/* Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com> Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com> Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org> Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com> Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de> Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com> Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com> Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com> <http://rt2x00.serialmonkey.com> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Module: rt2800pci Abstract: rt2800pci device specific routines. Supported chipsets: RT2800E & RT2800ED. */ #include <linux/delay.h> #include <linux/etherdevice.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/platform_device.h> #include <linux/eeprom_93cx6.h> #include "rt2x00.h" #include "rt2x00pci.h" #include "rt2x00soc.h" #include "rt2800lib.h" #include "rt2800.h" #include "rt2800pci.h" /* * Allow hardware encryption to be disabled. */ static int modparam_nohwcrypt = 0; module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO); MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption."); static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token) { unsigned int i; u32 reg; /* * SOC devices don't support MCU requests. */ if (rt2x00_is_soc(rt2x00dev)) return; for (i = 0; i < 200; i++) { rt2800_register_read(rt2x00dev, H2M_MAILBOX_CID, ®); if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) || (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) || (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) || (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token)) break; udelay(REGISTER_BUSY_DELAY); } if (i == 200) ERROR(rt2x00dev, "MCU request failed, no response from hardware\n"); rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0); rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0); } #ifdef CONFIG_RT2800PCI_SOC static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev) { u32 *base_addr = (u32 *) KSEG1ADDR(0x1F040000); /* XXX for RT3052 */ memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE); } #else static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev) { } #endif /* CONFIG_RT2800PCI_SOC */ #ifdef CONFIG_RT2800PCI_PCI static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom) { struct rt2x00_dev *rt2x00dev = eeprom->data; u32 reg; rt2800_register_read(rt2x00dev, E2PROM_CSR, ®); eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN); eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT); eeprom->reg_data_clock = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK); eeprom->reg_chip_select = !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT); } static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom) { struct rt2x00_dev *rt2x00dev = eeprom->data; u32 reg = 0; rt2x00_set_field32(®, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in); rt2x00_set_field32(®, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out); rt2x00_set_field32(®, E2PROM_CSR_DATA_CLOCK, !!eeprom->reg_data_clock); rt2x00_set_field32(®, E2PROM_CSR_CHIP_SELECT, !!eeprom->reg_chip_select); rt2800_register_write(rt2x00dev, E2PROM_CSR, reg); } static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev) { struct eeprom_93cx6 eeprom; u32 reg; rt2800_register_read(rt2x00dev, E2PROM_CSR, ®); eeprom.data = rt2x00dev; eeprom.register_read = rt2800pci_eepromregister_read; eeprom.register_write = rt2800pci_eepromregister_write; switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE)) { case 0: eeprom.width = PCI_EEPROM_WIDTH_93C46; break; case 1: eeprom.width = PCI_EEPROM_WIDTH_93C66; break; default: eeprom.width = PCI_EEPROM_WIDTH_93C86; break; } eeprom.reg_data_in = 0; eeprom.reg_data_out = 0; eeprom.reg_data_clock = 0; eeprom.reg_chip_select = 0; eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom, EEPROM_SIZE / sizeof(u16)); } static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev) { return rt2800_efuse_detect(rt2x00dev); } static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev) { rt2800_read_eeprom_efuse(rt2x00dev); } #else static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev) { } static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev) { return 0; } static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev) { } #endif /* CONFIG_RT2800PCI_PCI */ /* * Firmware functions */ static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev) { return FIRMWARE_RT2860; } static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev, const u8 *data, const size_t len) { u32 reg; /* * enable Host program ram write selection */ reg = 0; rt2x00_set_field32(®, PBF_SYS_CTRL_HOST_RAM_WRITE, 1); rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, reg); /* * Write firmware to device. */ rt2800_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE, data, len); rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000); rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001); rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0); rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0); return 0; } /* * Initialization functions. */ static bool rt2800pci_get_entry_state(struct queue_entry *entry) { struct queue_entry_priv_pci *entry_priv = entry->priv_data; u32 word; if (entry->queue->qid == QID_RX) { rt2x00_desc_read(entry_priv->desc, 1, &word); return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE)); } else { rt2x00_desc_read(entry_priv->desc, 1, &word); return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE)); } } static void rt2800pci_clear_entry(struct queue_entry *entry) { struct queue_entry_priv_pci *entry_priv = entry->priv_data; struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; u32 word; if (entry->queue->qid == QID_RX) { rt2x00_desc_read(entry_priv->desc, 0, &word); rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma); rt2x00_desc_write(entry_priv->desc, 0, word); rt2x00_desc_read(entry_priv->desc, 1, &word); rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0); rt2x00_desc_write(entry_priv->desc, 1, word); /* * Set RX IDX in register to inform hardware that we have * handled this entry and it is available for reuse again. */ rt2800_register_write(rt2x00dev, RX_CRX_IDX, entry->entry_idx); } else { rt2x00_desc_read(entry_priv->desc, 1, &word); rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1); rt2x00_desc_write(entry_priv->desc, 1, word); } } static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev) { struct queue_entry_priv_pci *entry_priv; u32 reg; /* * Initialize registers. */ entry_priv = rt2x00dev->tx[0].entries[0].priv_data; rt2800_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma); rt2800_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit); rt2800_register_write(rt2x00dev, TX_CTX_IDX0, 0); rt2800_register_write(rt2x00dev, TX_DTX_IDX0, 0); entry_priv = rt2x00dev->tx[1].entries[0].priv_data; rt2800_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma); rt2800_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit); rt2800_register_write(rt2x00dev, TX_CTX_IDX1, 0); rt2800_register_write(rt2x00dev, TX_DTX_IDX1, 0); entry_priv = rt2x00dev->tx[2].entries[0].priv_data; rt2800_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma); rt2800_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit); rt2800_register_write(rt2x00dev, TX_CTX_IDX2, 0); rt2800_register_write(rt2x00dev, TX_DTX_IDX2, 0); entry_priv = rt2x00dev->tx[3].entries[0].priv_data; rt2800_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma); rt2800_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit); rt2800_register_write(rt2x00dev, TX_CTX_IDX3, 0); rt2800_register_write(rt2x00dev, TX_DTX_IDX3, 0); entry_priv = rt2x00dev->rx->entries[0].priv_data; rt2800_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma); rt2800_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit); rt2800_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1); rt2800_register_write(rt2x00dev, RX_DRX_IDX, 0); /* * Enable global DMA configuration */ rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®); rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0); rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0); rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1); rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg); rt2800_register_write(rt2x00dev, DELAY_INT_CFG, 0); return 0; } /* * Device state switch handlers. */ static void rt2800pci_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state) { u32 reg; rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, ®); rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, (state == STATE_RADIO_RX_ON) || (state == STATE_RADIO_RX_ON_LINK)); rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg); } static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev, enum dev_state state) { int mask = (state == STATE_RADIO_IRQ_ON) || (state == STATE_RADIO_IRQ_ON_ISR); u32 reg; /* * When interrupts are being enabled, the interrupt registers * should clear the register to assure a clean state. */ if (state == STATE_RADIO_IRQ_ON) { rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, ®); rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg); } rt2800_register_read(rt2x00dev, INT_MASK_CSR, ®); rt2x00_set_field32(®, INT_MASK_CSR_RXDELAYINT, 0); rt2x00_set_field32(®, INT_MASK_CSR_TXDELAYINT, 0); rt2x00_set_field32(®, INT_MASK_CSR_RX_DONE, mask); rt2x00_set_field32(®, INT_MASK_CSR_AC0_DMA_DONE, 0); rt2x00_set_field32(®, INT_MASK_CSR_AC1_DMA_DONE, 0); rt2x00_set_field32(®, INT_MASK_CSR_AC2_DMA_DONE, 0); rt2x00_set_field32(®, INT_MASK_CSR_AC3_DMA_DONE, 0); rt2x00_set_field32(®, INT_MASK_CSR_HCCA_DMA_DONE, 0); rt2x00_set_field32(®, INT_MASK_CSR_MGMT_DMA_DONE, 0); rt2x00_set_field32(®, INT_MASK_CSR_MCU_COMMAND, 0); rt2x00_set_field32(®, INT_MASK_CSR_RXTX_COHERENT, 0); rt2x00_set_field32(®, INT_MASK_CSR_TBTT, mask); rt2x00_set_field32(®, INT_MASK_CSR_PRE_TBTT, mask); rt2x00_set_field32(®, INT_MASK_CSR_TX_FIFO_STATUS, mask); rt2x00_set_field32(®, INT_MASK_CSR_AUTO_WAKEUP, mask); rt2x00_set_field32(®, INT_MASK_CSR_GPTIMER, 0); rt2x00_set_field32(®, INT_MASK_CSR_RX_COHERENT, 0); rt2x00_set_field32(®, INT_MASK_CSR_TX_COHERENT, 0); rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg); } static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev) { u32 reg; /* * Reset DMA indexes */ rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, ®); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX0, 1); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX1, 1); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX2, 1); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX3, 1); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX4, 1); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX5, 1); rt2x00_set_field32(®, WPDMA_RST_IDX_DRX_IDX0, 1); rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg); rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f); rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00); rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003); rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, ®); rt2x00_set_field32(®, MAC_SYS_CTRL_RESET_CSR, 1); rt2x00_set_field32(®, MAC_SYS_CTRL_RESET_BBP, 1); rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg); rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000); return 0; } static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev) { if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) || rt2800pci_init_queues(rt2x00dev))) return -EIO; return rt2800_enable_radio(rt2x00dev); } static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev) { u32 reg; rt2800_disable_radio(rt2x00dev); rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001280); rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, ®); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX0, 1); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX1, 1); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX2, 1); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX3, 1); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX4, 1); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX5, 1); rt2x00_set_field32(®, WPDMA_RST_IDX_DRX_IDX0, 1); rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg); rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f); rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00); } static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state) { /* * Always put the device to sleep (even when we intend to wakeup!) * if the device is booting and wasn't asleep it will return * failure when attempting to wakeup. */ rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0xff, 2); if (state == STATE_AWAKE) { rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0); rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP); } return 0; } static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev, enum dev_state state) { int retval = 0; switch (state) { case STATE_RADIO_ON: /* * Before the radio can be enabled, the device first has * to be woken up. After that it needs a bit of time * to be fully awake and then the radio can be enabled. */ rt2800pci_set_state(rt2x00dev, STATE_AWAKE); msleep(1); retval = rt2800pci_enable_radio(rt2x00dev); break; case STATE_RADIO_OFF: /* * After the radio has been disabled, the device should * be put to sleep for powersaving. */ rt2800pci_disable_radio(rt2x00dev); rt2800pci_set_state(rt2x00dev, STATE_SLEEP); break; case STATE_RADIO_RX_ON: case STATE_RADIO_RX_ON_LINK: case STATE_RADIO_RX_OFF: case STATE_RADIO_RX_OFF_LINK: rt2800pci_toggle_rx(rt2x00dev, state); break; case STATE_RADIO_IRQ_ON: case STATE_RADIO_IRQ_ON_ISR: case STATE_RADIO_IRQ_OFF: case STATE_RADIO_IRQ_OFF_ISR: rt2800pci_toggle_irq(rt2x00dev, state); break; case STATE_DEEP_SLEEP: case STATE_SLEEP: case STATE_STANDBY: case STATE_AWAKE: retval = rt2800pci_set_state(rt2x00dev, state); break; default: retval = -ENOTSUPP; break; } if (unlikely(retval)) ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n", state, retval); return retval; } /* * TX descriptor initialization */ static __le32 *rt2800pci_get_txwi(struct queue_entry *entry) { return (__le32 *) entry->skb->data; } static void rt2800pci_write_tx_desc(struct queue_entry *entry, struct txentry_desc *txdesc) { struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); struct queue_entry_priv_pci *entry_priv = entry->priv_data; __le32 *txd = entry_priv->desc; u32 word; /* * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1 * must contains a TXWI structure + 802.11 header + padding + 802.11 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11 * data. It means that LAST_SEC0 is always 0. */ /* * Initialize TX descriptor */ rt2x00_desc_read(txd, 0, &word); rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma); rt2x00_desc_write(txd, 0, word); rt2x00_desc_read(txd, 1, &word); rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len); rt2x00_set_field32(&word, TXD_W1_LAST_SEC1, !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags)); rt2x00_set_field32(&word, TXD_W1_BURST, test_bit(ENTRY_TXD_BURST, &txdesc->flags)); rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE); rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0); rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0); rt2x00_desc_write(txd, 1, word); rt2x00_desc_read(txd, 2, &word); rt2x00_set_field32(&word, TXD_W2_SD_PTR1, skbdesc->skb_dma + TXWI_DESC_SIZE); rt2x00_desc_write(txd, 2, word); rt2x00_desc_read(txd, 3, &word); rt2x00_set_field32(&word, TXD_W3_WIV, !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags)); rt2x00_set_field32(&word, TXD_W3_QSEL, 2); rt2x00_desc_write(txd, 3, word); /* * Register descriptor details in skb frame descriptor. */ skbdesc->desc = txd; skbdesc->desc_len = TXD_DESC_SIZE; } /* * TX data initialization */ static void rt2800pci_kick_tx_queue(struct data_queue *queue) { struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX); unsigned int qidx; if (queue->qid == QID_MGMT) qidx = 5; else qidx = queue->qid; rt2800_register_write(rt2x00dev, TX_CTX_IDX(qidx), entry->entry_idx); } static void rt2800pci_kill_tx_queue(struct data_queue *queue) { struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; u32 reg; if (queue->qid == QID_BEACON) { rt2800_register_write(rt2x00dev, BCN_TIME_CFG, 0); return; } rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, ®); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX0, (queue->qid == QID_AC_BE)); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX1, (queue->qid == QID_AC_BK)); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX2, (queue->qid == QID_AC_VI)); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX3, (queue->qid == QID_AC_VO)); rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg); } /* * RX control handlers */ static void rt2800pci_fill_rxdone(struct queue_entry *entry, struct rxdone_entry_desc *rxdesc) { struct queue_entry_priv_pci *entry_priv = entry->priv_data; __le32 *rxd = entry_priv->desc; u32 word; rt2x00_desc_read(rxd, 3, &word); if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR)) rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC; /* * Unfortunately we don't know the cipher type used during * decryption. This prevents us from correct providing * correct statistics through debugfs. */ rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR); if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) { /* * Hardware has stripped IV/EIV data from 802.11 frame during * decryption. Unfortunately the descriptor doesn't contain * any fields with the EIV/IV data either, so they can't * be restored by rt2x00lib. */ rxdesc->flags |= RX_FLAG_IV_STRIPPED; if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) rxdesc->flags |= RX_FLAG_DECRYPTED; else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) rxdesc->flags |= RX_FLAG_MMIC_ERROR; } if (rt2x00_get_field32(word, RXD_W3_MY_BSS)) rxdesc->dev_flags |= RXDONE_MY_BSS; if (rt2x00_get_field32(word, RXD_W3_L2PAD)) rxdesc->dev_flags |= RXDONE_L2PAD; /* * Process the RXWI structure that is at the start of the buffer. */ rt2800_process_rxwi(entry, rxdesc); } /* * Interrupt functions. */ static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev) { struct ieee80211_conf conf = { .flags = 0 }; struct rt2x00lib_conf libconf = { .conf = &conf }; rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS); } static void rt2800pci_txdone(struct rt2x00_dev *rt2x00dev) { struct data_queue *queue; struct queue_entry *entry; u32 status; u8 qid; while (!kfifo_is_empty(&rt2x00dev->txstatus_fifo)) { /* Now remove the tx status from the FIFO */ if (kfifo_out(&rt2x00dev->txstatus_fifo, &status, sizeof(status)) != sizeof(status)) { WARN_ON(1); break; } qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE); if (qid >= QID_RX) { /* * Unknown queue, this shouldn't happen. Just drop * this tx status. */ WARNING(rt2x00dev, "Got TX status report with " "unexpected pid %u, dropping", qid); break; } queue = rt2x00queue_get_queue(rt2x00dev, qid); if (unlikely(queue == NULL)) { /* * The queue is NULL, this shouldn't happen. Stop * processing here and drop the tx status */ WARNING(rt2x00dev, "Got TX status for an unavailable " "queue %u, dropping", qid); break; } if (rt2x00queue_empty(queue)) { /* * The queue is empty. Stop processing here * and drop the tx status. */ WARNING(rt2x00dev, "Got TX status for an empty " "queue %u, dropping", qid); break; } entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE); rt2800_txdone_entry(entry, status); } } static void rt2800pci_txstatus_tasklet(unsigned long data) { rt2800pci_txdone((struct rt2x00_dev *)data); } static irqreturn_t rt2800pci_interrupt_thread(int irq, void *dev_instance) { struct rt2x00_dev *rt2x00dev = dev_instance; u32 reg = rt2x00dev->irqvalue[0]; /* * 1 - Pre TBTT interrupt. */ if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT)) rt2x00lib_pretbtt(rt2x00dev); /* * 2 - Beacondone interrupt. */ if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT)) rt2x00lib_beacondone(rt2x00dev); /* * 3 - Rx ring done interrupt. */ if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE)) rt2x00pci_rxdone(rt2x00dev); /* * 4 - Auto wakeup interrupt. */ if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP)) rt2800pci_wakeup(rt2x00dev); /* Enable interrupts again. */ rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON_ISR); return IRQ_HANDLED; } static void rt2800pci_txstatus_interrupt(struct rt2x00_dev *rt2x00dev) { u32 status; int i; /* * The TX_FIFO_STATUS interrupt needs special care. We should * read TX_STA_FIFO but we should do it immediately as otherwise * the register can overflow and we would lose status reports. * * Hence, read the TX_STA_FIFO register and copy all tx status * reports into a kernel FIFO which is handled in the txstatus * tasklet. We use a tasklet to process the tx status reports * because we can schedule the tasklet multiple times (when the * interrupt fires again during tx status processing). * * Furthermore we don't disable the TX_FIFO_STATUS * interrupt here but leave it enabled so that the TX_STA_FIFO * can also be read while the interrupt thread gets executed. * * Since we have only one producer and one consumer we don't * need to lock the kfifo. */ for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) { rt2800_register_read(rt2x00dev, TX_STA_FIFO, &status); if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID)) break; if (kfifo_is_full(&rt2x00dev->txstatus_fifo)) { WARNING(rt2x00dev, "TX status FIFO overrun," " drop tx status report.\n"); break; } if (kfifo_in(&rt2x00dev->txstatus_fifo, &status, sizeof(status)) != sizeof(status)) { WARNING(rt2x00dev, "TX status FIFO overrun," "drop tx status report.\n"); break; } } /* Schedule the tasklet for processing the tx status. */ tasklet_schedule(&rt2x00dev->txstatus_tasklet); } static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance) { struct rt2x00_dev *rt2x00dev = dev_instance; u32 reg; irqreturn_t ret = IRQ_HANDLED; /* Read status and ACK all interrupts */ rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, ®); rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg); if (!reg) return IRQ_NONE; if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) return IRQ_HANDLED; if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) rt2800pci_txstatus_interrupt(rt2x00dev); if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT) || rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT) || rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE) || rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP)) { /* * All other interrupts are handled in the interrupt thread. * Store irqvalue for use in the interrupt thread. */ rt2x00dev->irqvalue[0] = reg; /* * Disable interrupts, will be enabled again in the * interrupt thread. */ rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF_ISR); /* * Leave the TX_FIFO_STATUS interrupt enabled to not lose any * tx status reports. */ rt2800_register_read(rt2x00dev, INT_MASK_CSR, ®); rt2x00_set_field32(®, INT_MASK_CSR_TX_FIFO_STATUS, 1); rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg); ret = IRQ_WAKE_THREAD; } return ret; } /* * Device probe functions. */ static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev) { /* * Read EEPROM into buffer */ if (rt2x00_is_soc(rt2x00dev)) rt2800pci_read_eeprom_soc(rt2x00dev); else if (rt2800pci_efuse_detect(rt2x00dev)) rt2800pci_read_eeprom_efuse(rt2x00dev); else rt2800pci_read_eeprom_pci(rt2x00dev); return rt2800_validate_eeprom(rt2x00dev); } static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev) { int retval; /* * Allocate eeprom data. */ retval = rt2800pci_validate_eeprom(rt2x00dev); if (retval) return retval; retval = rt2800_init_eeprom(rt2x00dev); if (retval) return retval; /* * Initialize hw specifications. */ retval = rt2800_probe_hw_mode(rt2x00dev); if (retval) return retval; /* * This device has multiple filters for control frames * and has a separate filter for PS Poll frames. */ __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags); __set_bit(DRIVER_SUPPORT_CONTROL_FILTER_PSPOLL, &rt2x00dev->flags); /* * This device has a pre tbtt interrupt and thus fetches * a new beacon directly prior to transmission. */ __set_bit(DRIVER_SUPPORT_PRE_TBTT_INTERRUPT, &rt2x00dev->flags); /* * This device requires firmware. */ if (!rt2x00_is_soc(rt2x00dev)) __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags); __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags); __set_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags); __set_bit(DRIVER_REQUIRE_TXSTATUS_FIFO, &rt2x00dev->flags); if (!modparam_nohwcrypt) __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags); __set_bit(DRIVER_SUPPORT_LINK_TUNING, &rt2x00dev->flags); /* * Set the rssi offset. */ rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET; return 0; } static const struct ieee80211_ops rt2800pci_mac80211_ops = { .tx = rt2x00mac_tx, .start = rt2x00mac_start, .stop = rt2x00mac_stop, .add_interface = rt2x00mac_add_interface, .remove_interface = rt2x00mac_remove_interface, .config = rt2x00mac_config, .configure_filter = rt2x00mac_configure_filter, .set_key = rt2x00mac_set_key, .sw_scan_start = rt2x00mac_sw_scan_start, .sw_scan_complete = rt2x00mac_sw_scan_complete, .get_stats = rt2x00mac_get_stats, .get_tkip_seq = rt2800_get_tkip_seq, .set_rts_threshold = rt2800_set_rts_threshold, .bss_info_changed = rt2x00mac_bss_info_changed, .conf_tx = rt2800_conf_tx, .get_tsf = rt2800_get_tsf, .rfkill_poll = rt2x00mac_rfkill_poll, .ampdu_action = rt2800_ampdu_action, .flush = rt2x00mac_flush, }; static const struct rt2800_ops rt2800pci_rt2800_ops = { .register_read = rt2x00pci_register_read, .register_read_lock = rt2x00pci_register_read, /* same for PCI */ .register_write = rt2x00pci_register_write, .register_write_lock = rt2x00pci_register_write, /* same for PCI */ .register_multiread = rt2x00pci_register_multiread, .register_multiwrite = rt2x00pci_register_multiwrite, .regbusy_read = rt2x00pci_regbusy_read, .drv_write_firmware = rt2800pci_write_firmware, .drv_init_registers = rt2800pci_init_registers, .drv_get_txwi = rt2800pci_get_txwi, }; static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = { .irq_handler = rt2800pci_interrupt, .irq_handler_thread = rt2800pci_interrupt_thread, .txstatus_tasklet = rt2800pci_txstatus_tasklet, .probe_hw = rt2800pci_probe_hw, .get_firmware_name = rt2800pci_get_firmware_name, .check_firmware = rt2800_check_firmware, .load_firmware = rt2800_load_firmware, .initialize = rt2x00pci_initialize, .uninitialize = rt2x00pci_uninitialize, .get_entry_state = rt2800pci_get_entry_state, .clear_entry = rt2800pci_clear_entry, .set_device_state = rt2800pci_set_device_state, .rfkill_poll = rt2800_rfkill_poll, .link_stats = rt2800_link_stats, .reset_tuner = rt2800_reset_tuner, .link_tuner = rt2800_link_tuner, .write_tx_desc = rt2800pci_write_tx_desc, .write_tx_data = rt2800_write_tx_data, .write_beacon = rt2800_write_beacon, .kick_tx_queue = rt2800pci_kick_tx_queue, .kill_tx_queue = rt2800pci_kill_tx_queue, .fill_rxdone = rt2800pci_fill_rxdone, .config_shared_key = rt2800_config_shared_key, .config_pairwise_key = rt2800_config_pairwise_key, .config_filter = rt2800_config_filter, .config_intf = rt2800_config_intf, .config_erp = rt2800_config_erp, .config_ant = rt2800_config_ant, .config = rt2800_config, }; static const struct data_queue_desc rt2800pci_queue_rx = { .entry_num = 128, .data_size = AGGREGATION_SIZE, .desc_size = RXD_DESC_SIZE, .priv_size = sizeof(struct queue_entry_priv_pci), }; static const struct data_queue_desc rt2800pci_queue_tx = { .entry_num = 64, .data_size = AGGREGATION_SIZE, .desc_size = TXD_DESC_SIZE, .priv_size = sizeof(struct queue_entry_priv_pci), }; static const struct data_queue_desc rt2800pci_queue_bcn = { .entry_num = 8, .data_size = 0, /* No DMA required for beacons */ .desc_size = TXWI_DESC_SIZE, .priv_size = sizeof(struct queue_entry_priv_pci), }; static const struct rt2x00_ops rt2800pci_ops = { .name = KBUILD_MODNAME, .max_sta_intf = 1, .max_ap_intf = 8, .eeprom_size = EEPROM_SIZE, .rf_size = RF_SIZE, .tx_queues = NUM_TX_QUEUES, .extra_tx_headroom = TXWI_DESC_SIZE, .rx = &rt2800pci_queue_rx, .tx = &rt2800pci_queue_tx, .bcn = &rt2800pci_queue_bcn, .lib = &rt2800pci_rt2x00_ops, .drv = &rt2800pci_rt2800_ops, .hw = &rt2800pci_mac80211_ops, #ifdef CONFIG_RT2X00_LIB_DEBUGFS .debugfs = &rt2800_rt2x00debug, #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ }; /* * RT2800pci module information. */ #ifdef CONFIG_RT2800PCI_PCI static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = { { PCI_DEVICE(0x1814, 0x0601), PCI_DEVICE_DATA(&rt2800pci_ops) }, { PCI_DEVICE(0x1814, 0x0681), PCI_DEVICE_DATA(&rt2800pci_ops) }, { PCI_DEVICE(0x1814, 0x0701), PCI_DEVICE_DATA(&rt2800pci_ops) }, { PCI_DEVICE(0x1814, 0x0781), PCI_DEVICE_DATA(&rt2800pci_ops) }, { PCI_DEVICE(0x1432, 0x7708), PCI_DEVICE_DATA(&rt2800pci_ops) }, { PCI_DEVICE(0x1432, 0x7727), PCI_DEVICE_DATA(&rt2800pci_ops) }, { PCI_DEVICE(0x1432, 0x7728), PCI_DEVICE_DATA(&rt2800pci_ops) }, { PCI_DEVICE(0x1432, 0x7738), PCI_DEVICE_DATA(&rt2800pci_ops) }, { PCI_DEVICE(0x1432, 0x7748), PCI_DEVICE_DATA(&rt2800pci_ops) }, { PCI_DEVICE(0x1432, 0x7758), PCI_DEVICE_DATA(&rt2800pci_ops) }, { PCI_DEVICE(0x1432, 0x7768), PCI_DEVICE_DATA(&rt2800pci_ops) }, { PCI_DEVICE(0x1a3b, 0x1059), PCI_DEVICE_DATA(&rt2800pci_ops) }, #ifdef CONFIG_RT2800PCI_RT30XX { PCI_DEVICE(0x1814, 0x3090), PCI_DEVICE_DATA(&rt2800pci_ops) }, { PCI_DEVICE(0x1814, 0x3091), PCI_DEVICE_DATA(&rt2800pci_ops) }, { PCI_DEVICE(0x1814, 0x3092), PCI_DEVICE_DATA(&rt2800pci_ops) }, { PCI_DEVICE(0x1462, 0x891a), PCI_DEVICE_DATA(&rt2800pci_ops) }, #endif #ifdef CONFIG_RT2800PCI_RT35XX { PCI_DEVICE(0x1814, 0x3060), PCI_DEVICE_DATA(&rt2800pci_ops) }, { PCI_DEVICE(0x1814, 0x3062), PCI_DEVICE_DATA(&rt2800pci_ops) }, { PCI_DEVICE(0x1814, 0x3562), PCI_DEVICE_DATA(&rt2800pci_ops) }, { PCI_DEVICE(0x1814, 0x3592), PCI_DEVICE_DATA(&rt2800pci_ops) }, { PCI_DEVICE(0x1814, 0x3593), PCI_DEVICE_DATA(&rt2800pci_ops) }, #endif { 0, } }; #endif /* CONFIG_RT2800PCI_PCI */ MODULE_AUTHOR(DRV_PROJECT); MODULE_VERSION(DRV_VERSION); MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver."); MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards"); #ifdef CONFIG_RT2800PCI_PCI MODULE_FIRMWARE(FIRMWARE_RT2860); MODULE_DEVICE_TABLE(pci, rt2800pci_device_table); #endif /* CONFIG_RT2800PCI_PCI */ MODULE_LICENSE("GPL"); #ifdef CONFIG_RT2800PCI_SOC static int rt2800soc_probe(struct platform_device *pdev) { return rt2x00soc_probe(pdev, &rt2800pci_ops); } static struct platform_driver rt2800soc_driver = { .driver = { .name = "rt2800_wmac", .owner = THIS_MODULE, .mod_name = KBUILD_MODNAME, }, .probe = rt2800soc_probe, .remove = __devexit_p(rt2x00soc_remove), .suspend = rt2x00soc_suspend, .resume = rt2x00soc_resume, }; #endif /* CONFIG_RT2800PCI_SOC */ #ifdef CONFIG_RT2800PCI_PCI static struct pci_driver rt2800pci_driver = { .name = KBUILD_MODNAME, .id_table = rt2800pci_device_table, .probe = rt2x00pci_probe, .remove = __devexit_p(rt2x00pci_remove), .suspend = rt2x00pci_suspend, .resume = rt2x00pci_resume, }; #endif /* CONFIG_RT2800PCI_PCI */ static int __init rt2800pci_init(void) { int ret = 0; #ifdef CONFIG_RT2800PCI_SOC ret = platform_driver_register(&rt2800soc_driver); if (ret) return ret; #endif #ifdef CONFIG_RT2800PCI_PCI ret = pci_register_driver(&rt2800pci_driver); if (ret) { #ifdef CONFIG_RT2800PCI_SOC platform_driver_unregister(&rt2800soc_driver); #endif return ret; } #endif return ret; } static void __exit rt2800pci_exit(void) { #ifdef CONFIG_RT2800PCI_PCI pci_unregister_driver(&rt2800pci_driver); #endif #ifdef CONFIG_RT2800PCI_SOC platform_driver_unregister(&rt2800soc_driver); #endif } module_init(rt2800pci_init); module_exit(rt2800pci_exit);