if (bit ^ fp->invert) { cur_cpu_spec->cpu_features |= fp->cpu_features; cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs; } else { cur_cpu_spec->cpu_features &= ~fp->cpu_features; cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs; } } } static int __init early_init_dt_scan_cpus(unsigned long node, const char *uname, int depth, void *data) { static int logical_cpuid = 0; char *type = of_get_flat_dt_prop(node, "device_type", NULL); #ifdef CONFIG_ALTIVEC u32 *prop; #endif u32 *intserv; int i, nthreads; unsigned long len; int found = 0; /* We are scanning "cpu" nodes only */ if (type == NULL || strcmp(type, "cpu") != 0) return 0; /* Get physical cpuid */ intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len); if (intserv) { nthreads = len / sizeof(int); } else { intserv = of_get_flat_dt_prop(node, "reg", NULL); nthreads = 1; } /* * Now see if any of these threads match our boot cpu. * NOTE: This must match the parsing done in smp_setup_cpu_maps. */ for (i = 0; i < nthreads; i++) { /* * version 2 of the kexec param format adds the phys cpuid of * booted proc. */ if (initial_boot_params && initial_boot_params->version >= 2) { if (intserv[i] == initial_boot_params->boot_cpuid_phys) { found = 1; break; } } else { /* * Check if it's the boot-cpu, set it's hw index now, * unfortunately this format did not support booting * off secondary threads. */ if (of_get_flat_dt_prop(node, "linux,boot-cpu", NULL) != NULL) { found = 1; break; } } #ifdef CONFIG_SMP /* logical cpu id is always 0 on UP kernels */ logical_cpuid++; #endif } if (found) { DBG("boot cpu: logical %d physical %d\n", logical_cpuid, intserv[i]); boot_cpuid = logical_cpuid; set_hard_smp_processor_id(boot_cpuid, intserv[i]); } #ifdef CONFIG_ALTIVEC /* Check if we have a VMX and eventually update CPU features */ prop = (u32 *)of_get_flat_dt_prop(node, "ibm,vmx", NULL); if (prop && (*prop) > 0) { cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC; cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC; } /* Same goes for Apple's "altivec" property */ prop = (u32 *)of_get_flat_dt_prop(node, "altivec", NULL); if (prop) { cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC; cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC; } #endif /* CONFIG_ALTIVEC */ check_cpu_pa_features(node); #ifdef CONFIG_PPC_PSERIES if (nthreads > 1) cur_cpu_spec->cpu_features |= CPU_FTR_SMT; else cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT; #endif return 0; } static int __init early_init_dt_scan_chosen(unsigned long node, const char *uname, int depth, void *data) { unsigned long *lprop; unsigned long l; char *p; DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname); if (depth != 1 || (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0)) return 0; #ifdef CONFIG_PPC64 /* check if iommu is forced on or off */ if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL) iommu_is_off = 1; if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL) iommu_force_on = 1; #endif /* mem=x on the command line is the preferred mechanism */ lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL); if (lprop) memory_limit = *lprop; #ifdef CONFIG_PPC64 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL); if (lprop) tce_alloc_start = *lprop; lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL); if (lprop) tce_alloc_end = *lprop; #endif #ifdef CONFIG_PPC_RTAS /* To help early debugging via the front panel, we retrieve a minimal * set of RTAS infos now if available */ { u64 *basep, *entryp, *sizep; basep = of_get_flat_dt_prop(node, "linux,rtas-base", NULL); entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL); sizep = of_get_flat_dt_prop(node, "linux,rtas-size", NULL); if (basep && entryp && sizep) { rtas.base = *basep; rtas.entry = *entryp; rtas.size = *sizep; } } #endif /* CONFIG_PPC_RTAS */ #ifdef CONFIG_KEXEC lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL); if (lprop) crashk_res.start = *lprop; lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL); if (lprop) crashk_res.end = crashk_res.start + *lprop - 1; #endif /* Retreive command line */ p = of_get_flat_dt_prop(node, "bootargs", &l); if (p != NULL && l > 0) strlcpy(cmd_line, p, min((int)l, COMMAND_LINE_SIZE)); #ifdef CONFIG_CMDLINE if (l == 0 || (l == 1 && (*p) == 0)) strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE); #endif /* CONFIG_CMDLINE */ DBG("Command line is: %s\n", cmd_line); /* break now */ return 1; } static int __init early_init_dt_scan_root(unsigned long node, const char *uname, int depth, void *data) { u32 *prop; if (depth != 0) return 0; prop = of_get_flat_dt_prop(node, "#size-cells", NULL); dt_root_size_cells = (prop == NULL) ? 1 : *prop; DBG("dt_root_size_cells = %x\n", dt_root_size_cells); prop = of_get_flat_dt_prop(node, "#address-cells", NULL); dt_root_addr_cells = (prop == NULL) ? 2 : *prop; DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells); /* break now */ return 1; } static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp) { cell_t *p = *cellp; unsigned long r; /* Ignore more than 2 cells */ while (s > sizeof(unsigned long) / 4) { p++; s--; } r = *p++; #ifdef CONFIG_PPC64 if (s > 1) { r <<= 32; r |= *(p++); s--; } #endif *cellp = p; return r; } static int __init early_init_dt_scan_memory(unsigned long node, const char *uname, int depth, void *data) { char *type = of_get_flat_dt_prop(node, "device_type", NULL); cell_t *reg, *endp; unsigned long l; /* We are scanning "memory" nodes only */ if (type == NULL) { /* * The longtrail doesn't have a device_type on the * /memory node, so look for the node called /memory@0. */ if (depth != 1 || strcmp(uname, "memory@0") != 0) return 0; } else if (strcmp(type, "memory") != 0) return 0; reg = (cell_t *)of_get_flat_dt_prop(node, "linux,usable-memory", &l); if (reg == NULL) reg = (cell_t *)of_get_flat_dt_prop(node, "reg", &l); if (reg == NULL) return 0; endp = reg + (l / sizeof(cell_t)); DBG("memory scan node %s, reg size %ld, data: %x %x %x %x,\n", uname, l, reg[0], reg[1], reg[2], reg[3]); while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) { unsigned long base, size; base = dt_mem_next_cell(dt_root_addr_cells, ®); size = dt_mem_next_cell(dt_root_size_cells, ®); if (size == 0) continue; DBG(" - %lx , %lx\n", base, size); #ifdef CONFIG_PPC64 if (iommu_is_off) { if (base >= 0x80000000ul) continue; if ((base + size) > 0x80000000ul) size = 0x80000000ul - base; } #endif lmb_add(base, size); } return 0; } static void __init early_reserve_mem(void) { u64 base, size; u64 *reserve_map; reserve_map = (u64 *)(((unsigned long)initial_boot_params) + initial_boot_params->off_mem_rsvmap); #ifdef CONFIG_PPC32 /* * Handle the case where we might be booting from an old kexec * image that setup the mem_rsvmap as pairs of 32-bit values */ if (*reserve_map > 0xffffffffull) { u32 base_32, size_32; u32 *reserve_map_32 = (u32 *)reserve_map; while (1) { base_32 = *(reserve_map_32++); size_32 = *(reserve_map_32++); if (size_32 == 0) break; DBG("reserving: %x -> %x\n", base_32, size_32); lmb_reserve(base_32, size_32); } return; } #endif while (1) { base = *(reserve_map++); size = *(reserve_map++); if (size == 0) break; DBG("reserving: %llx -> %llx\n", base, size); lmb_reserve(base, size); } #if 0 DBG("memory reserved, lmbs :\n"); lmb_dump_all(); #endif } void __init early_init_devtree(void *params) { DBG(" -> early_init_devtree()\n"); /* Setup flat device-tree pointer */ initial_boot_params = params; /* Retrieve various informations from the /chosen node of the * device-tree, including the platform type, initrd location and * size, TCE reserve, and more ... */ of_scan_flat_dt(early_init_dt_scan_chosen, NULL); /* Scan memory nodes and rebuild LMBs */ lmb_init(); of_scan_flat_dt(early_init_dt_scan_root, NULL); of_scan_flat_dt(early_init_dt_scan_memory, NULL); /* Save command line for /proc/cmdline and then parse parameters */ strlcpy(saved_command_line, cmd_line, COMMAND_LINE_SIZE); parse_early_param(); /* Reserve LMB regions used by kernel, initrd, dt, etc... */ lmb_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START); reserve_kdump_trampoline(); reserve_crashkernel(); early_reserve_mem(); lmb_enforce_memory_limit(memory_limit); lmb_analyze(); DBG("Phys. mem: %lx\n", lmb_phys_mem_size()); /* We may need to relocate the flat tree, do it now. * FIXME .. and the initrd too? */ move_device_tree(); DBG("Scanning CPUs ...\n"); /* Retreive CPU related informations from the flat tree * (altivec support, boot CPU ID, ...) */ of_scan_flat_dt(early_init_dt_scan_cpus, NULL); DBG(" <- early_init_devtree()\n"); } #undef printk int prom_n_addr_cells(struct device_node* np) { int* ip; do { if (np->parent) np = np->parent; ip = (int *) get_property(np, "#address-cells", NULL); if (ip != NULL) return *ip; } while (np->parent); /* No #address-cells property for the root node, default to 1 */ return 1; } EXPORT_SYMBOL(prom_n_addr_cells); int prom_n_size_cells(struct device_node* np) { int* ip; do { if (np->parent) np = np->parent; ip = (int *) get_property(np, "#size-cells", NULL); if (ip != NULL) return *ip; } while (np->parent); /* No #size-cells property for the root node, default to 1 */ return 1; } EXPORT_SYMBOL(prom_n_size_cells); /** * Work out the sense (active-low level / active-high edge) * of each interrupt from the device tree. */ void __init prom_get_irq_senses(unsigned char *senses, int off, int max) { struct device_node *np; int i, j; /* default to level-triggered */ memset(senses, IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE, max - off); for (np = allnodes; np != 0; np = np->allnext) { for (j = 0; j < np->n_intrs; j++) { i = np->intrs[j].line; if (i >= off && i < max) senses[i-off] = np->intrs[j].sense; } } } /** * Construct and return a list of the device_nodes with a given name. */ struct device_node *find_devices(const char *name) { struct device_node *head, **prevp, *np; prevp = &head; for (np = allnodes; np != 0; np = np->allnext) { if (np->name != 0 && strcasecmp(np->name, name) == 0) { *prevp = np; prevp = &np->next; } } *prevp = NULL; return head; } EXPORT_SYMBOL(find_devices); /** * Construct and return a list of the device_nodes with a given type. */ struct device_node *find_type_devices(const char *type) { struct device_node *head, **prevp, *np; prevp = &head; for (np = allnodes; np != 0; np = np->allnext) { if (np->type != 0 && strcasecmp(np->type, type) == 0) { *prevp = np; prevp = &np->next; } } *prevp = NULL; return head; } EXPORT_SYMBOL(find_type_devices); /** * Returns all nodes linked together */ struct device_node *find_all_nodes(void) { struct device_node *head, **prevp, *np; prevp = &head; for (np = allnodes; np != 0; np = np->allnext) { *prevp = np; prevp = &np->next; } *prevp = NULL; return head; } EXPORT_SYMBOL(find_all_nodes); /** Checks if the given "compat" string matches one of the strings in * the device's "compatible" property */ int device_is_compatible(struct device_node *device, const char *compat) { const char* cp; int cplen, l; cp = (char *) get_property(device, "compatible", &cplen); if (cp == NULL) return 0; while (cplen > 0) { if (strncasecmp(cp, compat, strlen(compat)) == 0) return 1; l = strlen(cp) + 1; cp += l; cplen -= l; } return 0; } EXPORT_SYMBOL(device_is_compatible); /** * Indicates whether the root node has a given value in its * compatible property. */ int machine_is_compatible(const char *compat) { struct device_node *root; int rc = 0; root = of_find_node_by_path("/"); if (root) { rc = device_is_compatible(root, compat); of_node_put(root); } return rc; } EXPORT_SYMBOL(machine_is_compatible); /** * Construct and return a list of the device_nodes with a given type * and compatible property. */ struct device_node *find_compatible_devices(const char *type, const char *compat) { struct device_node *head, **prevp, *np; prevp = &head; for (np = allnodes; np != 0; np = np->allnext) { if (type != NULL && !(np->type != 0 && strcasecmp(np->type, type) == 0)) continue; if (device_is_compatible(np, compat)) { *prevp = np; prevp = &np->next; } } *prevp = NULL; return head; } EXPORT_SYMBOL(find_compatible_devices); /** * Find the device_node with a given full_name. */ struct device_node *find_path_device(const char *path) { struct device_node *np; for (np = allnodes; np != 0; np = np->allnext) if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0) return np; return NULL; } EXPORT_SYMBOL(find_path_device); /******* * * New implementation of the OF "find" APIs, return a refcounted * object, call of_node_put() when done. The device tree and list * are protected by a rw_lock. * * Note that property management will need some locking as well, * this isn't dealt with yet. * *******/ /** * of_find_node_by_name - Find a node by its "name" property * @from: The node to start searching from or NULL, the node * you pass will not be searched, only the next one * will; typically, you pass what the previous call * returned. of_node_put() will be called on it * @name: The name string to match against * * Returns a node pointer with refcount incremented, use * of_node_put() on it when done. */ struct device_node *of_find_node_by_name(struct device_node *from, const char *name) { struct device_node *np; read_lock(&devtree_lock); np = from ? from->allnext : allnodes; for (; np != NULL; np = np->allnext) if (np->name != NULL && strcasecmp(np->name, name) == 0 && of_node_get(np)) break; if (from) of_node_put(from); read_unlock(&devtree_lock); return np; } EXPORT_SYMBOL(of_find_node_by_name); /** * of_find_node_by_type - Find a node by its "device_type" property * @from: The node to start searching from or NULL, the node * you pass will not be searched, only the next one * will; typically, you pass what the previous call * returned. of_node_put() will be called on it * @name: The type string to match against * * Returns a node pointer with refcount incremented, use * of_node_put() on it when done. */ struct device_node *of_find_node_by_type(struct device_node *from, const char *type) { struct device_node *np; read_lock(&devtree_lock); np = from ? from->allnext : allnodes; for (; np != 0; np = np->allnext) if (np->type != 0 && strcasecmp(np->type, type) == 0 && of_node_get(np)) break; if (from) of_node_put(from); read_unlock(&devtree_lock); return np; } EXPORT_SYMBOL(of_find_node_by_type); /** * of_find_compatible_node - Find a node based on type and one of the * tokens in its "compatible" property * @from: The node to start searching from or NULL, the node * you pass will not be searched, only the next one * will; typically, you pass what the previous call * returned. of_node_put() will be called on it * @type: The type string to match "device_type" or NULL to ignore * @compatible: The string to match to one of the tokens in the device * "compatible" list. * * Returns a node pointer with refcount incremented, use * of_node_put() on it when done. */ struct device_node *of_find_compatible_node(struct device_node *from, const char *type, const char *compatible) { struct device_node *np; read_lock(&devtree_lock); np = from ? from->allnext : allnodes; for (; np != 0; np = np->allnext) { if (type != NULL && !(np->type != 0 && strcasecmp(np->type, type) == 0)) continue; if (device_is_compatible(np, compatible) && of_node_get(np)) break; } if (from) of_node_put(from); read_unlock(&devtree_lock); return np; } EXPORT_SYMBOL(of_find_compatible_node); /** * of_find_node_by_path - Find a node matching a full OF path * @path: The full path to match * * Returns a node pointer with refcount incremented, use * of_node_put() on it when done. */ struct device_node *of_find_node_by_path(const char *path) { struct device_node *np = allnodes; read_lock(&devtree_lock); for (; np != 0; np = np->allnext) { if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0 && of_node_get(np)) break; } read_unlock(&devtree_lock); return np; } EXPORT_SYMBOL(of_find_node_by_path); /** * of_find_node_by_phandle - Find a node given a phandle * @handle: phandle of the node to find * * Returns a node pointer with refcount incremented, use * of_node_put() on it when done. */ struct device_node *of_find_node_by_phandle(phandle handle) { struct device_node *np; read_lock(&devtree_lock); for (np = allnodes; np != 0; np = np->allnext) if (np->linux_phandle == handle) break; if (np) of_node_get(np); read_unlock(&devtree_lock); return np; } EXPORT_SYMBOL(of_find_node_by_phandle); /** * of_find_all_nodes - Get next node in global list * @prev: Previous node or NULL to start iteration * of_node_put() will be called on it * * Returns a node pointer with refcount incremented, use * of_node_put() on it when done. */ struct device_node *of_find_all_nodes(struct device_node *prev) { struct device_node *np; read_lock(&devtree_lock); np = prev ? prev->allnext : allnodes; for (; np != 0; np = np->allnext) if (of_node_get(np)) break; if (prev) of_node_put(prev); read_unlock(&devtree_lock); return np; } EXPORT_SYMBOL(of_find_all_nodes); /** * of_get_parent - Get a node's parent if any * @node: Node to get parent * * Returns a node pointer with refcount incremented, use * of_node_put() on it when done. */ struct device_node *of_get_parent(const struct device_node *node) { struct device_node *np; if (!node) return NULL; read_lock(&devtree_lock); np = of_node_get(node->parent); read_unlock(&devtree_lock); return np; } EXPORT_SYMBOL(of_get_parent); /** * of_get_next_child - Iterate a node childs * @node: parent node * @prev: previous child of the parent node, or NULL to get first * * Returns a node pointer with refcount incremented, use * of_node_put() on it when done. */ struct device_node *of_get_next_child(const struct device_node *node, struct device_node *prev) { struct device_node *next; read_lock(&devtree_lock); next = prev ? prev->sibling : node->child; for (; next != 0; next = next->sibling) if (of_node_get(next)) break; if (prev) of_node_put(prev); read_unlock(&devtree_lock); return next; } EXPORT_SYMBOL(of_get_next_child); /** * of_node_get - Increment refcount of a node * @node: Node to inc refcount, NULL is supported to * simplify writing of callers * * Returns node. */ struct device_node *of_node_get(struct device_node *node) { if (node) kref_get(&node->kref); return node; } EXPORT_SYMBOL(of_node_get); static inline struct device_node * kref_to_device_node(struct kref *kref) { return container_of(kref, struct device_node, kref); } /** * of_node_release - release a dynamically allocated node * @kref: kref element of the node to be released * * In of_node_put() this function is passed to kref_put() * as the destructor. */ static void of_node_release(struct kref *kref) { struct device_node *node = kref_to_device_node(kref); struct property *prop = node->properties; if (!OF_IS_DYNAMIC(node)) return; while (prop) { struct property *next = prop->next; kfree(prop->name); kfree(prop->value); kfree(prop); prop = next; if (!prop) { prop = node->deadprops; node->deadprops = NULL; } } kfree(node->intrs); kfree(node->full_name); kfree(node->data); kfree(node); } /** * of_node_put - Decrement refcount of a node * @node: Node to dec refcount, NULL is supported to * simplify writing of callers * */ void of_node_put(struct device_node *node) { if (node) kref_put(&node->kref, of_node_release); } EXPORT_SYMBOL(of_node_put); /* * Plug a device node into the tree and global list. */ void of_attach_node(struct device_node *np) { write_lock(&devtree_lock); np->sibling = np->parent->child; np->allnext = allnodes; np->parent->child = np; allnodes = np; write_unlock(&devtree_lock); } /* * "Unplug" a node from the device tree. The caller must hold * a reference to the node. The memory associated with the node * is not freed until its refcount goes to zero. */ void of_detach_node(const struct device_node *np) { struct device_node *parent; write_lock(&devtree_lock); parent = np->parent; if (allnodes == np) allnodes = np->allnext; else { struct device_node *prev; for (prev = allnodes; prev->allnext != np; prev = prev->allnext) ; prev->allnext = np->allnext; } if (parent->child == np) parent->child = np->sibling; else { struct device_node *prevsib; for (prevsib = np->parent->child; prevsib->sibling != np; prevsib = prevsib->sibling) ; prevsib->sibling = np->sibling; } write_unlock(&devtree_lock); } #ifdef CONFIG_PPC_PSERIES /* * Fix up the uninitialized fields in a new device node: * name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields * * A lot of boot-time code is duplicated here, because functions such * as finish_node_interrupts, interpret_pci_props, etc. cannot use the * slab allocator. * * This should probably be split up into smaller chunks. */ static int of_finish_dynamic_node(struct device_node *node) { struct device_node *parent = of_get_parent(node); int err = 0; phandle *ibm_phandle; node->name = get_property(node, "name", NULL); node->type = get_property(node, "device_type", NULL); if (!parent) { err = -ENODEV; goto out; } /* We don't support that function on PowerMac, at least * not yet */ if (machine_is(powermac)) return -ENODEV; /* fix up new node's linux_phandle field */ if ((ibm_phandle = (unsigned int *)get_property(node, "ibm,phandle", NULL))) node->linux_phandle = *ibm_phandle; out: of_node_put(parent); return err; } static int prom_reconfig_notifier(struct notifier_block *nb, unsigned long action, void *node) { int err; switch (action) { case PSERIES_RECONFIG_ADD: err = of_finish_dynamic_node(node); if (!err) finish_node(node, NULL, 0); if (err < 0) { printk(KERN_ERR "finish_node returned %d\n", err); err = NOTIFY_BAD; } break; default: err = NOTIFY_DONE; break; } return err; } static struct notifier_block prom_reconfig_nb = { .notifier_call = prom_reconfig_notifier, .priority = 10, /* This one needs to run first */ }; static int __init prom_reconfig_setup(void) { return pSeries_reconfig_notifier_register(&prom_reconfig_nb); } __initcall(prom_reconfig_setup); #endif struct property *of_find_property(struct device_node *np, const char *name, int *lenp) { struct property *pp; read_lock(&devtree_lock); for (pp = np->properties; pp != 0; pp = pp->next) if (strcmp(pp->name, name) == 0) { if (lenp != 0) *lenp = pp->length; break; } read_unlock(&devtree_lock); return pp; } /* * Find a property with a given name for a given node * and return the value. */ unsigned char *get_property(struct device_node *np, const char *name, int *lenp) { struct property *pp = of_find_property(np,name,lenp); return pp ? pp->value : NULL; } EXPORT_SYMBOL(get_property); /* * Add a property to a node */ int prom_add_property(struct device_node* np, struct property* prop) { struct property **next; prop->next = NULL; write_lock(&devtree_lock); next = &np->properties; while (*next) { if (strcmp(prop->name, (*next)->name) == 0) { /* duplicate ! don't insert it */ write_unlock(&devtree_lock); return -1; } next = &(*next)->next; } *next = prop; write_unlock(&devtree_lock); #ifdef CONFIG_PROC_DEVICETREE /* try to add to proc as well if it was initialized */ if (np->pde) proc_device_tree_add_prop(np->pde, prop); #endif /* CONFIG_PROC_DEVICETREE */ return 0; } /* * Remove a property from a node. Note that we don't actually * remove it, since we have given out who-knows-how-many pointers * to the data using get-property. Instead we just move the property * to the "dead properties" list, so it won't be found any more. */ int prom_remove_property(struct device_node *np, struct property *prop) { struct property **next; int found = 0; write_lock(&devtree_lock); next = &np->properties; while (*next) { if (*next == prop) { /* found the node */ *next = prop->next; prop->next = np->deadprops; np->deadprops = prop; found = 1; break; } next = &(*next)->next; } write_unlock(&devtree_lock); if (!found) return -ENODEV; #ifdef CONFIG_PROC_DEVICETREE /* try to remove the proc node as well */ if (np->pde) proc_device_tree_remove_prop(np->pde, prop); #endif /* CONFIG_PROC_DEVICETREE */ return 0; } /* * Update a property in a node. Note that we don't actually * remove it, since we have given out who-knows-how-many pointers * to the data using get-property. Instead we just move the property * to the "dead properties" list, and add the new property to the * property list */ int prom_update_property(struct device_node *np, struct property *newprop, struct property *oldprop) { struct property **next; int found = 0; write_lock(&devtree_lock); next = &np->properties; while (*next) { if (*next == oldprop) { /* found the node */ newprop->next = oldprop->next; *next = newprop; oldprop->next = np->deadprops; np->deadprops = oldprop; found = 1; break; } next = &(*next)->next; } write_unlock(&devtree_lock); if (!found) return -ENODEV; #ifdef CONFIG_PROC_DEVICETREE /* try to add to proc as well if it was initialized */ if (np->pde) proc_device_tree_update_prop(np->pde, newprop, oldprop); #endif /* CONFIG_PROC_DEVICETREE */ return 0; }