/* * Copyright (C) 2013 Huawei Ltd. * Author: Jiang Liu * * Copyright (C) 2014-2016 Zi Shen Lim * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define AARCH64_INSN_SF_BIT BIT(31) #define AARCH64_INSN_N_BIT BIT(22) static int aarch64_insn_encoding_class[] = { AARCH64_INSN_CLS_UNKNOWN, AARCH64_INSN_CLS_UNKNOWN, AARCH64_INSN_CLS_UNKNOWN, AARCH64_INSN_CLS_UNKNOWN, AARCH64_INSN_CLS_LDST, AARCH64_INSN_CLS_DP_REG, AARCH64_INSN_CLS_LDST, AARCH64_INSN_CLS_DP_FPSIMD, AARCH64_INSN_CLS_DP_IMM, AARCH64_INSN_CLS_DP_IMM, AARCH64_INSN_CLS_BR_SYS, AARCH64_INSN_CLS_BR_SYS, AARCH64_INSN_CLS_LDST, AARCH64_INSN_CLS_DP_REG, AARCH64_INSN_CLS_LDST, AARCH64_INSN_CLS_DP_FPSIMD, }; enum aarch64_insn_encoding_class __kprobes aarch64_get_insn_class(u32 insn) { return aarch64_insn_encoding_class[(insn >> 25) & 0xf]; } /* NOP is an alias of HINT */ bool __kprobes aarch64_insn_is_nop(u32 insn) { if (!aarch64_insn_is_hint(insn)) return false; switch (insn & 0xFE0) { case AARCH64_INSN_HINT_YIELD: case AARCH64_INSN_HINT_WFE: case AARCH64_INSN_HINT_WFI: case AARCH64_INSN_HINT_SEV: case AARCH64_INSN_HINT_SEVL: return false; default: return true; } } bool aarch64_insn_is_branch_imm(u32 insn) { return (aarch64_insn_is_b(insn) || aarch64_insn_is_bl(insn) || aarch64_insn_is_tbz(insn) || aarch64_insn_is_tbnz(insn) || aarch64_insn_is_cbz(insn) || aarch64_insn_is_cbnz(insn) || aarch64_insn_is_bcond(insn)); } static DEFINE_RAW_SPINLOCK(patch_lock); static void __kprobes *patch_map(void *addr, int fixmap) { unsigned long uintaddr = (uintptr_t) addr; bool module = !core_kernel_text(uintaddr); struct page *page; if (module && IS_ENABLED(CONFIG_DEBUG_SET_MODULE_RONX)) page = vmalloc_to_page(addr); else if (!module && IS_ENABLED(CONFIG_DEBUG_RODATA)) page = pfn_to_page(PHYS_PFN(__pa(addr))); else return addr; BUG_ON(!page); return (void *)set_fixmap_offset(fixmap, page_to_phys(page) + (uintaddr & ~PAGE_MASK)); } static void __kprobes patch_unmap(int fixmap) { clear_fixmap(fixmap); } /* * In ARMv8-A, A64 instructions have a fixed length of 32 bits and are always * little-endian. */ int __kprobes aarch64_insn_read(void *addr, u32 *insnp) { int ret; u32 val; ret = probe_kernel_read(&val, addr, AARCH64_INSN_SIZE); if (!ret) *insnp = le32_to_cpu(val); return ret; } static int __kprobes __aarch64_insn_write(void *addr, u32 insn) { void *waddr = addr; unsigned long flags = 0; int ret; raw_spin_lock_irqsave(&patch_lock, flags); waddr = patch_map(addr, FIX_TEXT_POKE0); ret = probe_kernel_write(waddr, &insn, AARCH64_INSN_SIZE); patch_unmap(FIX_TEXT_POKE0); raw_spin_unlock_irqrestore(&patch_lock, flags); return ret; } int __kprobes aarch64_insn_write(void *addr, u32 insn) { insn = cpu_to_le32(insn); return __aarch64_insn_write(addr, insn); } static bool __kprobes __aarch64_insn_hotpatch_safe(u32 insn) { if (aarch64_get_insn_class(insn) != AARCH64_INSN_CLS_BR_SYS) return false; return aarch64_insn_is_b(insn) || aarch64_insn_is_bl(insn) || aarch64_insn_is_svc(insn) || aarch64_insn_is_hvc(insn) || aarch64_insn_is_smc(insn) || aarch64_insn_is_brk(insn) || aarch64_insn_is_nop(insn); } bool __kprobes aarch64_insn_uses_literal(u32 insn) { /* ldr/ldrsw (literal), prfm */ return aarch64_insn_is_ldr_lit(insn) || aarch64_insn_is_ldrsw_lit(insn) || aarch64_insn_is_adr_adrp(insn) || aarch64_insn_is_prfm_lit(insn); } bool __kprobes aarch64_insn_is_branch(u32 insn) { /* b, bl, cb*, tb*, b.cond, br, blr */ return aarch64_insn_is_b(insn) || aarch64_insn_is_bl(insn) || aarch64_insn_is_cbz(insn) || aarch64_insn_is_cbnz(insn) || aarch64_insn_is_tbz(insn) || aarch64_insn_is_tbnz(insn) || aarch64_insn_is_ret(insn) || aarch64_insn_is_br(insn) || aarch64_insn_is_blr(insn) || aarch64_insn_is_bcond(insn); } /* * ARM Architecture Reference Manual for ARMv8 Profile-A, Issue A.a * Section B2.6.5 "Concurrent modification and execution of instructions": * Concurrent modification and execution of instructions can lead to the * resulting instruction performing any behavior that can be achieved by * executing any sequence of instructions that can be executed from the * same Exception level, except where the instruction before modification * and the instruction after modification is a B, BL, NOP, BKPT, SVC, HVC, * or SMC instruction. */ bool __kprobes aarch64_insn_hotpatch_safe(u32 old_insn, u32 new_insn) { return __aarch64_insn_hotpatch_safe(old_insn) && __aarch64_insn_hotpatch_safe(new_insn); } int __kprobes aarch64_insn_patch_text_nosync(void *addr, u32 insn) { u32 *tp = addr; int ret; /* A64 instructions must be word aligned */ if ((uintptr_t)tp & 0x3) return -EINVAL; ret = aarch64_insn_write(tp, insn); if (ret == 0) flush_icache_range((uintptr_t)tp, (uintptr_t)tp + AARCH64_INSN_SIZE); return ret; } struct aarch64_insn_patch { void **text_addrs; u32 *new_insns; int insn_cnt; atomic_t cpu_count; }; static int __kprobes aarch64_insn_patch_text_cb(void *arg) { int i, ret = 0; struct aarch64_insn_patch *pp = arg; /* The first CPU becomes master */ if (atomic_inc_return(&pp->cpu_count) == 1) { for (i = 0; ret == 0 && i < pp->insn_cnt; i++) ret = aarch64_insn_patch_text_nosync(pp->text_addrs[i], pp->new_insns[i]); /* * aarch64_insn_patch_text_nosync() calls flush_icache_range(), * which ends with "dsb; isb" pair guaranteeing global * visibility. */ /* Notify other processors with an additional increment. */ atomic_inc(&pp->cpu_count); } else { while (atomic_read(&pp->cpu_count) <= num_online_cpus()) cpu_relax(); isb(); } return ret; } int __kprobes aarch64_insn_patch_text_sync(void *addrs[], u32 insns[], int cnt) { struct aarch64_insn_patch patch = { .text_addrs = addrs, .new_insns = insns, .insn_cnt = cnt, .cpu_count = ATOMIC_INIT(0), }; if (cnt <= 0) return -EINVAL; return stop_machine(aarch64_insn_patch_text_cb, &patch, cpu_online_mask); } int __kprobes aarch64_insn_patch_text(void *addrs[], u32 insns[], int cnt) { int ret; u32 insn; /* Unsafe to patch multiple instructions without synchronizaiton */ if (cnt == 1) { ret = aarch64_insn_read(addrs[0], &insn); if (ret) return ret; if (aarch64_insn_hotpatch_safe(insn, insns[0])) { /* * ARMv8 architecture doesn't guarantee all CPUs see * the new instruction after returning from function * aarch64_insn_patch_text_nosync(). So send IPIs to * all other CPUs to achieve instruction * synchronization. */ ret = aarch64_insn_patch_text_nosync(addrs[0], insns[0]); kick_all_cpus_sync(); return ret; } } return aarch64_insn_patch_text_sync(addrs, insns, cnt); } static int __kprobes aarch64_get_imm_shift_mask(enum aarch64_insn_imm_type type, u32 *maskp, int *shiftp) { u32 mask; int shift; switch (type) { case AARCH64_INSN_IMM_26: mask = BIT(26) - 1; shift = 0; break; case AARCH64_INSN_IMM_19: mask = BIT(19) - 1; shift = 5; break; case AARCH64_INSN_IMM_16: mask = BIT(16) - 1; shift = 5; break; case AARCH64_INSN_IMM_14: mask = BIT(14) - 1; shift = 5; break; case AARCH64_INSN_IMM_12: mask = BIT(12) - 1; shift = 10; break; case AARCH64_INSN_IMM_9: mask = BIT(9) - 1; shift = 12; break; case AARCH64_INSN_IMM_7: mask = BIT(7) - 1; shift = 15; break; case AARCH64_INSN_IMM_6: case AARCH64_INSN_IMM_S: mask = BIT(6) - 1; shift = 10; break; case AARCH64_INSN_IMM_R: mask = BIT(6) - 1; shift = 16; break; default: return -EINVAL; } *maskp = mask; *shiftp = shift; return 0; } #define ADR_IMM_HILOSPLIT 2 #define ADR_IMM_SIZE SZ_2M #define ADR_IMM_LOMASK ((1 << ADR_IMM_HILOSPLIT) - 1) #define ADR_IMM_HIMASK ((ADR_IMM_SIZE >> ADR_IMM_HILOSPLIT) - 1) #define ADR_IMM_LOSHIFT 29 #define ADR_IMM_HISHIFT 5 u64 aarch64_insn_decode_immediate(enum aarch64_insn_imm_type type, u32 insn) { u32 immlo, immhi, mask; int shift; switch (type) { case AARCH64_INSN_IMM_ADR: shift = 0; immlo = (insn >> ADR_IMM_LOSHIFT) & ADR_IMM_LOMASK; immhi = (insn >> ADR_IMM_HISHIFT) & ADR_IMM_HIMASK; insn = (immhi << ADR_IMM_HILOSPLIT) | immlo; mask = ADR_IMM_SIZE - 1; break; default: if (aarch64_get_imm_shift_mask(type, &mask, &shift) < 0) { pr_err("aarch64_insn_decode_immediate: unknown immediate encoding %d\n", type); return 0; } } return (insn >> shift) & mask; } u32 __kprobes aarch64_insn_encode_immediate(enum aarch64_insn_imm_type type, u32 insn, u64 imm) { u32 immlo, immhi, mask; int shift; if (insn == AARCH64_BREAK_FAULT) return AARCH64_BREAK_FAULT; switch (type) { case AARCH64_INSN_IMM_ADR: shift = 0; immlo = (imm & ADR_IMM_LOMASK) << ADR_IMM_LOSHIFT; imm >>= ADR_IMM_HILOSPLIT; immhi = (imm & ADR_IMM_HIMASK) << ADR_IMM_HISHIFT; imm = immlo | immhi; mask = ((ADR_IMM_LOMASK << ADR_IMM_LOSHIFT) | (ADR_IMM_HIMASK << ADR_IMM_HISHIFT)); break; default: if (aarch64_get_imm_shift_mask(type, &mask, &shift) < 0) { pr_err("aarch64_insn_encode_immediate: unknown immediate encoding %d\n", type); return AARCH64_BREAK_FAULT; } } /* Update the immediate field. */ insn &= ~(mask << shift); insn |= (imm & mask) << shift; return insn; } static u32 aarch64_insn_encode_register(enum aarch64_insn_register_type type, u32 insn, enum aarch64_insn_register reg) { int shift; if (insn == AARCH64_BREAK_FAULT) return AARCH64_BREAK_FAULT; if (reg < AARCH64_INSN_REG_0 || reg > AARCH64_INSN_REG_SP) { pr_err("%s: unknown register encoding %d\n", __func__, reg); return AARCH64_BREAK_FAULT; } switch (type) { case AARCH64_INSN_REGTYPE_RT: case AARCH64_INSN_REGTYPE_RD: shift = 0; break; case AARCH64_INSN_REGTYPE_RN: shift = 5; break; case AARCH64_INSN_REGTYPE_RT2: case AARCH64_INSN_REGTYPE_RA: shift = 10; break; case AARCH64_INSN_REGTYPE_RM: shift = 16; break; default: pr_err("%s: unknown register type encoding %d\n", __func__, type); return AARCH64_BREAK_FAULT; } insn &= ~(GENMASK(4, 0) << shift); insn |= reg << shift; return insn; } static u32 aarch64_insn_encode_ldst_size(enum aarch64_insn_size_type type, u32 insn) { u32 size; switch (type) { case AARCH64_INSN_SIZE_8: size = 0; break; case AARCH64_INSN_SIZE_16: size = 1; break; case AARCH64_INSN_SIZE_32: size = 2; break; case AARCH64_INSN_SIZE_64: size = 3; break; default: pr_err("%s: unknown size encoding %d\n", __func__, type); return AARCH64_BREAK_FAULT; } insn &= ~GENMASK(31, 30); insn |= size << 30; return insn; } static inline long branch_imm_common(unsigned long pc, unsigned long addr, long range) { long offset; if ((pc & 0x3) || (addr & 0x3)) { pr_err("%s: A64 instructions must be word aligned\n", __func__); return range; } offset = ((long)addr - (long)pc); if (offset < -range || offset >= range) { pr_err("%s: offset out of range\n", __func__); return range; } return offset; } u32 __kprobes aarch64_insn_gen_branch_imm(unsigned long pc, unsigned long addr, enum aarch64_insn_branch_type type) { u32 insn; long offset; /* * B/BL support [-128M, 128M) offset * ARM64 virtual address arrangement guarantees all kernel and module * texts are within +/-128M. */ offset = branch_imm_common(pc, addr, SZ_128M); if (offset >= SZ_128M) return AARCH64_BREAK_FAULT; switch (type) { case AARCH64_INSN_BRANCH_LINK: insn = aarch64_insn_get_bl_value(); break; case AARCH64_INSN_BRANCH_NOLINK: insn = aarch64_insn_get_b_value(); break; default: pr_err("%s: unknown branch encoding %d\n", __func__, type); return AARCH64_BREAK_FAULT; } return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_26, insn, offset >> 2); } u32 aarch64_insn_gen_comp_branch_imm(unsigned long pc, unsigned long addr, enum aarch64_insn_register reg, enum aarch64_insn_variant variant, enum aarch64_insn_branch_type type) { u32 insn; long offset; offset = branch_imm_common(pc, addr, SZ_1M); if (offset >= SZ_1M) return AARCH64_BREAK_FAULT; switch (type) { case AARCH64_INSN_BRANCH_COMP_ZERO: insn = aarch64_insn_get_cbz_value(); break; case AARCH64_INSN_BRANCH_COMP_NONZERO: insn = aarch64_insn_get_cbnz_value(); break; default: pr_err("%s: unknown branch encoding %d\n", __func__, type); return AARCH64_BREAK_FAULT; } switch (variant) { case AARCH64_INSN_VARIANT_32BIT: break; case AARCH64_INSN_VARIANT_64BIT: insn |= AARCH64_INSN_SF_BIT; break; default: pr_err("%s: unknown variant encoding %d\n", __func__, variant); return AARCH64_BREAK_FAULT; } insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RT, insn, reg); return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_19, insn, offset >> 2); } u32 aarch64_insn_gen_cond_branch_imm(unsigned long pc, unsigned long addr, enum aarch64_insn_condition cond) { u32 insn; long offset; offset = branch_imm_common(pc, addr, SZ_1M); insn = aarch64_insn_get_bcond_value(); if (cond < AARCH64_INSN_COND_EQ || cond > AARCH64_INSN_COND_AL) { pr_err("%s: unknown condition encoding %d\n", __func__, cond); return AARCH64_BREAK_FAULT; } insn |= cond; return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_19, insn, offset >> 2); } u32 __kprobes aarch64_insn_gen_hint(enum aarch64_insn_hint_op op) { return aarch64_insn_get_hint_value() | op; } u32 __kprobes aarch64_insn_gen_nop(void) { return aarch64_insn_gen_hint(AARCH64_INSN_HINT_NOP); } u32 aarch64_insn_gen_branch_reg(enum aarch64_insn_register reg, enum aarch64_insn_branch_type type) { u32 insn; switch (type) { case AARCH64_INSN_BRANCH_NOLINK: insn = aarch64_insn_get_br_value(); break; case AARCH64_INSN_BRANCH_LINK: insn = aarch64_insn_get_blr_value(); break; case AARCH64_INSN_BRANCH_RETURN: insn = aarch64_insn_get_ret_value(); break; default: pr_err("%s: unknown branch encoding %d\n", __func__, type); return AARCH64_BREAK_FAULT; } return aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn, reg); } u32 aarch64_insn_gen_load_store_reg(enum aarch64_insn_register reg, enum aarch64_insn_register base, enum aarch64_insn_register offset, enum aarch64_insn_size_type size, enum aarch64_insn_ldst_type type) { u32 insn; switch (type) { case AARCH64_INSN_LDST_LOAD_REG_OFFSET: insn = aarch64_insn_get_ldr_reg_value(); break; case AARCH64_INSN_LDST_STORE_REG_OFFSET: insn = aarch64_insn_get_str_reg_value(); break; default: pr_err("%s: unknown load/store encoding %d\n", __func__, type); return AARCH64_BREAK_FAULT; } insn = aarch64_insn_encode_ldst_size(size, insn); insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RT, insn, reg); insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn, base); return aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RM, insn, offset); } u32 aarch64_insn_gen_load_store_pair(enum aarch64_insn_register reg1, enum aarch64_insn_register reg2, enum aarch64_insn_register base, int offset, enum aarch64_insn_variant variant, enum aarch64_insn_ldst_type type) { u32 insn; int shift; switch (type) { case AARCH64_INSN_LDST_LOAD_PAIR_PRE_INDEX: insn = aarch64_insn_get_ldp_pre_value(); break; case AARCH64_INSN_LDST_STORE_PAIR_PRE_INDEX: insn = aarch64_insn_get_stp_pre_value(); break; case AARCH64_INSN_LDST_LOAD_PAIR_POST_INDEX: insn = aarch64_insn_get_ldp_post_value(); break; case AARCH64_INSN_LDST_STORE_PAIR_POST_INDEX: insn = aarch64_insn_get_stp_post_value(); break; default: pr_err("%s: unknown load/store encoding %d\n", __func__, type); return AARCH64_BREAK_FAULT; } switch (variant) { case AARCH64_INSN_VARIANT_32BIT: if ((offset & 0x3) || (offset < -256) || (offset > 252)) { pr_err("%s: offset must be multiples of 4 in the range of [-256, 252] %d\n", __func__, offset); return AARCH64_BREAK_FAULT; } shift = 2; break; case AARCH64_INSN_VARIANT_64BIT: if ((offset & 0x7) || (offset < -512) || (offset > 504)) { pr_err("%s: offset must be multiples of 8 in the range of [-512, 504] %d\n", __func__, offset); return AARCH64_BREAK_FAULT; } shift = 3; insn |= AARCH64_INSN_SF_BIT; break; default: pr_err("%s: unknown variant encoding %d\n", __func__, variant); return AARCH64_BREAK_FAULT; } insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RT, insn, reg1); insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RT2, insn, reg2); insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn, base); return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_7, insn, offset >> shift); } u32 aarch64_insn_gen_add_sub_imm(enum aarch64_insn_register dst, enum aarch64_insn_register src, int imm, enum aarch64_insn_variant variant, enum aarch64_insn_adsb_type type) { u32 insn; switch (type) { case AARCH64_INSN_ADSB_ADD: insn = aarch64_insn_get_add_imm_value(); break; case AARCH64_INSN_ADSB_SUB: insn = aarch64_insn_get_sub_imm_value(); break; case AARCH64_INSN_ADSB_ADD_SETFLAGS: insn = aarch64_insn_get_adds_imm_value(); break; case AARCH64_INSN_ADSB_SUB_SETFLAGS: insn = aarch64_insn_get_subs_imm_value(); break; default: pr_err("%s: unknown add/sub encoding %d\n", __func__, type); return AARCH64_BREAK_FAULT; } switch (variant) { case AARCH64_INSN_VARIANT_32BIT: break; case AARCH64_INSN_VARIANT_64BIT: insn |= AARCH64_INSN_SF_BIT; break; default: pr_err("%s: unknown variant encoding %d\n", __func__, variant); return AARCH64_BREAK_FAULT; } if (imm & ~(SZ_4K - 1)) { pr_err("%s: invalid immediate encoding %d\n", __func__, imm); return AARCH64_BREAK_FAULT; } insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RD, insn, dst); insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn, src); return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_12, insn, imm); } u32 aarch64_insn_gen_bitfield(enum aarch64_insn_register dst, enum aarch64_insn_register src, int immr, int imms, enum aarch64_insn_variant variant, enum aarch64_insn_bitfield_type type) { u32 insn; u32 mask; switch (type) { case AARCH64_INSN_BITFIELD_MOVE: insn = aarch64_insn_get_bfm_value(); break; case AARCH64_INSN_BITFIELD_MOVE_UNSIGNED: insn = aarch64_insn_get_ubfm_value(); break; case AARCH64_INSN_BITFIELD_MOVE_SIGNED: insn = aarch64_insn_get_sbfm_value(); break; default: pr_err("%s: unknown bitfield encoding %d\n", __func__, type); return AARCH64_BREAK_FAULT; } switch (variant) { case AARCH64_INSN_VARIANT_32BIT: mask = GENMASK(4, 0); break; case AARCH64_INSN_VARIANT_64BIT: insn |= AARCH64_INSN_SF_BIT | AARCH64_INSN_N_BIT; mask = GENMASK(5, 0); break; default: pr_err("%s: unknown variant encoding %d\n", __func__, variant); return AARCH64_BREAK_FAULT; } if (immr & ~mask) { pr_err("%s: invalid immr encoding %d\n", __func__, immr); return AARCH64_BREAK_FAULT; } if (imms & ~mask) { pr_err("%s: invalid imms encoding %d\n", __func__, imms); return AARCH64_BREAK_FAULT; } insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RD, insn, dst); insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn, src); insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_R, insn, immr); return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_S, insn, imms); } u32 aarch64_insn_gen_movewide(enum aarch64_insn_register dst, int imm, int shift, enum aarch64_insn_variant variant, enum aarch64_insn_movewide_type type) { u32 insn; switch (type) { case AARCH64_INSN_MOVEWIDE_ZERO: insn = aarch64_insn_get_movz_value(); break; case AARCH64_INSN_MOVEWIDE_KEEP: insn = aarch64_insn_get_movk_value(); break; case AARCH64_INSN_MOVEWIDE_INVERSE: insn = aarch64_insn_get_movn_value(); break; default: pr_err("%s: unknown movewide encoding %d\n", __func__, type); return AARCH64_BREAK_FAULT; } if (imm & ~(SZ_64K - 1)) { pr_err("%s: invalid immediate encoding %d\n", __func__, imm); return AARCH64_BREAK_FAULT; } switch (variant) { case AARCH64_INSN_VARIANT_32BIT: if (shift != 0 && shift != 16) { pr_err("%s: invalid shift encoding %d\n", __func__, shift); return AARCH64_BREAK_FAULT; } break; case AARCH64_INSN_VARIANT_64BIT: insn |= AARCH64_INSN_SF_BIT; if (shift != 0 && shift != 16 && shift != 32 && shift != 48) { pr_err("%s: invalid shift encoding %d\n", __func__, shift); return AARCH64_BREAK_FAULT; } break; default: pr_err("%s: unknown variant encoding %d\n", __func__, variant); return AARCH64_BREAK_FAULT; } insn |= (shift >> 4) << 21; insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RD, insn, dst); return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_16, insn, imm); } u32 aarch64_insn_gen_add_sub_shifted_reg(enum aarch64_insn_register dst, enum aarch64_insn_register src, enum aarch64_insn_register reg, int shift, enum aarch64_insn_variant variant, enum aarch64_insn_adsb_type type) { u32 insn; switch (type) { case AARCH64_INSN_ADSB_ADD: insn = aarch64_insn_get_add_value(); break; case AARCH64_INSN_ADSB_SUB: insn = aarch64_insn_get_sub_value(); break; case AARCH64_INSN_ADSB_ADD_SETFLAGS: insn = aarch64_insn_get_adds_value(); break; case AARCH64_INSN_ADSB_SUB_SETFLAGS: insn = aarch64_insn_get_subs_value(); break; default: pr_err("%s: unknown add/sub encoding %d\n", __func__, type); return AARCH64_BREAK_FAULT; } switch (variant) { case AARCH64_INSN_VARIANT_32BIT: if (shift & ~(SZ_32 - 1)) { pr_err("%s: invalid shift encoding %d\n", __func__, shift); return AARCH64_BREAK_FAULT; } break; case AARCH64_INSN_VARIANT_64BIT: insn |= AARCH64_INSN_SF_BIT; if (shift & ~(SZ_64 - 1)) { pr_err("%s: invalid shift encoding %d\n", __func__, shift); return AARCH64_BREAK_FAULT; } break; default: pr_err("%s: unknown variant encoding %d\n", __func__, variant); return AARCH64_BREAK_FAULT; } insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RD, insn, dst); insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn, src); insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RM, insn, reg); return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_6, insn, shift); } u32 aarch64_insn_gen_data1(enum aarch64_insn_register dst, enum aarch64_insn_register src, enum aarch64_insn_variant variant, enum aarch64_insn_data1_type type) { u32 insn; switch (type) { case AARCH64_INSN_DATA1_REVERSE_16: insn = aarch64_insn_get_rev16_value(); break; case AARCH64_INSN_DATA1_REVERSE_32: insn = aarch64_insn_get_rev32_value(); break; case AARCH64_INSN_DATA1_REVERSE_64: if (variant != AARCH64_INSN_VARIANT_64BIT) { pr_err("%s: invalid variant for reverse64 %d\n", __func__, variant); return AARCH64_BREAK_FAULT; } insn = aarch64_insn_get_rev64_value(); break; default: pr_err("%s: unknown data1 encoding %d\n", __func__, type); return AARCH64_BREAK_FAULT; } switch (variant) { case AARCH64_INSN_VARIANT_32BIT: break; case AARCH64_INSN_VARIANT_64BIT: insn |= AARCH64_INSN_SF_BIT; break; default: pr_err("%s: unknown variant encoding %d\n", __func__, variant); return AARCH64_BREAK_FAULT; } insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RD, insn, dst); return aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn, src); } u32 aarch64_insn_gen_data2(enum aarch64_insn_register dst, enum aarch64_insn_register src, enum aarch64_insn_register reg, enum aarch64_insn_variant variant, enum aarch64_insn_data2_type type) { u32 insn; switch (type) { case AARCH64_INSN_DATA2_UDIV: insn = aarch64_insn_get_udiv_value(); break; case AARCH64_INSN_DATA2_SDIV: insn = aarch64_insn_get_sdiv_value(); break; case AARCH64_INSN_DATA2_LSLV: insn = aarch64_insn_get_lslv_value(); break; case AARCH64_INSN_DATA2_LSRV: insn = aarch64_insn_get_lsrv_value(); break; case AARCH64_INSN_DATA2_ASRV: insn = aarch64_insn_get_asrv_value(); break; case AARCH64_INSN_DATA2_RORV: insn = aarch64_insn_get_rorv_value(); break; default: pr_err("%s: unknown data2 encoding %d\n", __func__, type); return AARCH64_BREAK_FAULT; } switch (variant) { case AARCH64_INSN_VARIANT_32BIT: break; case AARCH64_INSN_VARIANT_64BIT: insn |= AARCH64_INSN_SF_BIT; break; default: pr_err("%s: unknown variant encoding %d\n", __func__, variant); return AARCH64_BREAK_FAULT; } insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RD, insn, dst); insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn, src); return aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RM, insn, reg); } u32 aarch64_insn_gen_data3(enum aarch64_insn_register dst, enum aarch64_insn_register src, enum aarch64_insn_register reg1, enum aarch64_insn_register reg2, enum aarch64_insn_variant variant, enum aarch64_insn_data3_type type) { u32 insn; switch (type) { case AARCH64_INSN_DATA3_MADD: insn = aarch64_insn_get_madd_value(); break; case AARCH64_INSN_DATA3_MSUB: insn = aarch64_insn_get_msub_value(); break; default: pr_err("%s: unknown data3 encoding %d\n", __func__, type); return AARCH64_BREAK_FAULT; } switch (variant) { case AARCH64_INSN_VARIANT_32BIT: break; case AARCH64_INSN_VARIANT_64BIT: insn |= AARCH64_INSN_SF_BIT; break; default: pr_err("%s: unknown variant encoding %d\n", __func__, variant); return AARCH64_BREAK_FAULT; } insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RD, insn, dst); insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RA, insn, src); insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn, reg1); return aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RM, insn, reg2); } u32 aarch64_insn_gen_logical_shifted_reg(enum aarch64_insn_register dst, enum aarch64_insn_register src, enum aarch64_insn_register reg, int shift, enum aarch64_insn_variant variant, enum aarch64_insn_logic_type type) { u32 insn; switch (type) { case AARCH64_INSN_LOGIC_AND: insn = aarch64_insn_get_and_value(); break; case AARCH64_INSN_LOGIC_BIC: insn = aarch64_insn_get_bic_value(); break; case AARCH64_INSN_LOGIC_ORR: insn = aarch64_insn_get_orr_value(); break; case AARCH64_INSN_LOGIC_ORN: insn = aarch64_insn_get_orn_value(); break; case AARCH64_INSN_LOGIC_EOR: insn = aarch64_insn_get_eor_value(); break; case AARCH64_INSN_LOGIC_EON: insn = aarch64_insn_get_eon_value(); break; case AARCH64_INSN_LOGIC_AND_SETFLAGS: insn = aarch64_insn_get_ands_value(); break; case AARCH64_INSN_LOGIC_BIC_SETFLAGS: insn = aarch64_insn_get_bics_value(); break; default: pr_err("%s: unknown logical encoding %d\n", __func__, type); return AARCH64_BREAK_FAULT; } switch (variant) { case AARCH64_INSN_VARIANT_32BIT: if (shift & ~(SZ_32 - 1)) { pr_err("%s: invalid shift encoding %d\n", __func__, shift); return AARCH64_BREAK_FAULT; } break; case AARCH64_INSN_VARIANT_64BIT: insn |= AARCH64_INSN_SF_BIT; if (shift & ~(SZ_64 - 1)) { pr_err("%s: invalid shift encoding %d\n", __func__, shift); return AARCH64_BREAK_FAULT; } break; default: pr_err("%s: unknown variant encoding %d\n", __func__, variant); return AARCH64_BREAK_FAULT; } insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RD, insn, dst); insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RN, insn, src); insn = aarch64_insn_encode_register(AARCH64_INSN_REGTYPE_RM, insn, reg); return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_6, insn, shift); } /* * Decode the imm field of a branch, and return the byte offset as a * signed value (so it can be used when computing a new branch * target). */ s32 aarch64_get_branch_offset(u32 insn) { s32 imm; if (aarch64_insn_is_b(insn) || aarch64_insn_is_bl(insn)) { imm = aarch64_insn_decode_immediate(AARCH64_INSN_IMM_26, insn); return (imm << 6) >> 4; } if (aarch64_insn_is_cbz(insn) || aarch64_insn_is_cbnz(insn) || aarch64_insn_is_bcond(insn)) { imm = aarch64_insn_decode_immediate(AARCH64_INSN_IMM_19, insn); return (imm << 13) >> 11; } if (aarch64_insn_is_tbz(insn) || aarch64_insn_is_tbnz(insn)) { imm = aarch64_insn_decode_immediate(AARCH64_INSN_IMM_14, insn); return (imm << 18) >> 16; } /* Unhandled instruction */ BUG(); } /* * Encode the displacement of a branch in the imm field and return the * updated instruction. */ u32 aarch64_set_branch_offset(u32 insn, s32 offset) { if (aarch64_insn_is_b(insn) || aarch64_insn_is_bl(insn)) return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_26, insn, offset >> 2); if (aarch64_insn_is_cbz(insn) || aarch64_insn_is_cbnz(insn) || aarch64_insn_is_bcond(insn)) return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_19, insn, offset >> 2); if (aarch64_insn_is_tbz(insn) || aarch64_insn_is_tbnz(insn)) return aarch64_insn_encode_immediate(AARCH64_INSN_IMM_14, insn, offset >> 2); /* Unhandled instruction */ BUG(); } /* * Extract the Op/CR data from a msr/mrs instruction. */ u32 aarch64_insn_extract_system_reg(u32 insn) { return (insn & 0x1FFFE0) >> 5; } bool aarch32_insn_is_wide(u32 insn) { return insn >= 0xe800; } /* * Macros/defines for extracting register numbers from instruction. */ u32 aarch32_insn_extract_reg_num(u32 insn, int offset) { return (insn & (0xf << offset)) >> offset; } #define OPC2_MASK 0x7 #define OPC2_OFFSET 5 u32 aarch32_insn_mcr_extract_opc2(u32 insn) { return (insn & (OPC2_MASK << OPC2_OFFSET)) >> OPC2_OFFSET; } #define CRM_MASK 0xf u32 aarch32_insn_mcr_extract_crm(u32 insn) { return insn & CRM_MASK; } static bool __kprobes __check_eq(unsigned long pstate) { return (pstate & PSR_Z_BIT) != 0; } static bool __kprobes __check_ne(unsigned long pstate) { return (pstate & PSR_Z_BIT) == 0; } static bool __kprobes __check_cs(unsigned long pstate) { return (pstate & PSR_C_BIT) != 0; } static bool __kprobes __check_cc(unsigned long pstate) { return (pstate & PSR_C_BIT) == 0; } static bool __kprobes __check_mi(unsigned long pstate) { return (pstate & PSR_N_BIT) != 0; } static bool __kprobes __check_pl(unsigned long pstate) { return (pstate & PSR_N_BIT) == 0; } static bool __kprobes __check_vs(unsigned long pstate) { return (pstate & PSR_V_BIT) != 0; } static bool __kprobes __check_vc(unsigned long pstate) { return (pstate & PSR_V_BIT) == 0; } static bool __kprobes __check_hi(unsigned long pstate) { pstate &= ~(pstate >> 1); /* PSR_C_BIT &= ~PSR_Z_BIT */ return (pstate & PSR_C_BIT) != 0; } static bool __kprobes __check_ls(unsigned long pstate) { pstate &= ~(pstate >> 1); /* PSR_C_BIT &= ~PSR_Z_BIT */ return (pstate & PSR_C_BIT) == 0; } static bool __kprobes __check_ge(unsigned long pstate) { pstate ^= (pstate << 3); /* PSR_N_BIT ^= PSR_V_BIT */ return (pstate & PSR_N_BIT) == 0; } static bool __kprobes __check_lt(unsigned long pstate) { pstate ^= (pstate << 3); /* PSR_N_BIT ^= PSR_V_BIT */ return (pstate & PSR_N_BIT) != 0; } static bool __kprobes __check_gt(unsigned long pstate) { /*PSR_N_BIT ^= PSR_V_BIT */ unsigned long temp = pstate ^ (pstate << 3); temp |= (pstate << 1); /*PSR_N_BIT |= PSR_Z_BIT */ return (temp & PSR_N_BIT) == 0; } static bool __kprobes __check_le(unsigned long pstate) { /*PSR_N_BIT ^= PSR_V_BIT */ unsigned long temp = pstate ^ (pstate << 3); temp |= (pstate << 1); /*PSR_N_BIT |= PSR_Z_BIT */ return (temp & PSR_N_BIT) != 0; } static bool __kprobes __check_al(unsigned long pstate) { return true; } /* * Note that the ARMv8 ARM calls condition code 0b1111 "nv", but states that * it behaves identically to 0b1110 ("al"). */ pstate_check_t * const aarch32_opcode_cond_checks[16] = { __check_eq, __check_ne, __check_cs, __check_cc, __check_mi, __check_pl, __check_vs, __check_vc, __check_hi, __check_ls, __check_ge, __check_lt, __check_gt, __check_le, __check_al, __check_al };