/* * Copyright (c) 2000-2005 Silicon Graphics, Inc. * All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_types.h" #include "xfs_bit.h" #include "xfs_log.h" #include "xfs_inum.h" #include "xfs_trans.h" #include "xfs_sb.h" #include "xfs_ag.h" #include "xfs_dir2.h" #include "xfs_dmapi.h" #include "xfs_mount.h" #include "xfs_da_btree.h" #include "xfs_bmap_btree.h" #include "xfs_ialloc_btree.h" #include "xfs_alloc_btree.h" #include "xfs_dir2_sf.h" #include "xfs_attr_sf.h" #include "xfs_dinode.h" #include "xfs_inode.h" #include "xfs_inode_item.h" #include "xfs_btree.h" #include "xfs_alloc.h" #include "xfs_ialloc.h" #include "xfs_quota.h" #include "xfs_error.h" #include "xfs_bmap.h" #include "xfs_rw.h" #include "xfs_refcache.h" #include "xfs_buf_item.h" #include "xfs_log_priv.h" #include "xfs_dir2_trace.h" #include "xfs_extfree_item.h" #include "xfs_acl.h" #include "xfs_attr.h" #include "xfs_clnt.h" #include "xfs_mru_cache.h" #include "xfs_filestream.h" #include "xfs_fsops.h" #include "xfs_vnodeops.h" STATIC int xfs_sync(bhv_desc_t *, int, cred_t *); int xfs_init(void) { extern kmem_zone_t *xfs_bmap_free_item_zone; extern kmem_zone_t *xfs_btree_cur_zone; extern kmem_zone_t *xfs_trans_zone; extern kmem_zone_t *xfs_buf_item_zone; extern kmem_zone_t *xfs_dabuf_zone; #ifdef XFS_DABUF_DEBUG extern lock_t xfs_dabuf_global_lock; spinlock_init(&xfs_dabuf_global_lock, "xfsda"); #endif /* * Initialize all of the zone allocators we use. */ xfs_bmap_free_item_zone = kmem_zone_init(sizeof(xfs_bmap_free_item_t), "xfs_bmap_free_item"); xfs_btree_cur_zone = kmem_zone_init(sizeof(xfs_btree_cur_t), "xfs_btree_cur"); xfs_trans_zone = kmem_zone_init(sizeof(xfs_trans_t), "xfs_trans"); xfs_da_state_zone = kmem_zone_init(sizeof(xfs_da_state_t), "xfs_da_state"); xfs_dabuf_zone = kmem_zone_init(sizeof(xfs_dabuf_t), "xfs_dabuf"); xfs_ifork_zone = kmem_zone_init(sizeof(xfs_ifork_t), "xfs_ifork"); xfs_acl_zone_init(xfs_acl_zone, "xfs_acl"); xfs_mru_cache_init(); xfs_filestream_init(); /* * The size of the zone allocated buf log item is the maximum * size possible under XFS. This wastes a little bit of memory, * but it is much faster. */ xfs_buf_item_zone = kmem_zone_init((sizeof(xfs_buf_log_item_t) + (((XFS_MAX_BLOCKSIZE / XFS_BLI_CHUNK) / NBWORD) * sizeof(int))), "xfs_buf_item"); xfs_efd_zone = kmem_zone_init((sizeof(xfs_efd_log_item_t) + ((XFS_EFD_MAX_FAST_EXTENTS - 1) * sizeof(xfs_extent_t))), "xfs_efd_item"); xfs_efi_zone = kmem_zone_init((sizeof(xfs_efi_log_item_t) + ((XFS_EFI_MAX_FAST_EXTENTS - 1) * sizeof(xfs_extent_t))), "xfs_efi_item"); /* * These zones warrant special memory allocator hints */ xfs_inode_zone = kmem_zone_init_flags(sizeof(xfs_inode_t), "xfs_inode", KM_ZONE_HWALIGN | KM_ZONE_RECLAIM | KM_ZONE_SPREAD, NULL); xfs_ili_zone = kmem_zone_init_flags(sizeof(xfs_inode_log_item_t), "xfs_ili", KM_ZONE_SPREAD, NULL); xfs_icluster_zone = kmem_zone_init_flags(sizeof(xfs_icluster_t), "xfs_icluster", KM_ZONE_SPREAD, NULL); /* * Allocate global trace buffers. */ #ifdef XFS_ALLOC_TRACE xfs_alloc_trace_buf = ktrace_alloc(XFS_ALLOC_TRACE_SIZE, KM_SLEEP); #endif #ifdef XFS_BMAP_TRACE xfs_bmap_trace_buf = ktrace_alloc(XFS_BMAP_TRACE_SIZE, KM_SLEEP); #endif #ifdef XFS_BMBT_TRACE xfs_bmbt_trace_buf = ktrace_alloc(XFS_BMBT_TRACE_SIZE, KM_SLEEP); #endif #ifdef XFS_ATTR_TRACE xfs_attr_trace_buf = ktrace_alloc(XFS_ATTR_TRACE_SIZE, KM_SLEEP); #endif #ifdef XFS_DIR2_TRACE xfs_dir2_trace_buf = ktrace_alloc(XFS_DIR2_GTRACE_SIZE, KM_SLEEP); #endif xfs_dir_startup(); #if (defined(DEBUG) || defined(INDUCE_IO_ERROR)) xfs_error_test_init(); #endif /* DEBUG || INDUCE_IO_ERROR */ xfs_init_procfs(); xfs_sysctl_register(); return 0; } void xfs_cleanup(void) { extern kmem_zone_t *xfs_bmap_free_item_zone; extern kmem_zone_t *xfs_btree_cur_zone; extern kmem_zone_t *xfs_inode_zone; extern kmem_zone_t *xfs_trans_zone; extern kmem_zone_t *xfs_da_state_zone; extern kmem_zone_t *xfs_dabuf_zone; extern kmem_zone_t *xfs_efd_zone; extern kmem_zone_t *xfs_efi_zone; extern kmem_zone_t *xfs_buf_item_zone; extern kmem_zone_t *xfs_icluster_zone; xfs_cleanup_procfs(); xfs_sysctl_unregister(); xfs_refcache_destroy(); xfs_filestream_uninit(); xfs_mru_cache_uninit(); xfs_acl_zone_destroy(xfs_acl_zone); #ifdef XFS_DIR2_TRACE ktrace_free(xfs_dir2_trace_buf); #endif #ifdef XFS_ATTR_TRACE ktrace_free(xfs_attr_trace_buf); #endif #ifdef XFS_BMBT_TRACE ktrace_free(xfs_bmbt_trace_buf); #endif #ifdef XFS_BMAP_TRACE ktrace_free(xfs_bmap_trace_buf); #endif #ifdef XFS_ALLOC_TRACE ktrace_free(xfs_alloc_trace_buf); #endif kmem_zone_destroy(xfs_bmap_free_item_zone); kmem_zone_destroy(xfs_btree_cur_zone); kmem_zone_destroy(xfs_inode_zone); kmem_zone_destroy(xfs_trans_zone); kmem_zone_destroy(xfs_da_state_zone); kmem_zone_destroy(xfs_dabuf_zone); kmem_zone_destroy(xfs_buf_item_zone); kmem_zone_destroy(xfs_efd_zone); kmem_zone_destroy(xfs_efi_zone); kmem_zone_destroy(xfs_ifork_zone); kmem_zone_destroy(xfs_ili_zone); kmem_zone_destroy(xfs_icluster_zone); } /* * xfs_start_flags * * This function fills in xfs_mount_t fields based on mount args. * Note: the superblock has _not_ yet been read in. */ STATIC int xfs_start_flags( struct bhv_vfs *vfs, struct xfs_mount_args *ap, struct xfs_mount *mp) { /* Values are in BBs */ if ((ap->flags & XFSMNT_NOALIGN) != XFSMNT_NOALIGN) { /* * At this point the superblock has not been read * in, therefore we do not know the block size. * Before the mount call ends we will convert * these to FSBs. */ mp->m_dalign = ap->sunit; mp->m_swidth = ap->swidth; } if (ap->logbufs != -1 && ap->logbufs != 0 && (ap->logbufs < XLOG_MIN_ICLOGS || ap->logbufs > XLOG_MAX_ICLOGS)) { cmn_err(CE_WARN, "XFS: invalid logbufs value: %d [not %d-%d]", ap->logbufs, XLOG_MIN_ICLOGS, XLOG_MAX_ICLOGS); return XFS_ERROR(EINVAL); } mp->m_logbufs = ap->logbufs; if (ap->logbufsize != -1 && ap->logbufsize != 0 && (ap->logbufsize < XLOG_MIN_RECORD_BSIZE || ap->logbufsize > XLOG_MAX_RECORD_BSIZE || !is_power_of_2(ap->logbufsize))) { cmn_err(CE_WARN, "XFS: invalid logbufsize: %d [not 16k,32k,64k,128k or 256k]", ap->logbufsize); return XFS_ERROR(EINVAL); } mp->m_logbsize = ap->logbufsize; mp->m_fsname_len = strlen(ap->fsname) + 1; mp->m_fsname = kmem_alloc(mp->m_fsname_len, KM_SLEEP); strcpy(mp->m_fsname, ap->fsname); if (ap->rtname[0]) { mp->m_rtname = kmem_alloc(strlen(ap->rtname) + 1, KM_SLEEP); strcpy(mp->m_rtname, ap->rtname); } if (ap->logname[0]) { mp->m_logname = kmem_alloc(strlen(ap->logname) + 1, KM_SLEEP); strcpy(mp->m_logname, ap->logname); } if (ap->flags & XFSMNT_WSYNC) mp->m_flags |= XFS_MOUNT_WSYNC; #if XFS_BIG_INUMS if (ap->flags & XFSMNT_INO64) { mp->m_flags |= XFS_MOUNT_INO64; mp->m_inoadd = XFS_INO64_OFFSET; } #endif if (ap->flags & XFSMNT_RETERR) mp->m_flags |= XFS_MOUNT_RETERR; if (ap->flags & XFSMNT_NOALIGN) mp->m_flags |= XFS_MOUNT_NOALIGN; if (ap->flags & XFSMNT_SWALLOC) mp->m_flags |= XFS_MOUNT_SWALLOC; if (ap->flags & XFSMNT_OSYNCISOSYNC) mp->m_flags |= XFS_MOUNT_OSYNCISOSYNC; if (ap->flags & XFSMNT_32BITINODES) mp->m_flags |= XFS_MOUNT_32BITINODES; if (ap->flags & XFSMNT_IOSIZE) { if (ap->iosizelog > XFS_MAX_IO_LOG || ap->iosizelog < XFS_MIN_IO_LOG) { cmn_err(CE_WARN, "XFS: invalid log iosize: %d [not %d-%d]", ap->iosizelog, XFS_MIN_IO_LOG, XFS_MAX_IO_LOG); return XFS_ERROR(EINVAL); } mp->m_flags |= XFS_MOUNT_DFLT_IOSIZE; mp->m_readio_log = mp->m_writeio_log = ap->iosizelog; } if (ap->flags & XFSMNT_IDELETE) mp->m_flags |= XFS_MOUNT_IDELETE; if (ap->flags & XFSMNT_DIRSYNC) mp->m_flags |= XFS_MOUNT_DIRSYNC; if (ap->flags & XFSMNT_ATTR2) mp->m_flags |= XFS_MOUNT_ATTR2; if (ap->flags2 & XFSMNT2_COMPAT_IOSIZE) mp->m_flags |= XFS_MOUNT_COMPAT_IOSIZE; /* * no recovery flag requires a read-only mount */ if (ap->flags & XFSMNT_NORECOVERY) { if (!(vfs->vfs_flag & VFS_RDONLY)) { cmn_err(CE_WARN, "XFS: tried to mount a FS read-write without recovery!"); return XFS_ERROR(EINVAL); } mp->m_flags |= XFS_MOUNT_NORECOVERY; } if (ap->flags & XFSMNT_NOUUID) mp->m_flags |= XFS_MOUNT_NOUUID; if (ap->flags & XFSMNT_BARRIER) mp->m_flags |= XFS_MOUNT_BARRIER; else mp->m_flags &= ~XFS_MOUNT_BARRIER; if (ap->flags2 & XFSMNT2_FILESTREAMS) mp->m_flags |= XFS_MOUNT_FILESTREAMS; if (ap->flags & XFSMNT_DMAPI) vfs->vfs_flag |= VFS_DMI; return 0; } /* * This function fills in xfs_mount_t fields based on mount args. * Note: the superblock _has_ now been read in. */ STATIC int xfs_finish_flags( struct bhv_vfs *vfs, struct xfs_mount_args *ap, struct xfs_mount *mp) { int ronly = (vfs->vfs_flag & VFS_RDONLY); /* Fail a mount where the logbuf is smaller then the log stripe */ if (XFS_SB_VERSION_HASLOGV2(&mp->m_sb)) { if ((ap->logbufsize <= 0) && (mp->m_sb.sb_logsunit > XLOG_BIG_RECORD_BSIZE)) { mp->m_logbsize = mp->m_sb.sb_logsunit; } else if (ap->logbufsize > 0 && ap->logbufsize < mp->m_sb.sb_logsunit) { cmn_err(CE_WARN, "XFS: logbuf size must be greater than or equal to log stripe size"); return XFS_ERROR(EINVAL); } } else { /* Fail a mount if the logbuf is larger than 32K */ if (ap->logbufsize > XLOG_BIG_RECORD_BSIZE) { cmn_err(CE_WARN, "XFS: logbuf size for version 1 logs must be 16K or 32K"); return XFS_ERROR(EINVAL); } } if (XFS_SB_VERSION_HASATTR2(&mp->m_sb)) { mp->m_flags |= XFS_MOUNT_ATTR2; } /* * prohibit r/w mounts of read-only filesystems */ if ((mp->m_sb.sb_flags & XFS_SBF_READONLY) && !ronly) { cmn_err(CE_WARN, "XFS: cannot mount a read-only filesystem as read-write"); return XFS_ERROR(EROFS); } /* * check for shared mount. */ if (ap->flags & XFSMNT_SHARED) { if (!XFS_SB_VERSION_HASSHARED(&mp->m_sb)) return XFS_ERROR(EINVAL); /* * For IRIX 6.5, shared mounts must have the shared * version bit set, have the persistent readonly * field set, must be version 0 and can only be mounted * read-only. */ if (!ronly || !(mp->m_sb.sb_flags & XFS_SBF_READONLY) || (mp->m_sb.sb_shared_vn != 0)) return XFS_ERROR(EINVAL); mp->m_flags |= XFS_MOUNT_SHARED; /* * Shared XFS V0 can't deal with DMI. Return EINVAL. */ if (mp->m_sb.sb_shared_vn == 0 && (ap->flags & XFSMNT_DMAPI)) return XFS_ERROR(EINVAL); } return 0; } /* * xfs_mount * * The file system configurations are: * (1) device (partition) with data and internal log * (2) logical volume with data and log subvolumes. * (3) logical volume with data, log, and realtime subvolumes. * * We only have to handle opening the log and realtime volumes here if * they are present. The data subvolume has already been opened by * get_sb_bdev() and is stored in vfsp->vfs_super->s_bdev. */ STATIC int xfs_mount( struct bhv_desc *bhvp, struct xfs_mount_args *args, cred_t *credp) { struct bhv_vfs *vfsp = bhvtovfs(bhvp); struct bhv_desc *p; struct xfs_mount *mp = XFS_BHVTOM(bhvp); struct block_device *ddev, *logdev, *rtdev; int flags = 0, error; ddev = vfsp->vfs_super->s_bdev; logdev = rtdev = NULL; error = xfs_dmops_get(mp, args); if (error) return error; /* * Setup xfs_mount function vectors from available behaviors */ p = vfs_bhv_lookup(vfsp, VFS_POSITION_QM); mp->m_qm_ops = p ? *(xfs_qmops_t *) vfs_bhv_custom(p) : xfs_qmcore_stub; p = vfs_bhv_lookup(vfsp, VFS_POSITION_IO); mp->m_io_ops = p ? *(xfs_ioops_t *) vfs_bhv_custom(p) : xfs_iocore_xfs; if (args->flags & XFSMNT_QUIET) flags |= XFS_MFSI_QUIET; /* * Open real time and log devices - order is important. */ if (args->logname[0]) { error = xfs_blkdev_get(mp, args->logname, &logdev); if (error) return error; } if (args->rtname[0]) { error = xfs_blkdev_get(mp, args->rtname, &rtdev); if (error) { xfs_blkdev_put(logdev); return error; } if (rtdev == ddev || rtdev == logdev) { cmn_err(CE_WARN, "XFS: Cannot mount filesystem with identical rtdev and ddev/logdev."); xfs_blkdev_put(logdev); xfs_blkdev_put(rtdev); return EINVAL; } } /* * Setup xfs_mount buffer target pointers */ error = ENOMEM; mp->m_ddev_targp = xfs_alloc_buftarg(ddev, 0); if (!mp->m_ddev_targp) { xfs_blkdev_put(logdev); xfs_blkdev_put(rtdev); return error; } if (rtdev) { mp->m_rtdev_targp = xfs_alloc_buftarg(rtdev, 1); if (!mp->m_rtdev_targp) { xfs_blkdev_put(logdev); xfs_blkdev_put(rtdev); goto error0; } } mp->m_logdev_targp = (logdev && logdev != ddev) ? xfs_alloc_buftarg(logdev, 1) : mp->m_ddev_targp; if (!mp->m_logdev_targp) { xfs_blkdev_put(logdev); xfs_blkdev_put(rtdev); goto error0; } /* * Setup flags based on mount(2) options and then the superblock */ error = xfs_start_flags(vfsp, args, mp); if (error) goto error1; error = xfs_readsb(mp, flags); if (error) goto error1; error = xfs_finish_flags(vfsp, args, mp); if (error) goto error2; /* * Setup xfs_mount buffer target pointers based on superblock */ error = xfs_setsize_buftarg(mp->m_ddev_targp, mp->m_sb.sb_blocksize, mp->m_sb.sb_sectsize); if (!error && logdev && logdev != ddev) { unsigned int log_sector_size = BBSIZE; if (XFS_SB_VERSION_HASSECTOR(&mp->m_sb)) log_sector_size = mp->m_sb.sb_logsectsize; error = xfs_setsize_buftarg(mp->m_logdev_targp, mp->m_sb.sb_blocksize, log_sector_size); } if (!error && rtdev) error = xfs_setsize_buftarg(mp->m_rtdev_targp, mp->m_sb.sb_blocksize, mp->m_sb.sb_sectsize); if (error) goto error2; if (mp->m_flags & XFS_MOUNT_BARRIER) xfs_mountfs_check_barriers(mp); if ((error = xfs_filestream_mount(mp))) goto error2; error = XFS_IOINIT(vfsp, args, flags); if (error) goto error2; XFS_SEND_MOUNT(mp, DM_RIGHT_NULL, args->mtpt, args->fsname); return 0; error2: if (mp->m_sb_bp) xfs_freesb(mp); error1: xfs_binval(mp->m_ddev_targp); if (logdev && logdev != ddev) xfs_binval(mp->m_logdev_targp); if (rtdev) xfs_binval(mp->m_rtdev_targp); error0: xfs_unmountfs_close(mp, credp); xfs_dmops_put(mp); return error; } STATIC int xfs_unmount( bhv_desc_t *bdp, int flags, cred_t *credp) { bhv_vfs_t *vfsp = bhvtovfs(bdp); xfs_mount_t *mp = XFS_BHVTOM(bdp); xfs_inode_t *rip; bhv_vnode_t *rvp; int unmount_event_wanted = 0; int unmount_event_flags = 0; int xfs_unmountfs_needed = 0; int error; rip = mp->m_rootip; rvp = XFS_ITOV(rip); #ifdef HAVE_DMAPI if (vfsp->vfs_flag & VFS_DMI) { error = XFS_SEND_PREUNMOUNT(mp, vfsp, rvp, DM_RIGHT_NULL, rvp, DM_RIGHT_NULL, NULL, NULL, 0, 0, (mp->m_dmevmask & (1<m_dmevmask & (1<m_ddev_targp); error = xfs_unmount_flush(mp, 0); if (error) goto out; ASSERT(vn_count(rvp) == 1); /* * Drop the reference count */ VN_RELE(rvp); /* * If we're forcing a shutdown, typically because of a media error, * we want to make sure we invalidate dirty pages that belong to * referenced vnodes as well. */ if (XFS_FORCED_SHUTDOWN(mp)) { error = xfs_sync(&mp->m_bhv, (SYNC_WAIT | SYNC_CLOSE), credp); ASSERT(error != EFSCORRUPTED); } xfs_unmountfs_needed = 1; out: /* Send DMAPI event, if required. * Then do xfs_unmountfs() if needed. * Then return error (or zero). */ if (unmount_event_wanted) { /* Note: mp structure must still exist for * XFS_SEND_UNMOUNT() call. */ XFS_SEND_UNMOUNT(mp, vfsp, error == 0 ? rvp : NULL, DM_RIGHT_NULL, 0, error, unmount_event_flags); } if (xfs_unmountfs_needed) { /* * Call common unmount function to flush to disk * and free the super block buffer & mount structures. */ xfs_unmountfs(mp, credp); xfs_dmops_put(mp); kmem_free(mp, sizeof(xfs_mount_t)); } return XFS_ERROR(error); } STATIC int xfs_quiesce_fs( xfs_mount_t *mp) { int count = 0, pincount; xfs_refcache_purge_mp(mp); xfs_flush_buftarg(mp->m_ddev_targp, 0); xfs_finish_reclaim_all(mp, 0); /* This loop must run at least twice. * The first instance of the loop will flush * most meta data but that will generate more * meta data (typically directory updates). * Which then must be flushed and logged before * we can write the unmount record. */ do { xfs_syncsub(mp, SYNC_INODE_QUIESCE, NULL); pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1); if (!pincount) { delay(50); count++; } } while (count < 2); return 0; } /* * Second stage of a quiesce. The data is already synced, now we have to take * care of the metadata. New transactions are already blocked, so we need to * wait for any remaining transactions to drain out before proceding. */ STATIC void xfs_attr_quiesce( xfs_mount_t *mp) { /* wait for all modifications to complete */ while (atomic_read(&mp->m_active_trans) > 0) delay(100); /* flush inodes and push all remaining buffers out to disk */ xfs_quiesce_fs(mp); ASSERT_ALWAYS(atomic_read(&mp->m_active_trans) == 0); /* Push the superblock and write an unmount record */ xfs_log_sbcount(mp, 1); xfs_log_unmount_write(mp); xfs_unmountfs_writesb(mp); } STATIC int xfs_mntupdate( bhv_desc_t *bdp, int *flags, struct xfs_mount_args *args) { bhv_vfs_t *vfsp = bhvtovfs(bdp); xfs_mount_t *mp = XFS_BHVTOM(bdp); if (!(*flags & MS_RDONLY)) { /* rw/ro -> rw */ if (vfsp->vfs_flag & VFS_RDONLY) vfsp->vfs_flag &= ~VFS_RDONLY; if (args->flags & XFSMNT_BARRIER) { mp->m_flags |= XFS_MOUNT_BARRIER; xfs_mountfs_check_barriers(mp); } else { mp->m_flags &= ~XFS_MOUNT_BARRIER; } } else if (!(vfsp->vfs_flag & VFS_RDONLY)) { /* rw -> ro */ xfs_filestream_flush(mp); bhv_vfs_sync(vfsp, SYNC_DATA_QUIESCE, NULL); xfs_attr_quiesce(mp); vfsp->vfs_flag |= VFS_RDONLY; } return 0; } /* * xfs_unmount_flush implements a set of flush operation on special * inodes, which are needed as a separate set of operations so that * they can be called as part of relocation process. */ int xfs_unmount_flush( xfs_mount_t *mp, /* Mount structure we are getting rid of. */ int relocation) /* Called from vfs relocation. */ { xfs_inode_t *rip = mp->m_rootip; xfs_inode_t *rbmip; xfs_inode_t *rsumip = NULL; bhv_vnode_t *rvp = XFS_ITOV(rip); int error; xfs_ilock(rip, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); xfs_iflock(rip); /* * Flush out the real time inodes. */ if ((rbmip = mp->m_rbmip) != NULL) { xfs_ilock(rbmip, XFS_ILOCK_EXCL); xfs_iflock(rbmip); error = xfs_iflush(rbmip, XFS_IFLUSH_SYNC); xfs_iunlock(rbmip, XFS_ILOCK_EXCL); if (error == EFSCORRUPTED) goto fscorrupt_out; ASSERT(vn_count(XFS_ITOV(rbmip)) == 1); rsumip = mp->m_rsumip; xfs_ilock(rsumip, XFS_ILOCK_EXCL); xfs_iflock(rsumip); error = xfs_iflush(rsumip, XFS_IFLUSH_SYNC); xfs_iunlock(rsumip, XFS_ILOCK_EXCL); if (error == EFSCORRUPTED) goto fscorrupt_out; ASSERT(vn_count(XFS_ITOV(rsumip)) == 1); } /* * Synchronously flush root inode to disk */ error = xfs_iflush(rip, XFS_IFLUSH_SYNC); if (error == EFSCORRUPTED) goto fscorrupt_out2; if (vn_count(rvp) != 1 && !relocation) { xfs_iunlock(rip, XFS_ILOCK_EXCL); return XFS_ERROR(EBUSY); } /* * Release dquot that rootinode, rbmino and rsumino might be holding, * flush and purge the quota inodes. */ error = XFS_QM_UNMOUNT(mp); if (error == EFSCORRUPTED) goto fscorrupt_out2; if (rbmip) { VN_RELE(XFS_ITOV(rbmip)); VN_RELE(XFS_ITOV(rsumip)); } xfs_iunlock(rip, XFS_ILOCK_EXCL); return 0; fscorrupt_out: xfs_ifunlock(rip); fscorrupt_out2: xfs_iunlock(rip, XFS_ILOCK_EXCL); return XFS_ERROR(EFSCORRUPTED); } /* * xfs_root extracts the root vnode from a vfs. * * vfsp -- the vfs struct for the desired file system * vpp -- address of the caller's vnode pointer which should be * set to the desired fs root vnode */ STATIC int xfs_root( bhv_desc_t *bdp, bhv_vnode_t **vpp) { bhv_vnode_t *vp; vp = XFS_ITOV((XFS_BHVTOM(bdp))->m_rootip); VN_HOLD(vp); *vpp = vp; return 0; } /* * xfs_statvfs * * Fill in the statvfs structure for the given file system. We use * the superblock lock in the mount structure to ensure a consistent * snapshot of the counters returned. */ STATIC int xfs_statvfs( bhv_desc_t *bdp, bhv_statvfs_t *statp, bhv_vnode_t *vp) { __uint64_t fakeinos; xfs_extlen_t lsize; xfs_mount_t *mp; xfs_sb_t *sbp; unsigned long s; mp = XFS_BHVTOM(bdp); sbp = &(mp->m_sb); statp->f_type = XFS_SB_MAGIC; xfs_icsb_sync_counters_flags(mp, XFS_ICSB_LAZY_COUNT); s = XFS_SB_LOCK(mp); statp->f_bsize = sbp->sb_blocksize; lsize = sbp->sb_logstart ? sbp->sb_logblocks : 0; statp->f_blocks = sbp->sb_dblocks - lsize; statp->f_bfree = statp->f_bavail = sbp->sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); fakeinos = statp->f_bfree << sbp->sb_inopblog; #if XFS_BIG_INUMS fakeinos += mp->m_inoadd; #endif statp->f_files = MIN(sbp->sb_icount + fakeinos, (__uint64_t)XFS_MAXINUMBER); if (mp->m_maxicount) #if XFS_BIG_INUMS if (!mp->m_inoadd) #endif statp->f_files = min_t(typeof(statp->f_files), statp->f_files, mp->m_maxicount); statp->f_ffree = statp->f_files - (sbp->sb_icount - sbp->sb_ifree); XFS_SB_UNLOCK(mp, s); xfs_statvfs_fsid(statp, mp); statp->f_namelen = MAXNAMELEN - 1; return 0; } /* * xfs_sync flushes any pending I/O to file system vfsp. * * This routine is called by vfs_sync() to make sure that things make it * out to disk eventually, on sync() system calls to flush out everything, * and when the file system is unmounted. For the vfs_sync() case, all * we really need to do is sync out the log to make all of our meta-data * updates permanent (except for timestamps). For calls from pflushd(), * dirty pages are kept moving by calling pdflush() on the inodes * containing them. We also flush the inodes that we can lock without * sleeping and the superblock if we can lock it without sleeping from * vfs_sync() so that items at the tail of the log are always moving out. * * Flags: * SYNC_BDFLUSH - We're being called from vfs_sync() so we don't want * to sleep if we can help it. All we really need * to do is ensure that the log is synced at least * periodically. We also push the inodes and * superblock if we can lock them without sleeping * and they are not pinned. * SYNC_ATTR - We need to flush the inodes. If SYNC_BDFLUSH is not * set, then we really want to lock each inode and flush * it. * SYNC_WAIT - All the flushes that take place in this call should * be synchronous. * SYNC_DELWRI - This tells us to push dirty pages associated with * inodes. SYNC_WAIT and SYNC_BDFLUSH are used to * determine if they should be flushed sync, async, or * delwri. * SYNC_CLOSE - This flag is passed when the system is being * unmounted. We should sync and invalidate everything. * SYNC_FSDATA - This indicates that the caller would like to make * sure the superblock is safe on disk. We can ensure * this by simply making sure the log gets flushed * if SYNC_BDFLUSH is set, and by actually writing it * out otherwise. * SYNC_IOWAIT - The caller wants us to wait for all data I/O to complete * before we return (including direct I/O). Forms the drain * side of the write barrier needed to safely quiesce the * filesystem. * */ /*ARGSUSED*/ STATIC int xfs_sync( bhv_desc_t *bdp, int flags, cred_t *credp) { xfs_mount_t *mp = XFS_BHVTOM(bdp); if (flags & SYNC_IOWAIT) xfs_filestream_flush(mp); return xfs_syncsub(mp, flags, NULL); } /* * xfs sync routine for internal use * * This routine supports all of the flags defined for the generic vfs_sync * interface as explained above under xfs_sync. * */ int xfs_sync_inodes( xfs_mount_t *mp, int flags, int *bypassed) { xfs_inode_t *ip = NULL; xfs_inode_t *ip_next; xfs_buf_t *bp; bhv_vnode_t *vp = NULL; int error; int last_error; uint64_t fflag; uint lock_flags; uint base_lock_flags; boolean_t mount_locked; boolean_t vnode_refed; int preempt; xfs_dinode_t *dip; xfs_iptr_t *ipointer; #ifdef DEBUG boolean_t ipointer_in = B_FALSE; #define IPOINTER_SET ipointer_in = B_TRUE #define IPOINTER_CLR ipointer_in = B_FALSE #else #define IPOINTER_SET #define IPOINTER_CLR #endif /* Insert a marker record into the inode list after inode ip. The list * must be locked when this is called. After the call the list will no * longer be locked. */ #define IPOINTER_INSERT(ip, mp) { \ ASSERT(ipointer_in == B_FALSE); \ ipointer->ip_mnext = ip->i_mnext; \ ipointer->ip_mprev = ip; \ ip->i_mnext = (xfs_inode_t *)ipointer; \ ipointer->ip_mnext->i_mprev = (xfs_inode_t *)ipointer; \ preempt = 0; \ XFS_MOUNT_IUNLOCK(mp); \ mount_locked = B_FALSE; \ IPOINTER_SET; \ } /* Remove the marker from the inode list. If the marker was the only item * in the list then there are no remaining inodes and we should zero out * the whole list. If we are the current head of the list then move the head * past us. */ #define IPOINTER_REMOVE(ip, mp) { \ ASSERT(ipointer_in == B_TRUE); \ if (ipointer->ip_mnext != (xfs_inode_t *)ipointer) { \ ip = ipointer->ip_mnext; \ ip->i_mprev = ipointer->ip_mprev; \ ipointer->ip_mprev->i_mnext = ip; \ if (mp->m_inodes == (xfs_inode_t *)ipointer) { \ mp->m_inodes = ip; \ } \ } else { \ ASSERT(mp->m_inodes == (xfs_inode_t *)ipointer); \ mp->m_inodes = NULL; \ ip = NULL; \ } \ IPOINTER_CLR; \ } #define XFS_PREEMPT_MASK 0x7f if (bypassed) *bypassed = 0; if (XFS_MTOVFS(mp)->vfs_flag & VFS_RDONLY) return 0; error = 0; last_error = 0; preempt = 0; /* Allocate a reference marker */ ipointer = (xfs_iptr_t *)kmem_zalloc(sizeof(xfs_iptr_t), KM_SLEEP); fflag = XFS_B_ASYNC; /* default is don't wait */ if (flags & (SYNC_BDFLUSH | SYNC_DELWRI)) fflag = XFS_B_DELWRI; if (flags & SYNC_WAIT) fflag = 0; /* synchronous overrides all */ base_lock_flags = XFS_ILOCK_SHARED; if (flags & (SYNC_DELWRI | SYNC_CLOSE)) { /* * We need the I/O lock if we're going to call any of * the flush/inval routines. */ base_lock_flags |= XFS_IOLOCK_SHARED; } XFS_MOUNT_ILOCK(mp); ip = mp->m_inodes; mount_locked = B_TRUE; vnode_refed = B_FALSE; IPOINTER_CLR; do { ASSERT(ipointer_in == B_FALSE); ASSERT(vnode_refed == B_FALSE); lock_flags = base_lock_flags; /* * There were no inodes in the list, just break out * of the loop. */ if (ip == NULL) { break; } /* * We found another sync thread marker - skip it */ if (ip->i_mount == NULL) { ip = ip->i_mnext; continue; } vp = XFS_ITOV_NULL(ip); /* * If the vnode is gone then this is being torn down, * call reclaim if it is flushed, else let regular flush * code deal with it later in the loop. */ if (vp == NULL) { /* Skip ones already in reclaim */ if (ip->i_flags & XFS_IRECLAIM) { ip = ip->i_mnext; continue; } if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL) == 0) { ip = ip->i_mnext; } else if ((xfs_ipincount(ip) == 0) && xfs_iflock_nowait(ip)) { IPOINTER_INSERT(ip, mp); xfs_finish_reclaim(ip, 1, XFS_IFLUSH_DELWRI_ELSE_ASYNC); XFS_MOUNT_ILOCK(mp); mount_locked = B_TRUE; IPOINTER_REMOVE(ip, mp); } else { xfs_iunlock(ip, XFS_ILOCK_EXCL); ip = ip->i_mnext; } continue; } if (VN_BAD(vp)) { ip = ip->i_mnext; continue; } if (XFS_FORCED_SHUTDOWN(mp) && !(flags & SYNC_CLOSE)) { XFS_MOUNT_IUNLOCK(mp); kmem_free(ipointer, sizeof(xfs_iptr_t)); return 0; } /* * If this is just vfs_sync() or pflushd() calling * then we can skip inodes for which it looks like * there is nothing to do. Since we don't have the * inode locked this is racy, but these are periodic * calls so it doesn't matter. For the others we want * to know for sure, so we at least try to lock them. */ if (flags & SYNC_BDFLUSH) { if (((ip->i_itemp == NULL) || !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) && (ip->i_update_core == 0)) { ip = ip->i_mnext; continue; } } /* * Try to lock without sleeping. We're out of order with * the inode list lock here, so if we fail we need to drop * the mount lock and try again. If we're called from * bdflush() here, then don't bother. * * The inode lock here actually coordinates with the * almost spurious inode lock in xfs_ireclaim() to prevent * the vnode we handle here without a reference from * being freed while we reference it. If we lock the inode * while it's on the mount list here, then the spurious inode * lock in xfs_ireclaim() after the inode is pulled from * the mount list will sleep until we release it here. * This keeps the vnode from being freed while we reference * it. */ if (xfs_ilock_nowait(ip, lock_flags) == 0) { if ((flags & SYNC_BDFLUSH) || (vp == NULL)) { ip = ip->i_mnext; continue; } vp = vn_grab(vp); if (vp == NULL) { ip = ip->i_mnext; continue; } IPOINTER_INSERT(ip, mp); xfs_ilock(ip, lock_flags); ASSERT(vp == XFS_ITOV(ip)); ASSERT(ip->i_mount == mp); vnode_refed = B_TRUE; } /* From here on in the loop we may have a marker record * in the inode list. */ /* * If we have to flush data or wait for I/O completion * we need to drop the ilock that we currently hold. * If we need to drop the lock, insert a marker if we * have not already done so. */ if ((flags & (SYNC_CLOSE|SYNC_IOWAIT)) || ((flags & SYNC_DELWRI) && VN_DIRTY(vp))) { if (mount_locked) { IPOINTER_INSERT(ip, mp); } xfs_iunlock(ip, XFS_ILOCK_SHARED); if (flags & SYNC_CLOSE) { /* Shutdown case. Flush and invalidate. */ if (XFS_FORCED_SHUTDOWN(mp)) xfs_tosspages(ip, 0, -1, FI_REMAPF); else error = xfs_flushinval_pages(ip, 0, -1, FI_REMAPF); } else if ((flags & SYNC_DELWRI) && VN_DIRTY(vp)) { error = xfs_flush_pages(ip, 0, -1, fflag, FI_NONE); } /* * When freezing, we need to wait ensure all I/O (including direct * I/O) is complete to ensure no further data modification can take * place after this point */ if (flags & SYNC_IOWAIT) vn_iowait(ip); xfs_ilock(ip, XFS_ILOCK_SHARED); } if (flags & SYNC_BDFLUSH) { if ((flags & SYNC_ATTR) && ((ip->i_update_core) || ((ip->i_itemp != NULL) && (ip->i_itemp->ili_format.ilf_fields != 0)))) { /* Insert marker and drop lock if not already * done. */ if (mount_locked) { IPOINTER_INSERT(ip, mp); } /* * We don't want the periodic flushing of the * inodes by vfs_sync() to interfere with * I/O to the file, especially read I/O * where it is only the access time stamp * that is being flushed out. To prevent * long periods where we have both inode * locks held shared here while reading the * inode's buffer in from disk, we drop the * inode lock while reading in the inode * buffer. We have to release the buffer * and reacquire the inode lock so that they * are acquired in the proper order (inode * locks first). The buffer will go at the * end of the lru chain, though, so we can * expect it to still be there when we go * for it again in xfs_iflush(). */ if ((xfs_ipincount(ip) == 0) && xfs_iflock_nowait(ip)) { xfs_ifunlock(ip); xfs_iunlock(ip, XFS_ILOCK_SHARED); error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0); if (!error) { xfs_buf_relse(bp); } else { /* Bailing out, remove the * marker and free it. */ XFS_MOUNT_ILOCK(mp); IPOINTER_REMOVE(ip, mp); XFS_MOUNT_IUNLOCK(mp); ASSERT(!(lock_flags & XFS_IOLOCK_SHARED)); kmem_free(ipointer, sizeof(xfs_iptr_t)); return (0); } /* * Since we dropped the inode lock, * the inode may have been reclaimed. * Therefore, we reacquire the mount * lock and check to see if we were the * inode reclaimed. If this happened * then the ipointer marker will no * longer point back at us. In this * case, move ip along to the inode * after the marker, remove the marker * and continue. */ XFS_MOUNT_ILOCK(mp); mount_locked = B_TRUE; if (ip != ipointer->ip_mprev) { IPOINTER_REMOVE(ip, mp); ASSERT(!vnode_refed); ASSERT(!(lock_flags & XFS_IOLOCK_SHARED)); continue; } ASSERT(ip->i_mount == mp); if (xfs_ilock_nowait(ip, XFS_ILOCK_SHARED) == 0) { ASSERT(ip->i_mount == mp); /* * We failed to reacquire * the inode lock without * sleeping, so just skip * the inode for now. We * clear the ILOCK bit from * the lock_flags so that we * won't try to drop a lock * we don't hold below. */ lock_flags &= ~XFS_ILOCK_SHARED; IPOINTER_REMOVE(ip_next, mp); } else if ((xfs_ipincount(ip) == 0) && xfs_iflock_nowait(ip)) { ASSERT(ip->i_mount == mp); /* * Since this is vfs_sync() * calling we only flush the * inode out if we can lock * it without sleeping and * it is not pinned. Drop * the mount lock here so * that we don't hold it for * too long. We already have * a marker in the list here. */ XFS_MOUNT_IUNLOCK(mp); mount_locked = B_FALSE; error = xfs_iflush(ip, XFS_IFLUSH_DELWRI); } else { ASSERT(ip->i_mount == mp); IPOINTER_REMOVE(ip_next, mp); } } } } else { if ((flags & SYNC_ATTR) && ((ip->i_update_core) || ((ip->i_itemp != NULL) && (ip->i_itemp->ili_format.ilf_fields != 0)))) { if (mount_locked) { IPOINTER_INSERT(ip, mp); } if (flags & SYNC_WAIT) { xfs_iflock(ip); error = xfs_iflush(ip, XFS_IFLUSH_SYNC); } else { /* * If we can't acquire the flush * lock, then the inode is already * being flushed so don't bother * waiting. If we can lock it then * do a delwri flush so we can * combine multiple inode flushes * in each disk write. */ if (xfs_iflock_nowait(ip)) { error = xfs_iflush(ip, XFS_IFLUSH_DELWRI); } else if (bypassed) (*bypassed)++; } } } if (lock_flags != 0) { xfs_iunlock(ip, lock_flags); } if (vnode_refed) { /* * If we had to take a reference on the vnode * above, then wait until after we've unlocked * the inode to release the reference. This is * because we can be already holding the inode * lock when VN_RELE() calls xfs_inactive(). * * Make sure to drop the mount lock before calling * VN_RELE() so that we don't trip over ourselves if * we have to go for the mount lock again in the * inactive code. */ if (mount_locked) { IPOINTER_INSERT(ip, mp); } VN_RELE(vp); vnode_refed = B_FALSE; } if (error) { last_error = error; } /* * bail out if the filesystem is corrupted. */ if (error == EFSCORRUPTED) { if (!mount_locked) { XFS_MOUNT_ILOCK(mp); IPOINTER_REMOVE(ip, mp); } XFS_MOUNT_IUNLOCK(mp); ASSERT(ipointer_in == B_FALSE); kmem_free(ipointer, sizeof(xfs_iptr_t)); return XFS_ERROR(error); } /* Let other threads have a chance at the mount lock * if we have looped many times without dropping the * lock. */ if ((++preempt & XFS_PREEMPT_MASK) == 0) { if (mount_locked) { IPOINTER_INSERT(ip, mp); } } if (mount_locked == B_FALSE) { XFS_MOUNT_ILOCK(mp); mount_locked = B_TRUE; IPOINTER_REMOVE(ip, mp); continue; } ASSERT(ipointer_in == B_FALSE); ip = ip->i_mnext; } while (ip != mp->m_inodes); XFS_MOUNT_IUNLOCK(mp); ASSERT(ipointer_in == B_FALSE); kmem_free(ipointer, sizeof(xfs_iptr_t)); return XFS_ERROR(last_error); } /* * xfs sync routine for internal use * * This routine supports all of the flags defined for the generic vfs_sync * interface as explained above under xfs_sync. * */ int xfs_syncsub( xfs_mount_t *mp, int flags, int *bypassed) { int error = 0; int last_error = 0; uint log_flags = XFS_LOG_FORCE; xfs_buf_t *bp; xfs_buf_log_item_t *bip; /* * Sync out the log. This ensures that the log is periodically * flushed even if there is not enough activity to fill it up. */ if (flags & SYNC_WAIT) log_flags |= XFS_LOG_SYNC; xfs_log_force(mp, (xfs_lsn_t)0, log_flags); if (flags & (SYNC_ATTR|SYNC_DELWRI)) { if (flags & SYNC_BDFLUSH) xfs_finish_reclaim_all(mp, 1); else error = xfs_sync_inodes(mp, flags, bypassed); } /* * Flushing out dirty data above probably generated more * log activity, so if this isn't vfs_sync() then flush * the log again. */ if (flags & SYNC_DELWRI) { xfs_log_force(mp, (xfs_lsn_t)0, log_flags); } if (flags & SYNC_FSDATA) { /* * If this is vfs_sync() then only sync the superblock * if we can lock it without sleeping and it is not pinned. */ if (flags & SYNC_BDFLUSH) { bp = xfs_getsb(mp, XFS_BUF_TRYLOCK); if (bp != NULL) { bip = XFS_BUF_FSPRIVATE(bp,xfs_buf_log_item_t*); if ((bip != NULL) && xfs_buf_item_dirty(bip)) { if (!(XFS_BUF_ISPINNED(bp))) { XFS_BUF_ASYNC(bp); error = xfs_bwrite(mp, bp); } else { xfs_buf_relse(bp); } } else { xfs_buf_relse(bp); } } } else { bp = xfs_getsb(mp, 0); /* * If the buffer is pinned then push on the log so * we won't get stuck waiting in the write for * someone, maybe ourselves, to flush the log. * Even though we just pushed the log above, we * did not have the superblock buffer locked at * that point so it can become pinned in between * there and here. */ if (XFS_BUF_ISPINNED(bp)) xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE); if (flags & SYNC_WAIT) XFS_BUF_UNASYNC(bp); else XFS_BUF_ASYNC(bp); error = xfs_bwrite(mp, bp); } if (error) { last_error = error; } } /* * If this is the periodic sync, then kick some entries out of * the reference cache. This ensures that idle entries are * eventually kicked out of the cache. */ if (flags & SYNC_REFCACHE) { if (flags & SYNC_WAIT) xfs_refcache_purge_mp(mp); else xfs_refcache_purge_some(mp); } /* * If asked, update the disk superblock with incore counter values if we * are using non-persistent counters so that they don't get too far out * of sync if we crash or get a forced shutdown. We don't want to force * this to disk, just get a transaction into the iclogs.... */ if (flags & SYNC_SUPER) xfs_log_sbcount(mp, 0); /* * Now check to see if the log needs a "dummy" transaction. */ if (!(flags & SYNC_REMOUNT) && xfs_log_need_covered(mp)) { xfs_trans_t *tp; xfs_inode_t *ip; /* * Put a dummy transaction in the log to tell * recovery that all others are OK. */ tp = xfs_trans_alloc(mp, XFS_TRANS_DUMMY1); if ((error = xfs_trans_reserve(tp, 0, XFS_ICHANGE_LOG_RES(mp), 0, 0, 0))) { xfs_trans_cancel(tp, 0); return error; } ip = mp->m_rootip; xfs_ilock(ip, XFS_ILOCK_EXCL); xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); xfs_trans_ihold(tp, ip); xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); error = xfs_trans_commit(tp, 0); xfs_iunlock(ip, XFS_ILOCK_EXCL); xfs_log_force(mp, (xfs_lsn_t)0, log_flags); } /* * When shutting down, we need to insure that the AIL is pushed * to disk or the filesystem can appear corrupt from the PROM. */ if ((flags & (SYNC_CLOSE|SYNC_WAIT)) == (SYNC_CLOSE|SYNC_WAIT)) { XFS_bflush(mp->m_ddev_targp); if (mp->m_rtdev_targp) { XFS_bflush(mp->m_rtdev_targp); } } return XFS_ERROR(last_error); } /* * xfs_vget - called by DMAPI and NFSD to get vnode from file handle */ STATIC int xfs_vget( bhv_desc_t *bdp, bhv_vnode_t **vpp, fid_t *fidp) { xfs_mount_t *mp = XFS_BHVTOM(bdp); xfs_fid_t *xfid = (struct xfs_fid *)fidp; xfs_inode_t *ip; int error; xfs_ino_t ino; unsigned int igen; /* * Invalid. Since handles can be created in user space and passed in * via gethandle(), this is not cause for a panic. */ if (xfid->xfs_fid_len != sizeof(*xfid) - sizeof(xfid->xfs_fid_len)) return XFS_ERROR(EINVAL); ino = xfid->xfs_fid_ino; igen = xfid->xfs_fid_gen; /* * NFS can sometimes send requests for ino 0. Fail them gracefully. */ if (ino == 0) return XFS_ERROR(ESTALE); error = xfs_iget(mp, NULL, ino, 0, XFS_ILOCK_SHARED, &ip, 0); if (error) { *vpp = NULL; return error; } if (ip == NULL) { *vpp = NULL; return XFS_ERROR(EIO); } if (ip->i_d.di_mode == 0 || ip->i_d.di_gen != igen) { xfs_iput_new(ip, XFS_ILOCK_SHARED); *vpp = NULL; return XFS_ERROR(ENOENT); } *vpp = XFS_ITOV(ip); xfs_iunlock(ip, XFS_ILOCK_SHARED); return 0; } #define MNTOPT_LOGBUFS "logbufs" /* number of XFS log buffers */ #define MNTOPT_LOGBSIZE "logbsize" /* size of XFS log buffers */ #define MNTOPT_LOGDEV "logdev" /* log device */ #define MNTOPT_RTDEV "rtdev" /* realtime I/O device */ #define MNTOPT_BIOSIZE "biosize" /* log2 of preferred buffered io size */ #define MNTOPT_WSYNC "wsync" /* safe-mode nfs compatible mount */ #define MNTOPT_INO64 "ino64" /* force inodes into 64-bit range */ #define MNTOPT_NOALIGN "noalign" /* turn off stripe alignment */ #define MNTOPT_SWALLOC "swalloc" /* turn on stripe width allocation */ #define MNTOPT_SUNIT "sunit" /* data volume stripe unit */ #define MNTOPT_SWIDTH "swidth" /* data volume stripe width */ #define MNTOPT_NOUUID "nouuid" /* ignore filesystem UUID */ #define MNTOPT_MTPT "mtpt" /* filesystem mount point */ #define MNTOPT_GRPID "grpid" /* group-ID from parent directory */ #define MNTOPT_NOGRPID "nogrpid" /* group-ID from current process */ #define MNTOPT_BSDGROUPS "bsdgroups" /* group-ID from parent directory */ #define MNTOPT_SYSVGROUPS "sysvgroups" /* group-ID from current process */ #define MNTOPT_ALLOCSIZE "allocsize" /* preferred allocation size */ #define MNTOPT_NORECOVERY "norecovery" /* don't run XFS recovery */ #define MNTOPT_BARRIER "barrier" /* use writer barriers for log write and * unwritten extent conversion */ #define MNTOPT_NOBARRIER "nobarrier" /* .. disable */ #define MNTOPT_OSYNCISOSYNC "osyncisosync" /* o_sync is REALLY o_sync */ #define MNTOPT_64BITINODE "inode64" /* inodes can be allocated anywhere */ #define MNTOPT_IKEEP "ikeep" /* do not free empty inode clusters */ #define MNTOPT_NOIKEEP "noikeep" /* free empty inode clusters */ #define MNTOPT_LARGEIO "largeio" /* report large I/O sizes in stat() */ #define MNTOPT_NOLARGEIO "nolargeio" /* do not report large I/O sizes * in stat(). */ #define MNTOPT_ATTR2 "attr2" /* do use attr2 attribute format */ #define MNTOPT_NOATTR2 "noattr2" /* do not use attr2 attribute format */ #define MNTOPT_FILESTREAM "filestreams" /* use filestreams allocator */ #define MNTOPT_DMAPI "dmapi" /* DMI enabled (DMAPI / XDSM) */ #define MNTOPT_XDSM "xdsm" /* DMI enabled (DMAPI / XDSM) */ #define MNTOPT_DMI "dmi" /* DMI enabled (DMAPI / XDSM) */ STATIC unsigned long suffix_strtoul(char *s, char **endp, unsigned int base) { int last, shift_left_factor = 0; char *value = s; last = strlen(value) - 1; if (value[last] == 'K' || value[last] == 'k') { shift_left_factor = 10; value[last] = '\0'; } if (value[last] == 'M' || value[last] == 'm') { shift_left_factor = 20; value[last] = '\0'; } if (value[last] == 'G' || value[last] == 'g') { shift_left_factor = 30; value[last] = '\0'; } return simple_strtoul((const char *)s, endp, base) << shift_left_factor; } STATIC int xfs_parseargs( struct bhv_desc *bhv, char *options, struct xfs_mount_args *args, int update) { bhv_vfs_t *vfsp = bhvtovfs(bhv); char *this_char, *value, *eov; int dsunit, dswidth, vol_dsunit, vol_dswidth; int iosize; /* * Applications using DMI filesystems often expect the * inode generation number to be monotonically increasing. * If we delete inode chunks we break this assumption, so * keep unused inode chunks on disk for DMI filesystems * until we come up with a better solution. * Note that if "ikeep" or "noikeep" mount options are * supplied, then they are honored. */ if (!(args->flags & XFSMNT_DMAPI)) args->flags |= XFSMNT_IDELETE; args->flags |= XFSMNT_BARRIER; args->flags2 |= XFSMNT2_COMPAT_IOSIZE; if (!options) goto done; iosize = dsunit = dswidth = vol_dsunit = vol_dswidth = 0; while ((this_char = strsep(&options, ",")) != NULL) { if (!*this_char) continue; if ((value = strchr(this_char, '=')) != NULL) *value++ = 0; if (!strcmp(this_char, MNTOPT_LOGBUFS)) { if (!value || !*value) { cmn_err(CE_WARN, "XFS: %s option requires an argument", this_char); return EINVAL; } args->logbufs = simple_strtoul(value, &eov, 10); } else if (!strcmp(this_char, MNTOPT_LOGBSIZE)) { if (!value || !*value) { cmn_err(CE_WARN, "XFS: %s option requires an argument", this_char); return EINVAL; } args->logbufsize = suffix_strtoul(value, &eov, 10); } else if (!strcmp(this_char, MNTOPT_LOGDEV)) { if (!value || !*value) { cmn_err(CE_WARN, "XFS: %s option requires an argument", this_char); return EINVAL; } strncpy(args->logname, value, MAXNAMELEN); } else if (!strcmp(this_char, MNTOPT_MTPT)) { if (!value || !*value) { cmn_err(CE_WARN, "XFS: %s option requires an argument", this_char); return EINVAL; } strncpy(args->mtpt, value, MAXNAMELEN); } else if (!strcmp(this_char, MNTOPT_RTDEV)) { if (!value || !*value) { cmn_err(CE_WARN, "XFS: %s option requires an argument", this_char); return EINVAL; } strncpy(args->rtname, value, MAXNAMELEN); } else if (!strcmp(this_char, MNTOPT_BIOSIZE)) { if (!value || !*value) { cmn_err(CE_WARN, "XFS: %s option requires an argument", this_char); return EINVAL; } iosize = simple_strtoul(value, &eov, 10); args->flags |= XFSMNT_IOSIZE; args->iosizelog = (uint8_t) iosize; } else if (!strcmp(this_char, MNTOPT_ALLOCSIZE)) { if (!value || !*value) { cmn_err(CE_WARN, "XFS: %s option requires an argument", this_char); return EINVAL; } iosize = suffix_strtoul(value, &eov, 10); args->flags |= XFSMNT_IOSIZE; args->iosizelog = ffs(iosize) - 1; } else if (!strcmp(this_char, MNTOPT_GRPID) || !strcmp(this_char, MNTOPT_BSDGROUPS)) { vfsp->vfs_flag |= VFS_GRPID; } else if (!strcmp(this_char, MNTOPT_NOGRPID) || !strcmp(this_char, MNTOPT_SYSVGROUPS)) { vfsp->vfs_flag &= ~VFS_GRPID; } else if (!strcmp(this_char, MNTOPT_WSYNC)) { args->flags |= XFSMNT_WSYNC; } else if (!strcmp(this_char, MNTOPT_OSYNCISOSYNC)) { args->flags |= XFSMNT_OSYNCISOSYNC; } else if (!strcmp(this_char, MNTOPT_NORECOVERY)) { args->flags |= XFSMNT_NORECOVERY; } else if (!strcmp(this_char, MNTOPT_INO64)) { args->flags |= XFSMNT_INO64; #if !XFS_BIG_INUMS cmn_err(CE_WARN, "XFS: %s option not allowed on this system", this_char); return EINVAL; #endif } else if (!strcmp(this_char, MNTOPT_NOALIGN)) { args->flags |= XFSMNT_NOALIGN; } else if (!strcmp(this_char, MNTOPT_SWALLOC)) { args->flags |= XFSMNT_SWALLOC; } else if (!strcmp(this_char, MNTOPT_SUNIT)) { if (!value || !*value) { cmn_err(CE_WARN, "XFS: %s option requires an argument", this_char); return EINVAL; } dsunit = simple_strtoul(value, &eov, 10); } else if (!strcmp(this_char, MNTOPT_SWIDTH)) { if (!value || !*value) { cmn_err(CE_WARN, "XFS: %s option requires an argument", this_char); return EINVAL; } dswidth = simple_strtoul(value, &eov, 10); } else if (!strcmp(this_char, MNTOPT_64BITINODE)) { args->flags &= ~XFSMNT_32BITINODES; #if !XFS_BIG_INUMS cmn_err(CE_WARN, "XFS: %s option not allowed on this system", this_char); return EINVAL; #endif } else if (!strcmp(this_char, MNTOPT_NOUUID)) { args->flags |= XFSMNT_NOUUID; } else if (!strcmp(this_char, MNTOPT_BARRIER)) { args->flags |= XFSMNT_BARRIER; } else if (!strcmp(this_char, MNTOPT_NOBARRIER)) { args->flags &= ~XFSMNT_BARRIER; } else if (!strcmp(this_char, MNTOPT_IKEEP)) { args->flags &= ~XFSMNT_IDELETE; } else if (!strcmp(this_char, MNTOPT_NOIKEEP)) { args->flags |= XFSMNT_IDELETE; } else if (!strcmp(this_char, MNTOPT_LARGEIO)) { args->flags2 &= ~XFSMNT2_COMPAT_IOSIZE; } else if (!strcmp(this_char, MNTOPT_NOLARGEIO)) { args->flags2 |= XFSMNT2_COMPAT_IOSIZE; } else if (!strcmp(this_char, MNTOPT_ATTR2)) { args->flags |= XFSMNT_ATTR2; } else if (!strcmp(this_char, MNTOPT_NOATTR2)) { args->flags &= ~XFSMNT_ATTR2; } else if (!strcmp(this_char, MNTOPT_FILESTREAM)) { args->flags2 |= XFSMNT2_FILESTREAMS; } else if (!strcmp(this_char, MNTOPT_DMAPI)) { args->flags |= XFSMNT_DMAPI; } else if (!strcmp(this_char, MNTOPT_XDSM)) { args->flags |= XFSMNT_DMAPI; } else if (!strcmp(this_char, MNTOPT_DMI)) { args->flags |= XFSMNT_DMAPI; } else if (!strcmp(this_char, "ihashsize")) { cmn_err(CE_WARN, "XFS: ihashsize no longer used, option is deprecated."); } else if (!strcmp(this_char, "osyncisdsync")) { /* no-op, this is now the default */ cmn_err(CE_WARN, "XFS: osyncisdsync is now the default, option is deprecated."); } else if (!strcmp(this_char, "irixsgid")) { cmn_err(CE_WARN, "XFS: irixsgid is now a sysctl(2) variable, option is deprecated."); } else { cmn_err(CE_WARN, "XFS: unknown mount option [%s].", this_char); return EINVAL; } } if (args->flags & XFSMNT_NORECOVERY) { if ((vfsp->vfs_flag & VFS_RDONLY) == 0) { cmn_err(CE_WARN, "XFS: no-recovery mounts must be read-only."); return EINVAL; } } if ((args->flags & XFSMNT_NOALIGN) && (dsunit || dswidth)) { cmn_err(CE_WARN, "XFS: sunit and swidth options incompatible with the noalign option"); return EINVAL; } if ((args->flags & XFSMNT_DMAPI) && *args->mtpt == '\0') { printk("XFS: %s option needs the mount point option as well\n", MNTOPT_DMAPI); return EINVAL; } if ((dsunit && !dswidth) || (!dsunit && dswidth)) { cmn_err(CE_WARN, "XFS: sunit and swidth must be specified together"); return EINVAL; } if (dsunit && (dswidth % dsunit != 0)) { cmn_err(CE_WARN, "XFS: stripe width (%d) must be a multiple of the stripe unit (%d)", dswidth, dsunit); return EINVAL; } if ((args->flags & XFSMNT_NOALIGN) != XFSMNT_NOALIGN) { if (dsunit) { args->sunit = dsunit; args->flags |= XFSMNT_RETERR; } else { args->sunit = vol_dsunit; } dswidth ? (args->swidth = dswidth) : (args->swidth = vol_dswidth); } else { args->sunit = args->swidth = 0; } done: if (args->flags & XFSMNT_32BITINODES) vfsp->vfs_flag |= VFS_32BITINODES; if (args->flags2) args->flags |= XFSMNT_FLAGS2; return 0; } STATIC int xfs_showargs( struct bhv_desc *bhv, struct seq_file *m) { static struct proc_xfs_info { int flag; char *str; } xfs_info[] = { /* the few simple ones we can get from the mount struct */ { XFS_MOUNT_WSYNC, "," MNTOPT_WSYNC }, { XFS_MOUNT_INO64, "," MNTOPT_INO64 }, { XFS_MOUNT_NOALIGN, "," MNTOPT_NOALIGN }, { XFS_MOUNT_SWALLOC, "," MNTOPT_SWALLOC }, { XFS_MOUNT_NOUUID, "," MNTOPT_NOUUID }, { XFS_MOUNT_NORECOVERY, "," MNTOPT_NORECOVERY }, { XFS_MOUNT_OSYNCISOSYNC, "," MNTOPT_OSYNCISOSYNC }, { 0, NULL } }; struct proc_xfs_info *xfs_infop; struct xfs_mount *mp = XFS_BHVTOM(bhv); struct bhv_vfs *vfsp = XFS_MTOVFS(mp); for (xfs_infop = xfs_info; xfs_infop->flag; xfs_infop++) { if (mp->m_flags & xfs_infop->flag) seq_puts(m, xfs_infop->str); } if (mp->m_flags & XFS_MOUNT_DFLT_IOSIZE) seq_printf(m, "," MNTOPT_ALLOCSIZE "=%dk", (int)(1 << mp->m_writeio_log) >> 10); if (mp->m_logbufs > 0) seq_printf(m, "," MNTOPT_LOGBUFS "=%d", mp->m_logbufs); if (mp->m_logbsize > 0) seq_printf(m, "," MNTOPT_LOGBSIZE "=%dk", mp->m_logbsize >> 10); if (mp->m_logname) seq_printf(m, "," MNTOPT_LOGDEV "=%s", mp->m_logname); if (mp->m_rtname) seq_printf(m, "," MNTOPT_RTDEV "=%s", mp->m_rtname); if (mp->m_dalign > 0) seq_printf(m, "," MNTOPT_SUNIT "=%d", (int)XFS_FSB_TO_BB(mp, mp->m_dalign)); if (mp->m_swidth > 0) seq_printf(m, "," MNTOPT_SWIDTH "=%d", (int)XFS_FSB_TO_BB(mp, mp->m_swidth)); if (!(mp->m_flags & XFS_MOUNT_IDELETE)) seq_printf(m, "," MNTOPT_IKEEP); if (!(mp->m_flags & XFS_MOUNT_COMPAT_IOSIZE)) seq_printf(m, "," MNTOPT_LARGEIO); if (!(vfsp->vfs_flag & VFS_32BITINODES)) seq_printf(m, "," MNTOPT_64BITINODE); if (vfsp->vfs_flag & VFS_GRPID) seq_printf(m, "," MNTOPT_GRPID); if (vfsp->vfs_flag & VFS_DMI) seq_puts(m, "," MNTOPT_DMAPI); return 0; } /* * Second stage of a freeze. The data is already frozen so we only * need to take care of themetadata. Once that's done write a dummy * record to dirty the log in case of a crash while frozen. */ STATIC void xfs_freeze( bhv_desc_t *bdp) { xfs_mount_t *mp = XFS_BHVTOM(bdp); xfs_attr_quiesce(mp); xfs_fs_log_dummy(mp); } bhv_vfsops_t xfs_vfsops = { BHV_IDENTITY_INIT(VFS_BHV_XFS,VFS_POSITION_XFS), .vfs_parseargs = xfs_parseargs, .vfs_showargs = xfs_showargs, .vfs_mount = xfs_mount, .vfs_unmount = xfs_unmount, .vfs_mntupdate = xfs_mntupdate, .vfs_root = xfs_root, .vfs_statvfs = xfs_statvfs, .vfs_sync = xfs_sync, .vfs_vget = xfs_vget, .vfs_quotactl = (vfs_quotactl_t)fs_nosys, .vfs_init_vnode = xfs_initialize_vnode, .vfs_force_shutdown = xfs_do_force_shutdown, .vfs_freeze = xfs_freeze, };