/* * Copyright 2002-2005, Instant802 Networks, Inc. * Copyright 2005-2006, Devicescape Software, Inc. * Copyright 2006-2007 Jiri Benc * Copyright 2007-2008 Johannes Berg * Copyright 2013-2014 Intel Mobile Communications GmbH * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include "ieee80211_i.h" #include "driver-ops.h" #include "debugfs_key.h" #include "aes_ccm.h" #include "aes_cmac.h" #include "aes_gcm.h" /** * DOC: Key handling basics * * Key handling in mac80211 is done based on per-interface (sub_if_data) * keys and per-station keys. Since each station belongs to an interface, * each station key also belongs to that interface. * * Hardware acceleration is done on a best-effort basis for algorithms * that are implemented in software, for each key the hardware is asked * to enable that key for offloading but if it cannot do that the key is * simply kept for software encryption (unless it is for an algorithm * that isn't implemented in software). * There is currently no way of knowing whether a key is handled in SW * or HW except by looking into debugfs. * * All key management is internally protected by a mutex. Within all * other parts of mac80211, key references are, just as STA structure * references, protected by RCU. Note, however, that some things are * unprotected, namely the key->sta dereferences within the hardware * acceleration functions. This means that sta_info_destroy() must * remove the key which waits for an RCU grace period. */ static const u8 bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; static void assert_key_lock(struct ieee80211_local *local) { lockdep_assert_held(&local->key_mtx); } static void increment_tailroom_need_count(struct ieee80211_sub_if_data *sdata) { /* * When this count is zero, SKB resizing for allocating tailroom * for IV or MMIC is skipped. But, this check has created two race * cases in xmit path while transiting from zero count to one: * * 1. SKB resize was skipped because no key was added but just before * the xmit key is added and SW encryption kicks off. * * 2. SKB resize was skipped because all the keys were hw planted but * just before xmit one of the key is deleted and SW encryption kicks * off. * * In both the above case SW encryption will find not enough space for * tailroom and exits with WARN_ON. (See WARN_ONs at wpa.c) * * Solution has been explained at * http://mid.gmane.org/1308590980.4322.19.camel@jlt3.sipsolutions.net */ if (!sdata->crypto_tx_tailroom_needed_cnt++) { /* * Flush all XMIT packets currently using HW encryption or no * encryption at all if the count transition is from 0 -> 1. */ synchronize_net(); } } static int ieee80211_key_enable_hw_accel(struct ieee80211_key *key) { struct ieee80211_sub_if_data *sdata; struct sta_info *sta; int ret = -EOPNOTSUPP; might_sleep(); if (key->flags & KEY_FLAG_TAINTED) { /* If we get here, it's during resume and the key is * tainted so shouldn't be used/programmed any more. * However, its flags may still indicate that it was * programmed into the device (since we're in resume) * so clear that flag now to avoid trying to remove * it again later. */ key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE; return -EINVAL; } if (!key->local->ops->set_key) goto out_unsupported; assert_key_lock(key->local); sta = key->sta; /* * If this is a per-STA GTK, check if it * is supported; if not, return. */ if (sta && !(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE) && !(key->local->hw.flags & IEEE80211_HW_SUPPORTS_PER_STA_GTK)) goto out_unsupported; if (sta && !sta->uploaded) goto out_unsupported; sdata = key->sdata; if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { /* * The driver doesn't know anything about VLAN interfaces. * Hence, don't send GTKs for VLAN interfaces to the driver. */ if (!(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE)) goto out_unsupported; } ret = drv_set_key(key->local, SET_KEY, sdata, sta ? &sta->sta : NULL, &key->conf); if (!ret) { key->flags |= KEY_FLAG_UPLOADED_TO_HARDWARE; if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) || (key->conf.flags & IEEE80211_KEY_FLAG_RESERVE_TAILROOM))) sdata->crypto_tx_tailroom_needed_cnt--; WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) && (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV)); return 0; } if (ret != -ENOSPC && ret != -EOPNOTSUPP && ret != 1) sdata_err(sdata, "failed to set key (%d, %pM) to hardware (%d)\n", key->conf.keyidx, sta ? sta->sta.addr : bcast_addr, ret); out_unsupported: switch (key->conf.cipher) { case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: case WLAN_CIPHER_SUITE_TKIP: case WLAN_CIPHER_SUITE_CCMP: case WLAN_CIPHER_SUITE_CCMP_256: case WLAN_CIPHER_SUITE_AES_CMAC: case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: /* all of these we can do in software - if driver can */ if (ret == 1) return 0; if (key->local->hw.flags & IEEE80211_HW_SW_CRYPTO_CONTROL) return -EINVAL; return 0; default: return -EINVAL; } } static void ieee80211_key_disable_hw_accel(struct ieee80211_key *key) { struct ieee80211_sub_if_data *sdata; struct sta_info *sta; int ret; might_sleep(); if (!key || !key->local->ops->set_key) return; assert_key_lock(key->local); if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)) return; sta = key->sta; sdata = key->sdata; if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) || (key->conf.flags & IEEE80211_KEY_FLAG_RESERVE_TAILROOM))) increment_tailroom_need_count(sdata); ret = drv_set_key(key->local, DISABLE_KEY, sdata, sta ? &sta->sta : NULL, &key->conf); if (ret) sdata_err(sdata, "failed to remove key (%d, %pM) from hardware (%d)\n", key->conf.keyidx, sta ? sta->sta.addr : bcast_addr, ret); key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE; } static void __ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, int idx, bool uni, bool multi) { struct ieee80211_key *key = NULL; assert_key_lock(sdata->local); if (idx >= 0 && idx < NUM_DEFAULT_KEYS) key = key_mtx_dereference(sdata->local, sdata->keys[idx]); if (uni) { rcu_assign_pointer(sdata->default_unicast_key, key); drv_set_default_unicast_key(sdata->local, sdata, idx); } if (multi) rcu_assign_pointer(sdata->default_multicast_key, key); ieee80211_debugfs_key_update_default(sdata); } void ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, int idx, bool uni, bool multi) { mutex_lock(&sdata->local->key_mtx); __ieee80211_set_default_key(sdata, idx, uni, multi); mutex_unlock(&sdata->local->key_mtx); } static void __ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, int idx) { struct ieee80211_key *key = NULL; assert_key_lock(sdata->local); if (idx >= NUM_DEFAULT_KEYS && idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) key = key_mtx_dereference(sdata->local, sdata->keys[idx]); rcu_assign_pointer(sdata->default_mgmt_key, key); ieee80211_debugfs_key_update_default(sdata); } void ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, int idx) { mutex_lock(&sdata->local->key_mtx); __ieee80211_set_default_mgmt_key(sdata, idx); mutex_unlock(&sdata->local->key_mtx); } static void ieee80211_key_replace(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, bool pairwise, struct ieee80211_key *old, struct ieee80211_key *new) { int idx; bool defunikey, defmultikey, defmgmtkey; /* caller must provide at least one old/new */ if (WARN_ON(!new && !old)) return; if (new) list_add_tail(&new->list, &sdata->key_list); WARN_ON(new && old && new->conf.keyidx != old->conf.keyidx); if (old) idx = old->conf.keyidx; else idx = new->conf.keyidx; if (sta) { if (pairwise) { rcu_assign_pointer(sta->ptk[idx], new); sta->ptk_idx = idx; } else { rcu_assign_pointer(sta->gtk[idx], new); sta->gtk_idx = idx; } } else { defunikey = old && old == key_mtx_dereference(sdata->local, sdata->default_unicast_key); defmultikey = old && old == key_mtx_dereference(sdata->local, sdata->default_multicast_key); defmgmtkey = old && old == key_mtx_dereference(sdata->local, sdata->default_mgmt_key); if (defunikey && !new) __ieee80211_set_default_key(sdata, -1, true, false); if (defmultikey && !new) __ieee80211_set_default_key(sdata, -1, false, true); if (defmgmtkey && !new) __ieee80211_set_default_mgmt_key(sdata, -1); rcu_assign_pointer(sdata->keys[idx], new); if (defunikey && new) __ieee80211_set_default_key(sdata, new->conf.keyidx, true, false); if (defmultikey && new) __ieee80211_set_default_key(sdata, new->conf.keyidx, false, true); if (defmgmtkey && new) __ieee80211_set_default_mgmt_key(sdata, new->conf.keyidx); } if (old) list_del(&old->list); } struct ieee80211_key * ieee80211_key_alloc(u32 cipher, int idx, size_t key_len, const u8 *key_data, size_t seq_len, const u8 *seq, const struct ieee80211_cipher_scheme *cs) { struct ieee80211_key *key; int i, j, err; if (WARN_ON(idx < 0 || idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)) return ERR_PTR(-EINVAL); key = kzalloc(sizeof(struct ieee80211_key) + key_len, GFP_KERNEL); if (!key) return ERR_PTR(-ENOMEM); /* * Default to software encryption; we'll later upload the * key to the hardware if possible. */ key->conf.flags = 0; key->flags = 0; key->conf.cipher = cipher; key->conf.keyidx = idx; key->conf.keylen = key_len; switch (cipher) { case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: key->conf.iv_len = IEEE80211_WEP_IV_LEN; key->conf.icv_len = IEEE80211_WEP_ICV_LEN; break; case WLAN_CIPHER_SUITE_TKIP: key->conf.iv_len = IEEE80211_TKIP_IV_LEN; key->conf.icv_len = IEEE80211_TKIP_ICV_LEN; if (seq) { for (i = 0; i < IEEE80211_NUM_TIDS; i++) { key->u.tkip.rx[i].iv32 = get_unaligned_le32(&seq[2]); key->u.tkip.rx[i].iv16 = get_unaligned_le16(seq); } } spin_lock_init(&key->u.tkip.txlock); break; case WLAN_CIPHER_SUITE_CCMP: key->conf.iv_len = IEEE80211_CCMP_HDR_LEN; key->conf.icv_len = IEEE80211_CCMP_MIC_LEN; if (seq) { for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) for (j = 0; j < IEEE80211_CCMP_PN_LEN; j++) key->u.ccmp.rx_pn[i][j] = seq[IEEE80211_CCMP_PN_LEN - j - 1]; } /* * Initialize AES key state here as an optimization so that * it does not need to be initialized for every packet. */ key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt( key_data, key_len, IEEE80211_CCMP_MIC_LEN); if (IS_ERR(key->u.ccmp.tfm)) { err = PTR_ERR(key->u.ccmp.tfm); kfree(key); return ERR_PTR(err); } break; case WLAN_CIPHER_SUITE_CCMP_256: key->conf.iv_len = IEEE80211_CCMP_256_HDR_LEN; key->conf.icv_len = IEEE80211_CCMP_256_MIC_LEN; for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++) for (j = 0; j < IEEE80211_CCMP_256_PN_LEN; j++) key->u.ccmp.rx_pn[i][j] = seq[IEEE80211_CCMP_256_PN_LEN - j - 1]; /* Initialize AES key state here as an optimization so that * it does not need to be initialized for every packet. */ key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt( key_data, key_len, IEEE80211_CCMP_256_MIC_LEN); if (IS_ERR(key->u.ccmp.tfm)) { err = PTR_ERR(key->u.ccmp.tfm); kfree(key); return ERR_PTR(err); } break; case WLAN_CIPHER_SUITE_AES_CMAC: key->conf.iv_len = 0; key->conf.icv_len = sizeof(struct ieee80211_mmie); if (seq) for (j = 0; j < IEEE80211_CMAC_PN_LEN; j++) key->u.aes_cmac.rx_pn[j] = seq[IEEE80211_CMAC_PN_LEN - j - 1]; /* * Initialize AES key state here as an optimization so that * it does not need to be initialized for every packet. */ key->u.aes_cmac.tfm = ieee80211_aes_cmac_key_setup(key_data); if (IS_ERR(key->u.aes_cmac.tfm)) { err = PTR_ERR(key->u.aes_cmac.tfm); kfree(key); return ERR_PTR(err); } break; case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: key->conf.iv_len = IEEE80211_GCMP_HDR_LEN; key->conf.icv_len = IEEE80211_GCMP_MIC_LEN; for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++) for (j = 0; j < IEEE80211_GCMP_PN_LEN; j++) key->u.gcmp.rx_pn[i][j] = seq[IEEE80211_GCMP_PN_LEN - j - 1]; /* Initialize AES key state here as an optimization so that * it does not need to be initialized for every packet. */ key->u.gcmp.tfm = ieee80211_aes_gcm_key_setup_encrypt(key_data, key_len); if (IS_ERR(key->u.gcmp.tfm)) { err = PTR_ERR(key->u.gcmp.tfm); kfree(key); return ERR_PTR(err); } break; default: if (cs) { size_t len = (seq_len > MAX_PN_LEN) ? MAX_PN_LEN : seq_len; key->conf.iv_len = cs->hdr_len; key->conf.icv_len = cs->mic_len; for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) for (j = 0; j < len; j++) key->u.gen.rx_pn[i][j] = seq[len - j - 1]; } } memcpy(key->conf.key, key_data, key_len); INIT_LIST_HEAD(&key->list); return key; } static void ieee80211_key_free_common(struct ieee80211_key *key) { switch (key->conf.cipher) { case WLAN_CIPHER_SUITE_CCMP: case WLAN_CIPHER_SUITE_CCMP_256: ieee80211_aes_key_free(key->u.ccmp.tfm); break; case WLAN_CIPHER_SUITE_AES_CMAC: ieee80211_aes_cmac_key_free(key->u.aes_cmac.tfm); break; case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: ieee80211_aes_gcm_key_free(key->u.gcmp.tfm); break; } kzfree(key); } static void __ieee80211_key_destroy(struct ieee80211_key *key, bool delay_tailroom) { if (key->local) ieee80211_key_disable_hw_accel(key); if (key->local) { struct ieee80211_sub_if_data *sdata = key->sdata; ieee80211_debugfs_key_remove(key); if (delay_tailroom) { /* see ieee80211_delayed_tailroom_dec */ sdata->crypto_tx_tailroom_pending_dec++; schedule_delayed_work(&sdata->dec_tailroom_needed_wk, HZ/2); } else { sdata->crypto_tx_tailroom_needed_cnt--; } } ieee80211_key_free_common(key); } static void ieee80211_key_destroy(struct ieee80211_key *key, bool delay_tailroom) { if (!key) return; /* * Synchronize so the TX path can no longer be using * this key before we free/remove it. */ synchronize_net(); __ieee80211_key_destroy(key, delay_tailroom); } void ieee80211_key_free_unused(struct ieee80211_key *key) { WARN_ON(key->sdata || key->local); ieee80211_key_free_common(key); } int ieee80211_key_link(struct ieee80211_key *key, struct ieee80211_sub_if_data *sdata, struct sta_info *sta) { struct ieee80211_local *local = sdata->local; struct ieee80211_key *old_key; int idx, ret; bool pairwise; pairwise = key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE; idx = key->conf.keyidx; key->local = sdata->local; key->sdata = sdata; key->sta = sta; mutex_lock(&sdata->local->key_mtx); if (sta && pairwise) old_key = key_mtx_dereference(sdata->local, sta->ptk[idx]); else if (sta) old_key = key_mtx_dereference(sdata->local, sta->gtk[idx]); else old_key = key_mtx_dereference(sdata->local, sdata->keys[idx]); increment_tailroom_need_count(sdata); ieee80211_key_replace(sdata, sta, pairwise, old_key, key); ieee80211_key_destroy(old_key, true); ieee80211_debugfs_key_add(key); if (!local->wowlan) { ret = ieee80211_key_enable_hw_accel(key); if (ret) ieee80211_key_free(key, true); } else { ret = 0; } mutex_unlock(&sdata->local->key_mtx); return ret; } void ieee80211_key_free(struct ieee80211_key *key, bool delay_tailroom) { if (!key) return; /* * Replace key with nothingness if it was ever used. */ if (key->sdata) ieee80211_key_replace(key->sdata, key->sta, key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE, key, NULL); ieee80211_key_destroy(key, delay_tailroom); } void ieee80211_enable_keys(struct ieee80211_sub_if_data *sdata) { struct ieee80211_key *key; ASSERT_RTNL(); if (WARN_ON(!ieee80211_sdata_running(sdata))) return; mutex_lock(&sdata->local->key_mtx); sdata->crypto_tx_tailroom_needed_cnt = 0; list_for_each_entry(key, &sdata->key_list, list) { increment_tailroom_need_count(sdata); ieee80211_key_enable_hw_accel(key); } mutex_unlock(&sdata->local->key_mtx); } void ieee80211_iter_keys(struct ieee80211_hw *hw, struct ieee80211_vif *vif, void (*iter)(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct ieee80211_key_conf *key, void *data), void *iter_data) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_key *key, *tmp; struct ieee80211_sub_if_data *sdata; ASSERT_RTNL(); mutex_lock(&local->key_mtx); if (vif) { sdata = vif_to_sdata(vif); list_for_each_entry_safe(key, tmp, &sdata->key_list, list) iter(hw, &sdata->vif, key->sta ? &key->sta->sta : NULL, &key->conf, iter_data); } else { list_for_each_entry(sdata, &local->interfaces, list) list_for_each_entry_safe(key, tmp, &sdata->key_list, list) iter(hw, &sdata->vif, key->sta ? &key->sta->sta : NULL, &key->conf, iter_data); } mutex_unlock(&local->key_mtx); } EXPORT_SYMBOL(ieee80211_iter_keys); static void ieee80211_free_keys_iface(struct ieee80211_sub_if_data *sdata, struct list_head *keys) { struct ieee80211_key *key, *tmp; sdata->crypto_tx_tailroom_needed_cnt -= sdata->crypto_tx_tailroom_pending_dec; sdata->crypto_tx_tailroom_pending_dec = 0; ieee80211_debugfs_key_remove_mgmt_default(sdata); list_for_each_entry_safe(key, tmp, &sdata->key_list, list) { ieee80211_key_replace(key->sdata, key->sta, key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE, key, NULL); list_add_tail(&key->list, keys); } ieee80211_debugfs_key_update_default(sdata); } void ieee80211_free_keys(struct ieee80211_sub_if_data *sdata, bool force_synchronize) { struct ieee80211_local *local = sdata->local; struct ieee80211_sub_if_data *vlan; struct ieee80211_key *key, *tmp; LIST_HEAD(keys); cancel_delayed_work_sync(&sdata->dec_tailroom_needed_wk); mutex_lock(&local->key_mtx); ieee80211_free_keys_iface(sdata, &keys); if (sdata->vif.type == NL80211_IFTYPE_AP) { list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list) ieee80211_free_keys_iface(vlan, &keys); } if (!list_empty(&keys) || force_synchronize) synchronize_net(); list_for_each_entry_safe(key, tmp, &keys, list) __ieee80211_key_destroy(key, false); WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt || sdata->crypto_tx_tailroom_pending_dec); if (sdata->vif.type == NL80211_IFTYPE_AP) { list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list) WARN_ON_ONCE(vlan->crypto_tx_tailroom_needed_cnt || vlan->crypto_tx_tailroom_pending_dec); } mutex_unlock(&local->key_mtx); } void ieee80211_free_sta_keys(struct ieee80211_local *local, struct sta_info *sta) { struct ieee80211_key *key; int i; mutex_lock(&local->key_mtx); for (i = 0; i < ARRAY_SIZE(sta->gtk); i++) { key = key_mtx_dereference(local, sta->gtk[i]); if (!key) continue; ieee80211_key_replace(key->sdata, key->sta, key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE, key, NULL); __ieee80211_key_destroy(key, true); } for (i = 0; i < NUM_DEFAULT_KEYS; i++) { key = key_mtx_dereference(local, sta->ptk[i]); if (!key) continue; ieee80211_key_replace(key->sdata, key->sta, key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE, key, NULL); __ieee80211_key_destroy(key, true); } mutex_unlock(&local->key_mtx); } void ieee80211_delayed_tailroom_dec(struct work_struct *wk) { struct ieee80211_sub_if_data *sdata; sdata = container_of(wk, struct ieee80211_sub_if_data, dec_tailroom_needed_wk.work); /* * The reason for the delayed tailroom needed decrementing is to * make roaming faster: during roaming, all keys are first deleted * and then new keys are installed. The first new key causes the * crypto_tx_tailroom_needed_cnt to go from 0 to 1, which invokes * the cost of synchronize_net() (which can be slow). Avoid this * by deferring the crypto_tx_tailroom_needed_cnt decrementing on * key removal for a while, so if we roam the value is larger than * zero and no 0->1 transition happens. * * The cost is that if the AP switching was from an AP with keys * to one without, we still allocate tailroom while it would no * longer be needed. However, in the typical (fast) roaming case * within an ESS this usually won't happen. */ mutex_lock(&sdata->local->key_mtx); sdata->crypto_tx_tailroom_needed_cnt -= sdata->crypto_tx_tailroom_pending_dec; sdata->crypto_tx_tailroom_pending_dec = 0; mutex_unlock(&sdata->local->key_mtx); } void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid, const u8 *replay_ctr, gfp_t gfp) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); trace_api_gtk_rekey_notify(sdata, bssid, replay_ctr); cfg80211_gtk_rekey_notify(sdata->dev, bssid, replay_ctr, gfp); } EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_notify); void ieee80211_get_key_tx_seq(struct ieee80211_key_conf *keyconf, struct ieee80211_key_seq *seq) { struct ieee80211_key *key; u64 pn64; if (WARN_ON(!(keyconf->flags & IEEE80211_KEY_FLAG_GENERATE_IV))) return; key = container_of(keyconf, struct ieee80211_key, conf); switch (key->conf.cipher) { case WLAN_CIPHER_SUITE_TKIP: seq->tkip.iv32 = key->u.tkip.tx.iv32; seq->tkip.iv16 = key->u.tkip.tx.iv16; break; case WLAN_CIPHER_SUITE_CCMP: case WLAN_CIPHER_SUITE_CCMP_256: pn64 = atomic64_read(&key->u.ccmp.tx_pn); seq->ccmp.pn[5] = pn64; seq->ccmp.pn[4] = pn64 >> 8; seq->ccmp.pn[3] = pn64 >> 16; seq->ccmp.pn[2] = pn64 >> 24; seq->ccmp.pn[1] = pn64 >> 32; seq->ccmp.pn[0] = pn64 >> 40; break; case WLAN_CIPHER_SUITE_AES_CMAC: pn64 = atomic64_read(&key->u.aes_cmac.tx_pn); seq->ccmp.pn[5] = pn64; seq->ccmp.pn[4] = pn64 >> 8; seq->ccmp.pn[3] = pn64 >> 16; seq->ccmp.pn[2] = pn64 >> 24; seq->ccmp.pn[1] = pn64 >> 32; seq->ccmp.pn[0] = pn64 >> 40; break; case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: pn64 = atomic64_read(&key->u.gcmp.tx_pn); seq->gcmp.pn[5] = pn64; seq->gcmp.pn[4] = pn64 >> 8; seq->gcmp.pn[3] = pn64 >> 16; seq->gcmp.pn[2] = pn64 >> 24; seq->gcmp.pn[1] = pn64 >> 32; seq->gcmp.pn[0] = pn64 >> 40; break; default: WARN_ON(1); } } EXPORT_SYMBOL(ieee80211_get_key_tx_seq); void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf, int tid, struct ieee80211_key_seq *seq) { struct ieee80211_key *key; const u8 *pn; key = container_of(keyconf, struct ieee80211_key, conf); switch (key->conf.cipher) { case WLAN_CIPHER_SUITE_TKIP: if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS)) return; seq->tkip.iv32 = key->u.tkip.rx[tid].iv32; seq->tkip.iv16 = key->u.tkip.rx[tid].iv16; break; case WLAN_CIPHER_SUITE_CCMP: case WLAN_CIPHER_SUITE_CCMP_256: if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS)) return; if (tid < 0) pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS]; else pn = key->u.ccmp.rx_pn[tid]; memcpy(seq->ccmp.pn, pn, IEEE80211_CCMP_PN_LEN); break; case WLAN_CIPHER_SUITE_AES_CMAC: if (WARN_ON(tid != 0)) return; pn = key->u.aes_cmac.rx_pn; memcpy(seq->aes_cmac.pn, pn, IEEE80211_CMAC_PN_LEN); break; case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS)) return; if (tid < 0) pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS]; else pn = key->u.gcmp.rx_pn[tid]; memcpy(seq->gcmp.pn, pn, IEEE80211_GCMP_PN_LEN); break; } } EXPORT_SYMBOL(ieee80211_get_key_rx_seq); void ieee80211_set_key_tx_seq(struct ieee80211_key_conf *keyconf, struct ieee80211_key_seq *seq) { struct ieee80211_key *key; u64 pn64; key = container_of(keyconf, struct ieee80211_key, conf); switch (key->conf.cipher) { case WLAN_CIPHER_SUITE_TKIP: key->u.tkip.tx.iv32 = seq->tkip.iv32; key->u.tkip.tx.iv16 = seq->tkip.iv16; break; case WLAN_CIPHER_SUITE_CCMP: case WLAN_CIPHER_SUITE_CCMP_256: pn64 = (u64)seq->ccmp.pn[5] | ((u64)seq->ccmp.pn[4] << 8) | ((u64)seq->ccmp.pn[3] << 16) | ((u64)seq->ccmp.pn[2] << 24) | ((u64)seq->ccmp.pn[1] << 32) | ((u64)seq->ccmp.pn[0] << 40); atomic64_set(&key->u.ccmp.tx_pn, pn64); break; case WLAN_CIPHER_SUITE_AES_CMAC: pn64 = (u64)seq->aes_cmac.pn[5] | ((u64)seq->aes_cmac.pn[4] << 8) | ((u64)seq->aes_cmac.pn[3] << 16) | ((u64)seq->aes_cmac.pn[2] << 24) | ((u64)seq->aes_cmac.pn[1] << 32) | ((u64)seq->aes_cmac.pn[0] << 40); atomic64_set(&key->u.aes_cmac.tx_pn, pn64); break; case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: pn64 = (u64)seq->gcmp.pn[5] | ((u64)seq->gcmp.pn[4] << 8) | ((u64)seq->gcmp.pn[3] << 16) | ((u64)seq->gcmp.pn[2] << 24) | ((u64)seq->gcmp.pn[1] << 32) | ((u64)seq->gcmp.pn[0] << 40); atomic64_set(&key->u.gcmp.tx_pn, pn64); break; default: WARN_ON(1); break; } } EXPORT_SYMBOL_GPL(ieee80211_set_key_tx_seq); void ieee80211_set_key_rx_seq(struct ieee80211_key_conf *keyconf, int tid, struct ieee80211_key_seq *seq) { struct ieee80211_key *key; u8 *pn; key = container_of(keyconf, struct ieee80211_key, conf); switch (key->conf.cipher) { case WLAN_CIPHER_SUITE_TKIP: if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS)) return; key->u.tkip.rx[tid].iv32 = seq->tkip.iv32; key->u.tkip.rx[tid].iv16 = seq->tkip.iv16; break; case WLAN_CIPHER_SUITE_CCMP: case WLAN_CIPHER_SUITE_CCMP_256: if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS)) return; if (tid < 0) pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS]; else pn = key->u.ccmp.rx_pn[tid]; memcpy(pn, seq->ccmp.pn, IEEE80211_CCMP_PN_LEN); break; case WLAN_CIPHER_SUITE_AES_CMAC: if (WARN_ON(tid != 0)) return; pn = key->u.aes_cmac.rx_pn; memcpy(pn, seq->aes_cmac.pn, IEEE80211_CMAC_PN_LEN); break; case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS)) return; if (tid < 0) pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS]; else pn = key->u.gcmp.rx_pn[tid]; memcpy(pn, seq->gcmp.pn, IEEE80211_GCMP_PN_LEN); break; default: WARN_ON(1); break; } } EXPORT_SYMBOL_GPL(ieee80211_set_key_rx_seq); void ieee80211_remove_key(struct ieee80211_key_conf *keyconf) { struct ieee80211_key *key; key = container_of(keyconf, struct ieee80211_key, conf); assert_key_lock(key->local); /* * if key was uploaded, we assume the driver will/has remove(d) * it, so adjust bookkeeping accordingly */ if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) { key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE; if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) || (key->conf.flags & IEEE80211_KEY_FLAG_RESERVE_TAILROOM))) increment_tailroom_need_count(key->sdata); } ieee80211_key_free(key, false); } EXPORT_SYMBOL_GPL(ieee80211_remove_key); struct ieee80211_key_conf * ieee80211_gtk_rekey_add(struct ieee80211_vif *vif, struct ieee80211_key_conf *keyconf) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct ieee80211_local *local = sdata->local; struct ieee80211_key *key; int err; if (WARN_ON(!local->wowlan)) return ERR_PTR(-EINVAL); if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) return ERR_PTR(-EINVAL); key = ieee80211_key_alloc(keyconf->cipher, keyconf->keyidx, keyconf->keylen, keyconf->key, 0, NULL, NULL); if (IS_ERR(key)) return ERR_CAST(key); if (sdata->u.mgd.mfp != IEEE80211_MFP_DISABLED) key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT; err = ieee80211_key_link(key, sdata, NULL); if (err) return ERR_PTR(err); return &key->conf; } EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_add);