/* * USB HID support for Linux * * Copyright (c) 1999 Andreas Gal * Copyright (c) 2000-2001 Vojtech Pavlik */ /* * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #undef DEBUG #undef DEBUG_DATA #include #include "hid.h" #include /* * Version Information */ #define DRIVER_VERSION "v2.01" #define DRIVER_AUTHOR "Andreas Gal, Vojtech Pavlik" #define DRIVER_DESC "USB HID core driver" #define DRIVER_LICENSE "GPL" static char *hid_types[] = {"Device", "Pointer", "Mouse", "Device", "Joystick", "Gamepad", "Keyboard", "Keypad", "Multi-Axis Controller"}; /* * Module parameters. */ static unsigned int hid_mousepoll_interval; module_param_named(mousepoll, hid_mousepoll_interval, uint, 0644); MODULE_PARM_DESC(mousepoll, "Polling interval of mice"); /* * Register a new report for a device. */ static struct hid_report *hid_register_report(struct hid_device *device, unsigned type, unsigned id) { struct hid_report_enum *report_enum = device->report_enum + type; struct hid_report *report; if (report_enum->report_id_hash[id]) return report_enum->report_id_hash[id]; if (!(report = kmalloc(sizeof(struct hid_report), GFP_KERNEL))) return NULL; memset(report, 0, sizeof(struct hid_report)); if (id != 0) report_enum->numbered = 1; report->id = id; report->type = type; report->size = 0; report->device = device; report_enum->report_id_hash[id] = report; list_add_tail(&report->list, &report_enum->report_list); return report; } /* * Register a new field for this report. */ static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values) { struct hid_field *field; if (report->maxfield == HID_MAX_FIELDS) { dbg("too many fields in report"); return NULL; } if (!(field = kmalloc(sizeof(struct hid_field) + usages * sizeof(struct hid_usage) + values * sizeof(unsigned), GFP_KERNEL))) return NULL; memset(field, 0, sizeof(struct hid_field) + usages * sizeof(struct hid_usage) + values * sizeof(unsigned)); field->index = report->maxfield++; report->field[field->index] = field; field->usage = (struct hid_usage *)(field + 1); field->value = (unsigned *)(field->usage + usages); field->report = report; return field; } /* * Open a collection. The type/usage is pushed on the stack. */ static int open_collection(struct hid_parser *parser, unsigned type) { struct hid_collection *collection; unsigned usage; usage = parser->local.usage[0]; if (parser->collection_stack_ptr == HID_COLLECTION_STACK_SIZE) { dbg("collection stack overflow"); return -1; } if (parser->device->maxcollection == parser->device->collection_size) { collection = kmalloc(sizeof(struct hid_collection) * parser->device->collection_size * 2, GFP_KERNEL); if (collection == NULL) { dbg("failed to reallocate collection array"); return -1; } memcpy(collection, parser->device->collection, sizeof(struct hid_collection) * parser->device->collection_size); memset(collection + parser->device->collection_size, 0, sizeof(struct hid_collection) * parser->device->collection_size); kfree(parser->device->collection); parser->device->collection = collection; parser->device->collection_size *= 2; } parser->collection_stack[parser->collection_stack_ptr++] = parser->device->maxcollection; collection = parser->device->collection + parser->device->maxcollection++; collection->type = type; collection->usage = usage; collection->level = parser->collection_stack_ptr - 1; if (type == HID_COLLECTION_APPLICATION) parser->device->maxapplication++; return 0; } /* * Close a collection. */ static int close_collection(struct hid_parser *parser) { if (!parser->collection_stack_ptr) { dbg("collection stack underflow"); return -1; } parser->collection_stack_ptr--; return 0; } /* * Climb up the stack, search for the specified collection type * and return the usage. */ static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type) { int n; for (n = parser->collection_stack_ptr - 1; n >= 0; n--) if (parser->device->collection[parser->collection_stack[n]].type == type) return parser->device->collection[parser->collection_stack[n]].usage; return 0; /* we know nothing about this usage type */ } /* * Add a usage to the temporary parser table. */ static int hid_add_usage(struct hid_parser *parser, unsigned usage) { if (parser->local.usage_index >= HID_MAX_USAGES) { dbg("usage index exceeded"); return -1; } parser->local.usage[parser->local.usage_index] = usage; parser->local.collection_index[parser->local.usage_index] = parser->collection_stack_ptr ? parser->collection_stack[parser->collection_stack_ptr - 1] : 0; parser->local.usage_index++; return 0; } /* * Register a new field for this report. */ static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags) { struct hid_report *report; struct hid_field *field; int usages; unsigned offset; int i; if (!(report = hid_register_report(parser->device, report_type, parser->global.report_id))) { dbg("hid_register_report failed"); return -1; } if (parser->global.logical_maximum < parser->global.logical_minimum) { dbg("logical range invalid %d %d", parser->global.logical_minimum, parser->global.logical_maximum); return -1; } offset = report->size; report->size += parser->global.report_size * parser->global.report_count; if (!parser->local.usage_index) /* Ignore padding fields */ return 0; usages = max_t(int, parser->local.usage_index, parser->global.report_count); if ((field = hid_register_field(report, usages, parser->global.report_count)) == NULL) return 0; field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL); field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL); field->application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION); for (i = 0; i < usages; i++) { int j = i; /* Duplicate the last usage we parsed if we have excess values */ if (i >= parser->local.usage_index) j = parser->local.usage_index - 1; field->usage[i].hid = parser->local.usage[j]; field->usage[i].collection_index = parser->local.collection_index[j]; } field->maxusage = usages; field->flags = flags; field->report_offset = offset; field->report_type = report_type; field->report_size = parser->global.report_size; field->report_count = parser->global.report_count; field->logical_minimum = parser->global.logical_minimum; field->logical_maximum = parser->global.logical_maximum; field->physical_minimum = parser->global.physical_minimum; field->physical_maximum = parser->global.physical_maximum; field->unit_exponent = parser->global.unit_exponent; field->unit = parser->global.unit; return 0; } /* * Read data value from item. */ static __inline__ __u32 item_udata(struct hid_item *item) { switch (item->size) { case 1: return item->data.u8; case 2: return item->data.u16; case 4: return item->data.u32; } return 0; } static __inline__ __s32 item_sdata(struct hid_item *item) { switch (item->size) { case 1: return item->data.s8; case 2: return item->data.s16; case 4: return item->data.s32; } return 0; } /* * Process a global item. */ static int hid_parser_global(struct hid_parser *parser, struct hid_item *item) { switch (item->tag) { case HID_GLOBAL_ITEM_TAG_PUSH: if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) { dbg("global enviroment stack overflow"); return -1; } memcpy(parser->global_stack + parser->global_stack_ptr++, &parser->global, sizeof(struct hid_global)); return 0; case HID_GLOBAL_ITEM_TAG_POP: if (!parser->global_stack_ptr) { dbg("global enviroment stack underflow"); return -1; } memcpy(&parser->global, parser->global_stack + --parser->global_stack_ptr, sizeof(struct hid_global)); return 0; case HID_GLOBAL_ITEM_TAG_USAGE_PAGE: parser->global.usage_page = item_udata(item); return 0; case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM: parser->global.logical_minimum = item_sdata(item); return 0; case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM: if (parser->global.logical_minimum < 0) parser->global.logical_maximum = item_sdata(item); else parser->global.logical_maximum = item_udata(item); return 0; case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM: parser->global.physical_minimum = item_sdata(item); return 0; case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM: if (parser->global.physical_minimum < 0) parser->global.physical_maximum = item_sdata(item); else parser->global.physical_maximum = item_udata(item); return 0; case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT: parser->global.unit_exponent = item_sdata(item); return 0; case HID_GLOBAL_ITEM_TAG_UNIT: parser->global.unit = item_udata(item); return 0; case HID_GLOBAL_ITEM_TAG_REPORT_SIZE: if ((parser->global.report_size = item_udata(item)) > 32) { dbg("invalid report_size %d", parser->global.report_size); return -1; } return 0; case HID_GLOBAL_ITEM_TAG_REPORT_COUNT: if ((parser->global.report_count = item_udata(item)) > HID_MAX_USAGES) { dbg("invalid report_count %d", parser->global.report_count); return -1; } return 0; case HID_GLOBAL_ITEM_TAG_REPORT_ID: if ((parser->global.report_id = item_udata(item)) == 0) { dbg("report_id 0 is invalid"); return -1; } return 0; default: dbg("unknown global tag 0x%x", item->tag); return -1; } } /* * Process a local item. */ static int hid_parser_local(struct hid_parser *parser, struct hid_item *item) { __u32 data; unsigned n; if (item->size == 0) { dbg("item data expected for local item"); return -1; } data = item_udata(item); switch (item->tag) { case HID_LOCAL_ITEM_TAG_DELIMITER: if (data) { /* * We treat items before the first delimiter * as global to all usage sets (branch 0). * In the moment we process only these global * items and the first delimiter set. */ if (parser->local.delimiter_depth != 0) { dbg("nested delimiters"); return -1; } parser->local.delimiter_depth++; parser->local.delimiter_branch++; } else { if (parser->local.delimiter_depth < 1) { dbg("bogus close delimiter"); return -1; } parser->local.delimiter_depth--; } return 1; case HID_LOCAL_ITEM_TAG_USAGE: if (parser->local.delimiter_branch > 1) { dbg("alternative usage ignored"); return 0; } if (item->size <= 2) data = (parser->global.usage_page << 16) + data; return hid_add_usage(parser, data); case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM: if (parser->local.delimiter_branch > 1) { dbg("alternative usage ignored"); return 0; } if (item->size <= 2) data = (parser->global.usage_page << 16) + data; parser->local.usage_minimum = data; return 0; case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM: if (parser->local.delimiter_branch > 1) { dbg("alternative usage ignored"); return 0; } if (item->size <= 2) data = (parser->global.usage_page << 16) + data; for (n = parser->local.usage_minimum; n <= data; n++) if (hid_add_usage(parser, n)) { dbg("hid_add_usage failed\n"); return -1; } return 0; default: dbg("unknown local item tag 0x%x", item->tag); return 0; } return 0; } /* * Process a main item. */ static int hid_parser_main(struct hid_parser *parser, struct hid_item *item) { __u32 data; int ret; data = item_udata(item); switch (item->tag) { case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION: ret = open_collection(parser, data & 0xff); break; case HID_MAIN_ITEM_TAG_END_COLLECTION: ret = close_collection(parser); break; case HID_MAIN_ITEM_TAG_INPUT: ret = hid_add_field(parser, HID_INPUT_REPORT, data); break; case HID_MAIN_ITEM_TAG_OUTPUT: ret = hid_add_field(parser, HID_OUTPUT_REPORT, data); break; case HID_MAIN_ITEM_TAG_FEATURE: ret = hid_add_field(parser, HID_FEATURE_REPORT, data); break; default: dbg("unknown main item tag 0x%x", item->tag); ret = 0; } memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */ return ret; } /* * Process a reserved item. */ static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item) { dbg("reserved item type, tag 0x%x", item->tag); return 0; } /* * Free a report and all registered fields. The field->usage and * field->value table's are allocated behind the field, so we need * only to free(field) itself. */ static void hid_free_report(struct hid_report *report) { unsigned n; for (n = 0; n < report->maxfield; n++) kfree(report->field[n]); kfree(report); } /* * Free a device structure, all reports, and all fields. */ static void hid_free_device(struct hid_device *device) { unsigned i,j; hid_ff_exit(device); for (i = 0; i < HID_REPORT_TYPES; i++) { struct hid_report_enum *report_enum = device->report_enum + i; for (j = 0; j < 256; j++) { struct hid_report *report = report_enum->report_id_hash[j]; if (report) hid_free_report(report); } } if (device->rdesc) kfree(device->rdesc); kfree(device); } /* * Fetch a report description item from the data stream. We support long * items, though they are not used yet. */ static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item) { u8 b; if ((end - start) <= 0) return NULL; b = *start++; item->type = (b >> 2) & 3; item->tag = (b >> 4) & 15; if (item->tag == HID_ITEM_TAG_LONG) { item->format = HID_ITEM_FORMAT_LONG; if ((end - start) < 2) return NULL; item->size = *start++; item->tag = *start++; if ((end - start) < item->size) return NULL; item->data.longdata = start; start += item->size; return start; } item->format = HID_ITEM_FORMAT_SHORT; item->size = b & 3; switch (item->size) { case 0: return start; case 1: if ((end - start) < 1) return NULL; item->data.u8 = *start++; return start; case 2: if ((end - start) < 2) return NULL; item->data.u16 = le16_to_cpu(get_unaligned((__le16*)start)); start = (__u8 *)((__le16 *)start + 1); return start; case 3: item->size++; if ((end - start) < 4) return NULL; item->data.u32 = le32_to_cpu(get_unaligned((__le32*)start)); start = (__u8 *)((__le32 *)start + 1); return start; } return NULL; } /* * Parse a report description into a hid_device structure. Reports are * enumerated, fields are attached to these reports. */ static struct hid_device *hid_parse_report(__u8 *start, unsigned size) { struct hid_device *device; struct hid_parser *parser; struct hid_item item; __u8 *end; unsigned i; static int (*dispatch_type[])(struct hid_parser *parser, struct hid_item *item) = { hid_parser_main, hid_parser_global, hid_parser_local, hid_parser_reserved }; if (!(device = kmalloc(sizeof(struct hid_device), GFP_KERNEL))) return NULL; memset(device, 0, sizeof(struct hid_device)); if (!(device->collection = kmalloc(sizeof(struct hid_collection) * HID_DEFAULT_NUM_COLLECTIONS, GFP_KERNEL))) { kfree(device); return NULL; } memset(device->collection, 0, sizeof(struct hid_collection) * HID_DEFAULT_NUM_COLLECTIONS); device->collection_size = HID_DEFAULT_NUM_COLLECTIONS; for (i = 0; i < HID_REPORT_TYPES; i++) INIT_LIST_HEAD(&device->report_enum[i].report_list); if (!(device->rdesc = (__u8 *)kmalloc(size, GFP_KERNEL))) { kfree(device->collection); kfree(device); return NULL; } memcpy(device->rdesc, start, size); device->rsize = size; if (!(parser = kmalloc(sizeof(struct hid_parser), GFP_KERNEL))) { kfree(device->rdesc); kfree(device->collection); kfree(device); return NULL; } memset(parser, 0, sizeof(struct hid_parser)); parser->device = device; end = start + size; while ((start = fetch_item(start, end, &item)) != NULL) { if (item.format != HID_ITEM_FORMAT_SHORT) { dbg("unexpected long global item"); kfree(device->collection); hid_free_device(device); kfree(parser); return NULL; } if (dispatch_type[item.type](parser, &item)) { dbg("item %u %u %u %u parsing failed\n", item.format, (unsigned)item.size, (unsigned)item.type, (unsigned)item.tag); kfree(device->collection); hid_free_device(device); kfree(parser); return NULL; } if (start == end) { if (parser->collection_stack_ptr) { dbg("unbalanced collection at end of report description"); kfree(device->collection); hid_free_device(device); kfree(parser); return NULL; } if (parser->local.delimiter_depth) { dbg("unbalanced delimiter at end of report description"); kfree(device->collection); hid_free_device(device); kfree(parser); return NULL; } kfree(parser); return device; } } dbg("item fetching failed at offset %d\n", (int)(end - start)); kfree(device->collection); hid_free_device(device); kfree(parser); return NULL; } /* * Convert a signed n-bit integer to signed 32-bit integer. Common * cases are done through the compiler, the screwed things has to be * done by hand. */ static __inline__ __s32 snto32(__u32 value, unsigned n) { switch (n) { case 8: return ((__s8)value); case 16: return ((__s16)value); case 32: return ((__s32)value); } return value & (1 << (n - 1)) ? value | (-1 << n) : value; } /* * Convert a signed 32-bit integer to a signed n-bit integer. */ static __inline__ __u32 s32ton(__s32 value, unsigned n) { __s32 a = value >> (n - 1); if (a && a != -1) return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1; return value & ((1 << n) - 1); } /* * Extract/implement a data field from/to a report. */ static __inline__ __u32 extract(__u8 *report, unsigned offset, unsigned n) { report += (offset >> 5) << 2; offset &= 31; return (le64_to_cpu(get_unaligned((__le64*)report)) >> offset) & ((1 << n) - 1); } static __inline__ void implement(__u8 *report, unsigned offset, unsigned n, __u32 value) { report += (offset >> 5) << 2; offset &= 31; put_unaligned((get_unaligned((__le64*)report) & cpu_to_le64(~((((__u64) 1 << n) - 1) << offset))) | cpu_to_le64((__u64)value << offset), (__le64*)report); } /* * Search an array for a value. */ static __inline__ int search(__s32 *array, __s32 value, unsigned n) { while (n--) { if (*array++ == value) return 0; } return -1; } static void hid_process_event(struct hid_device *hid, struct hid_field *field, struct hid_usage *usage, __s32 value, struct pt_regs *regs) { hid_dump_input(usage, value); if (hid->claimed & HID_CLAIMED_INPUT) hidinput_hid_event(hid, field, usage, value, regs); if (hid->claimed & HID_CLAIMED_HIDDEV) hiddev_hid_event(hid, field, usage, value, regs); } /* * Analyse a received field, and fetch the data from it. The field * content is stored for next report processing (we do differential * reporting to the layer). */ static void hid_input_field(struct hid_device *hid, struct hid_field *field, __u8 *data, struct pt_regs *regs) { unsigned n; unsigned count = field->report_count; unsigned offset = field->report_offset; unsigned size = field->report_size; __s32 min = field->logical_minimum; __s32 max = field->logical_maximum; __s32 *value; if (!(value = kmalloc(sizeof(__s32) * count, GFP_ATOMIC))) return; for (n = 0; n < count; n++) { value[n] = min < 0 ? snto32(extract(data, offset + n * size, size), size) : extract(data, offset + n * size, size); if (!(field->flags & HID_MAIN_ITEM_VARIABLE) /* Ignore report if ErrorRollOver */ && value[n] >= min && value[n] <= max && field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1) goto exit; } for (n = 0; n < count; n++) { if (HID_MAIN_ITEM_VARIABLE & field->flags) { hid_process_event(hid, field, &field->usage[n], value[n], regs); continue; } if (field->value[n] >= min && field->value[n] <= max && field->usage[field->value[n] - min].hid && search(value, field->value[n], count)) hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, regs); if (value[n] >= min && value[n] <= max && field->usage[value[n] - min].hid && search(field->value, value[n], count)) hid_process_event(hid, field, &field->usage[value[n] - min], 1, regs); } memcpy(field->value, value, count * sizeof(__s32)); exit: kfree(value); } static int hid_input_report(int type, struct urb *urb, struct pt_regs *regs) { struct hid_device *hid = urb->context; struct hid_report_enum *report_enum = hid->report_enum + type; u8 *data = urb->transfer_buffer; int len = urb->actual_length; struct hid_report *report; int n, size; if (!len) { dbg("empty report"); return -1; } #ifdef DEBUG_DATA printk(KERN_DEBUG __FILE__ ": report (size %u) (%snumbered)\n", len, report_enum->numbered ? "" : "un"); #endif n = 0; /* Normally report number is 0 */ if (report_enum->numbered) { /* Device uses numbered reports, data[0] is report number */ n = *data++; len--; } #ifdef DEBUG_DATA { int i; printk(KERN_DEBUG __FILE__ ": report %d (size %u) = ", n, len); for (i = 0; i < len; i++) printk(" %02x", data[i]); printk("\n"); } #endif if (!(report = report_enum->report_id_hash[n])) { dbg("undefined report_id %d received", n); return -1; } size = ((report->size - 1) >> 3) + 1; if (len < size) dbg("report %d is too short, (%d < %d)", report->id, len, size); if (hid->claimed & HID_CLAIMED_HIDDEV) hiddev_report_event(hid, report); for (n = 0; n < report->maxfield; n++) hid_input_field(hid, report->field[n], data, regs); if (hid->claimed & HID_CLAIMED_INPUT) hidinput_report_event(hid, report); return 0; } /* * Input interrupt completion handler. */ static void hid_irq_in(struct urb *urb, struct pt_regs *regs) { struct hid_device *hid = urb->context; int status; switch (urb->status) { case 0: /* success */ hid_input_report(HID_INPUT_REPORT, urb, regs); break; case -ECONNRESET: /* unlink */ case -ENOENT: case -EPERM: case -ESHUTDOWN: /* unplug */ case -EILSEQ: /* unplug timeout on uhci */ return; case -ETIMEDOUT: /* NAK */ break; default: /* error */ warn("input irq status %d received", urb->status); } status = usb_submit_urb(urb, SLAB_ATOMIC); if (status) err("can't resubmit intr, %s-%s/input%d, status %d", hid->dev->bus->bus_name, hid->dev->devpath, hid->ifnum, status); } /* * Output the field into the report. */ static void hid_output_field(struct hid_field *field, __u8 *data) { unsigned count = field->report_count; unsigned offset = field->report_offset; unsigned size = field->report_size; unsigned n; for (n = 0; n < count; n++) { if (field->logical_minimum < 0) /* signed values */ implement(data, offset + n * size, size, s32ton(field->value[n], size)); else /* unsigned values */ implement(data, offset + n * size, size, field->value[n]); } } /* * Create a report. */ static void hid_output_report(struct hid_report *report, __u8 *data) { unsigned n; if (report->id > 0) *data++ = report->id; for (n = 0; n < report->maxfield; n++) hid_output_field(report->field[n], data); } /* * Set a field value. The report this field belongs to has to be * created and transferred to the device, to set this value in the * device. */ int hid_set_field(struct hid_field *field, unsigned offset, __s32 value) { unsigned size = field->report_size; hid_dump_input(field->usage + offset, value); if (offset >= field->report_count) { dbg("offset (%d) exceeds report_count (%d)", offset, field->report_count); hid_dump_field(field, 8); return -1; } if (field->logical_minimum < 0) { if (value != snto32(s32ton(value, size), size)) { dbg("value %d is out of range", value); return -1; } } field->value[offset] = value; return 0; } /* * Find a report field with a specified HID usage. */ struct hid_field *hid_find_field_by_usage(struct hid_device *hid, __u32 wanted_usage, int type) { struct hid_report *report; int i; list_for_each_entry(report, &hid->report_enum[type].report_list, list) for (i = 0; i < report->maxfield; i++) if (report->field[i]->logical == wanted_usage) return report->field[i]; return NULL; } static int hid_submit_out(struct hid_device *hid) { struct hid_report *report; report = hid->out[hid->outtail]; hid_output_report(report, hid->outbuf); hid->urbout->transfer_buffer_length = ((report->size - 1) >> 3) + 1 + (report->id > 0); hid->urbout->dev = hid->dev; dbg("submitting out urb"); if (usb_submit_urb(hid->urbout, GFP_ATOMIC)) { err("usb_submit_urb(out) failed"); return -1; } return 0; } static int hid_submit_ctrl(struct hid_device *hid) { struct hid_report *report; unsigned char dir; int len; report = hid->ctrl[hid->ctrltail].report; dir = hid->ctrl[hid->ctrltail].dir; len = ((report->size - 1) >> 3) + 1 + (report->id > 0); if (dir == USB_DIR_OUT) { hid_output_report(report, hid->ctrlbuf); hid->urbctrl->pipe = usb_sndctrlpipe(hid->dev, 0); hid->urbctrl->transfer_buffer_length = len; } else { int maxpacket, padlen; hid->urbctrl->pipe = usb_rcvctrlpipe(hid->dev, 0); maxpacket = usb_maxpacket(hid->dev, hid->urbctrl->pipe, 0); if (maxpacket > 0) { padlen = (len + maxpacket - 1) / maxpacket; padlen *= maxpacket; if (padlen > HID_BUFFER_SIZE) padlen = HID_BUFFER_SIZE; } else padlen = 0; hid->urbctrl->transfer_buffer_length = padlen; } hid->urbctrl->dev = hid->dev; hid->cr->bRequestType = USB_TYPE_CLASS | USB_RECIP_INTERFACE | dir; hid->cr->bRequest = (dir == USB_DIR_OUT) ? HID_REQ_SET_REPORT : HID_REQ_GET_REPORT; hid->cr->wValue = cpu_to_le16(((report->type + 1) << 8) | report->id); hid->cr->wIndex = cpu_to_le16(hid->ifnum); hid->cr->wLength = cpu_to_le16(len); dbg("submitting ctrl urb: %s wValue=0x%04x wIndex=0x%04x wLength=%u", hid->cr->bRequest == HID_REQ_SET_REPORT ? "Set_Report" : "Get_Report", hid->cr->wValue, hid->cr->wIndex, hid->cr->wLength); if (usb_submit_urb(hid->urbctrl, GFP_ATOMIC)) { err("usb_submit_urb(ctrl) failed"); return -1; } return 0; } /* * Output interrupt completion handler. */ static void hid_irq_out(struct urb *urb, struct pt_regs *regs) { struct hid_device *hid = urb->context; unsigned long flags; int unplug = 0; switch (urb->status) { case 0: /* success */ case -ESHUTDOWN: /* unplug */ case -EILSEQ: /* unplug timeout on uhci */ unplug = 1; case -ECONNRESET: /* unlink */ case -ENOENT: break; default: /* error */ warn("output irq status %d received", urb->status); } spin_lock_irqsave(&hid->outlock, flags); if (unplug) hid->outtail = hid->outhead; else hid->outtail = (hid->outtail + 1) & (HID_OUTPUT_FIFO_SIZE - 1); if (hid->outhead != hid->outtail) { if (hid_submit_out(hid)) { clear_bit(HID_OUT_RUNNING, &hid->iofl);; wake_up(&hid->wait); } spin_unlock_irqrestore(&hid->outlock, flags); return; } clear_bit(HID_OUT_RUNNING, &hid->iofl); spin_unlock_irqrestore(&hid->outlock, flags); wake_up(&hid->wait); } /* * Control pipe completion handler. */ static void hid_ctrl(struct urb *urb, struct pt_regs *regs) { struct hid_device *hid = urb->context; unsigned long flags; int unplug = 0; spin_lock_irqsave(&hid->ctrllock, flags); switch (urb->status) { case 0: /* success */ if (hid->ctrl[hid->ctrltail].dir == USB_DIR_IN) hid_input_report(hid->ctrl[hid->ctrltail].report->type, urb, regs); case -ESHUTDOWN: /* unplug */ case -EILSEQ: /* unplug timectrl on uhci */ unplug = 1; case -ECONNRESET: /* unlink */ case -ENOENT: case -EPIPE: /* report not available */ break; default: /* error */ warn("ctrl urb status %d received", urb->status); } if (unplug) hid->ctrltail = hid->ctrlhead; else hid->ctrltail = (hid->ctrltail + 1) & (HID_CONTROL_FIFO_SIZE - 1); if (hid->ctrlhead != hid->ctrltail) { if (hid_submit_ctrl(hid)) { clear_bit(HID_CTRL_RUNNING, &hid->iofl); wake_up(&hid->wait); } spin_unlock_irqrestore(&hid->ctrllock, flags); return; } clear_bit(HID_CTRL_RUNNING, &hid->iofl); spin_unlock_irqrestore(&hid->ctrllock, flags); wake_up(&hid->wait); } void hid_submit_report(struct hid_device *hid, struct hid_report *report, unsigned char dir) { int head; unsigned long flags; if ((hid->quirks & HID_QUIRK_NOGET) && dir == USB_DIR_IN) return; if (hid->urbout && dir == USB_DIR_OUT && report->type == HID_OUTPUT_REPORT) { spin_lock_irqsave(&hid->outlock, flags); if ((head = (hid->outhead + 1) & (HID_OUTPUT_FIFO_SIZE - 1)) == hid->outtail) { spin_unlock_irqrestore(&hid->outlock, flags); warn("output queue full"); return; } hid->out[hid->outhead] = report; hid->outhead = head; if (!test_and_set_bit(HID_OUT_RUNNING, &hid->iofl)) if (hid_submit_out(hid)) clear_bit(HID_OUT_RUNNING, &hid->iofl); spin_unlock_irqrestore(&hid->outlock, flags); return; } spin_lock_irqsave(&hid->ctrllock, flags); if ((head = (hid->ctrlhead + 1) & (HID_CONTROL_FIFO_SIZE - 1)) == hid->ctrltail) { spin_unlock_irqrestore(&hid->ctrllock, flags); warn("control queue full"); return; } hid->ctrl[hid->ctrlhead].report = report; hid->ctrl[hid->ctrlhead].dir = dir; hid->ctrlhead = head; if (!test_and_set_bit(HID_CTRL_RUNNING, &hid->iofl)) if (hid_submit_ctrl(hid)) clear_bit(HID_CTRL_RUNNING, &hid->iofl); spin_unlock_irqrestore(&hid->ctrllock, flags); } int hid_wait_io(struct hid_device *hid) { if (!wait_event_timeout(hid->wait, (!test_bit(HID_CTRL_RUNNING, &hid->iofl) && !test_bit(HID_OUT_RUNNING, &hid->iofl)), 10*HZ)) { dbg("timeout waiting for ctrl or out queue to clear"); return -1; } return 0; } static int hid_get_class_descriptor(struct usb_device *dev, int ifnum, unsigned char type, void *buf, int size) { int result, retries = 4; memset(buf,0,size); // Make sure we parse really received data do { result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), USB_REQ_GET_DESCRIPTOR, USB_RECIP_INTERFACE | USB_DIR_IN, (type << 8), ifnum, buf, size, USB_CTRL_GET_TIMEOUT); retries--; } while (result < size && retries); return result; } int hid_open(struct hid_device *hid) { if (hid->open++) return 0; hid->urbin->dev = hid->dev; if (usb_submit_urb(hid->urbin, GFP_KERNEL)) return -EIO; return 0; } void hid_close(struct hid_device *hid) { if (!--hid->open) usb_kill_urb(hid->urbin); } /* * Initialize all reports */ void hid_init_reports(struct hid_device *hid) { struct hid_report *report; int err, ret; list_for_each_entry(report, &hid->report_enum[HID_INPUT_REPORT].report_list, list) { int size = ((report->size - 1) >> 3) + 1 + hid->report_enum[HID_INPUT_REPORT].numbered; if (size > HID_BUFFER_SIZE) size = HID_BUFFER_SIZE; if (size > hid->urbin->transfer_buffer_length) hid->urbin->transfer_buffer_length = size; hid_submit_report(hid, report, USB_DIR_IN); } list_for_each_entry(report, &hid->report_enum[HID_FEATURE_REPORT].report_list, list) hid_submit_report(hid, report, USB_DIR_IN); err = 0; ret = hid_wait_io(hid); while (ret) { err |= ret; if (test_bit(HID_CTRL_RUNNING, &hid->iofl)) usb_kill_urb(hid->urbctrl); if (test_bit(HID_OUT_RUNNING, &hid->iofl)) usb_kill_urb(hid->urbout); ret = hid_wait_io(hid); } if (err) warn("timeout initializing reports\n"); usb_control_msg(hid->dev, usb_sndctrlpipe(hid->dev, 0), HID_REQ_SET_IDLE, USB_TYPE_CLASS | USB_RECIP_INTERFACE, 0, hid->ifnum, NULL, 0, USB_CTRL_SET_TIMEOUT); } #define USB_VENDOR_ID_WACOM 0x056a #define USB_DEVICE_ID_WACOM_PENPARTNER 0x0000 #define USB_DEVICE_ID_WACOM_GRAPHIRE 0x0010 #define USB_DEVICE_ID_WACOM_INTUOS 0x0020 #define USB_DEVICE_ID_WACOM_PL 0x0030 #define USB_DEVICE_ID_WACOM_INTUOS2 0x0040 #define USB_DEVICE_ID_WACOM_VOLITO 0x0060 #define USB_DEVICE_ID_WACOM_PTU 0x0003 #define USB_VENDOR_ID_KBGEAR 0x084e #define USB_DEVICE_ID_KBGEAR_JAMSTUDIO 0x1001 #define USB_VENDOR_ID_AIPTEK 0x08ca #define USB_DEVICE_ID_AIPTEK_01 0x0001 #define USB_DEVICE_ID_AIPTEK_10 0x0010 #define USB_DEVICE_ID_AIPTEK_20 0x0020 #define USB_DEVICE_ID_AIPTEK_21 0x0021 #define USB_DEVICE_ID_AIPTEK_22 0x0022 #define USB_DEVICE_ID_AIPTEK_23 0x0023 #define USB_DEVICE_ID_AIPTEK_24 0x0024 #define USB_VENDOR_ID_GRIFFIN 0x077d #define USB_DEVICE_ID_POWERMATE 0x0410 #define USB_DEVICE_ID_SOUNDKNOB 0x04AA #define USB_VENDOR_ID_ATEN 0x0557 #define USB_DEVICE_ID_ATEN_UC100KM 0x2004 #define USB_DEVICE_ID_ATEN_CS124U 0x2202 #define USB_DEVICE_ID_ATEN_2PORTKVM 0x2204 #define USB_DEVICE_ID_ATEN_4PORTKVM 0x2205 #define USB_DEVICE_ID_ATEN_4PORTKVMC 0x2208 #define USB_VENDOR_ID_TOPMAX 0x0663 #define USB_DEVICE_ID_TOPMAX_COBRAPAD 0x0103 #define USB_VENDOR_ID_HAPP 0x078b #define USB_DEVICE_ID_UGCI_DRIVING 0x0010 #define USB_DEVICE_ID_UGCI_FLYING 0x0020 #define USB_DEVICE_ID_UGCI_FIGHTING 0x0030 #define USB_VENDOR_ID_MGE 0x0463 #define USB_DEVICE_ID_MGE_UPS 0xffff #define USB_DEVICE_ID_MGE_UPS1 0x0001 #define USB_VENDOR_ID_ONTRAK 0x0a07 #define USB_DEVICE_ID_ONTRAK_ADU100 0x0064 #define USB_VENDOR_ID_TANGTOP 0x0d3d #define USB_DEVICE_ID_TANGTOP_USBPS2 0x0001 #define USB_VENDOR_ID_ESSENTIAL_REALITY 0x0d7f #define USB_DEVICE_ID_ESSENTIAL_REALITY_P5 0x0100 #define USB_VENDOR_ID_A4TECH 0x09da #define USB_DEVICE_ID_A4TECH_WCP32PU 0x0006 #define USB_VENDOR_ID_CYPRESS 0x04b4 #define USB_DEVICE_ID_CYPRESS_MOUSE 0x0001 #define USB_DEVICE_ID_CYPRESS_HIDCOM 0x5500 #define USB_VENDOR_ID_BERKSHIRE 0x0c98 #define USB_DEVICE_ID_BERKSHIRE_PCWD 0x1140 #define USB_VENDOR_ID_ALPS 0x0433 #define USB_DEVICE_ID_IBM_GAMEPAD 0x1101 #define USB_VENDOR_ID_SAITEK 0x06a3 #define USB_DEVICE_ID_SAITEK_RUMBLEPAD 0xff17 #define USB_VENDOR_ID_NEC 0x073e #define USB_DEVICE_ID_NEC_USB_GAME_PAD 0x0301 #define USB_VENDOR_ID_CHIC 0x05fe #define USB_DEVICE_ID_CHIC_GAMEPAD 0x0014 #define USB_VENDOR_ID_GLAB 0x06c2 #define USB_DEVICE_ID_4_PHIDGETSERVO_30 0x0038 #define USB_DEVICE_ID_1_PHIDGETSERVO_30 0x0039 #define USB_DEVICE_ID_8_8_8_IF_KIT 0x0045 #define USB_DEVICE_ID_0_0_4_IF_KIT 0x0040 #define USB_DEVICE_ID_0_8_8_IF_KIT 0x0053 #define USB_VENDOR_ID_WISEGROUP 0x0925 #define USB_DEVICE_ID_1_PHIDGETSERVO_20 0x8101 #define USB_DEVICE_ID_4_PHIDGETSERVO_20 0x8104 #define USB_VENDOR_ID_CODEMERCS 0x07c0 #define USB_DEVICE_ID_CODEMERCS_IOW40 0x1500 #define USB_DEVICE_ID_CODEMERCS_IOW24 0x1501 #define USB_DEVICE_ID_CODEMERCS_IOW48 0x1502 #define USB_DEVICE_ID_CODEMERCS_IOW28 0x1503 #define USB_VENDOR_ID_DELORME 0x1163 #define USB_DEVICE_ID_DELORME_EARTHMATE 0x0100 #define USB_VENDOR_ID_MCC 0x09db #define USB_DEVICE_ID_MCC_PMD1024LS 0x0076 #define USB_DEVICE_ID_MCC_PMD1208LS 0x007a #define USB_VENDOR_ID_CHICONY 0x04f2 #define USB_DEVICE_ID_CHICONY_USBHUB_KB 0x0100 #define USB_VENDOR_ID_BTC 0x046e #define USB_DEVICE_ID_BTC_KEYBOARD 0x5303 /* * Alphabetically sorted blacklist by quirk type. */ static struct hid_blacklist { __u16 idVendor; __u16 idProduct; unsigned quirks; } hid_blacklist[] = { { USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_01, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_10, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_20, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_21, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_22, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_23, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_24, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_BERKSHIRE, USB_DEVICE_ID_BERKSHIRE_PCWD, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_CODEMERCS, USB_DEVICE_ID_CODEMERCS_IOW40, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_CODEMERCS, USB_DEVICE_ID_CODEMERCS_IOW24, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_CODEMERCS, USB_DEVICE_ID_CODEMERCS_IOW48, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_CODEMERCS, USB_DEVICE_ID_CODEMERCS_IOW28, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_HIDCOM, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_DELORME, USB_DEVICE_ID_DELORME_EARTHMATE, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_ESSENTIAL_REALITY, USB_DEVICE_ID_ESSENTIAL_REALITY_P5, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_GLAB, USB_DEVICE_ID_4_PHIDGETSERVO_30, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_GLAB, USB_DEVICE_ID_1_PHIDGETSERVO_30, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_GLAB, USB_DEVICE_ID_8_8_8_IF_KIT, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_GLAB, USB_DEVICE_ID_0_0_4_IF_KIT, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_GLAB, USB_DEVICE_ID_0_8_8_IF_KIT, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_GRIFFIN, USB_DEVICE_ID_POWERMATE, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_GRIFFIN, USB_DEVICE_ID_SOUNDKNOB, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_KBGEAR, USB_DEVICE_ID_KBGEAR_JAMSTUDIO, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_MCC, USB_DEVICE_ID_MCC_PMD1024LS, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_MCC, USB_DEVICE_ID_MCC_PMD1208LS, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 100, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 200, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 300, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 400, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 500, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_PENPARTNER, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_GRAPHIRE, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_GRAPHIRE + 1, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_GRAPHIRE + 2, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_GRAPHIRE + 3, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_GRAPHIRE + 4, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS + 1, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS + 2, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS + 3, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS + 4, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_PL, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_PL + 1, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_PL + 2, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_PL + 3, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_PL + 4, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_PL + 5, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS2 + 1, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS2 + 2, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS2 + 3, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS2 + 4, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS2 + 5, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_INTUOS2 + 7, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_VOLITO, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_PTU, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_4_PHIDGETSERVO_20, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_1_PHIDGETSERVO_20, HID_QUIRK_IGNORE }, { USB_VENDOR_ID_ATEN, USB_DEVICE_ID_ATEN_UC100KM, HID_QUIRK_NOGET }, { USB_VENDOR_ID_ATEN, USB_DEVICE_ID_ATEN_CS124U, HID_QUIRK_NOGET }, { USB_VENDOR_ID_ATEN, USB_DEVICE_ID_ATEN_2PORTKVM, HID_QUIRK_NOGET }, { USB_VENDOR_ID_ATEN, USB_DEVICE_ID_ATEN_4PORTKVM, HID_QUIRK_NOGET }, { USB_VENDOR_ID_ATEN, USB_DEVICE_ID_ATEN_4PORTKVMC, HID_QUIRK_NOGET }, { USB_VENDOR_ID_BTC, USB_DEVICE_ID_BTC_KEYBOARD, HID_QUIRK_NOGET}, { USB_VENDOR_ID_CHICONY, USB_DEVICE_ID_CHICONY_USBHUB_KB, HID_QUIRK_NOGET}, { USB_VENDOR_ID_TANGTOP, USB_DEVICE_ID_TANGTOP_USBPS2, HID_QUIRK_NOGET }, { USB_VENDOR_ID_A4TECH, USB_DEVICE_ID_A4TECH_WCP32PU, HID_QUIRK_2WHEEL_MOUSE_HACK_7 }, { USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_MOUSE, HID_QUIRK_2WHEEL_MOUSE_HACK_5 }, { USB_VENDOR_ID_ALPS, USB_DEVICE_ID_IBM_GAMEPAD, HID_QUIRK_BADPAD }, { USB_VENDOR_ID_CHIC, USB_DEVICE_ID_CHIC_GAMEPAD, HID_QUIRK_BADPAD }, { USB_VENDOR_ID_HAPP, USB_DEVICE_ID_UGCI_DRIVING, HID_QUIRK_BADPAD | HID_QUIRK_MULTI_INPUT }, { USB_VENDOR_ID_HAPP, USB_DEVICE_ID_UGCI_FLYING, HID_QUIRK_BADPAD | HID_QUIRK_MULTI_INPUT }, { USB_VENDOR_ID_HAPP, USB_DEVICE_ID_UGCI_FIGHTING, HID_QUIRK_BADPAD | HID_QUIRK_MULTI_INPUT }, { USB_VENDOR_ID_NEC, USB_DEVICE_ID_NEC_USB_GAME_PAD, HID_QUIRK_BADPAD }, { USB_VENDOR_ID_SAITEK, USB_DEVICE_ID_SAITEK_RUMBLEPAD, HID_QUIRK_BADPAD }, { USB_VENDOR_ID_TOPMAX, USB_DEVICE_ID_TOPMAX_COBRAPAD, HID_QUIRK_BADPAD }, { 0, 0 } }; static int hid_alloc_buffers(struct usb_device *dev, struct hid_device *hid) { if (!(hid->inbuf = usb_buffer_alloc(dev, HID_BUFFER_SIZE, SLAB_ATOMIC, &hid->inbuf_dma))) return -1; if (!(hid->outbuf = usb_buffer_alloc(dev, HID_BUFFER_SIZE, SLAB_ATOMIC, &hid->outbuf_dma))) return -1; if (!(hid->cr = usb_buffer_alloc(dev, sizeof(*(hid->cr)), SLAB_ATOMIC, &hid->cr_dma))) return -1; if (!(hid->ctrlbuf = usb_buffer_alloc(dev, HID_BUFFER_SIZE, SLAB_ATOMIC, &hid->ctrlbuf_dma))) return -1; return 0; } static void hid_free_buffers(struct usb_device *dev, struct hid_device *hid) { if (hid->inbuf) usb_buffer_free(dev, HID_BUFFER_SIZE, hid->inbuf, hid->inbuf_dma); if (hid->outbuf) usb_buffer_free(dev, HID_BUFFER_SIZE, hid->outbuf, hid->outbuf_dma); if (hid->cr) usb_buffer_free(dev, sizeof(*(hid->cr)), hid->cr, hid->cr_dma); if (hid->ctrlbuf) usb_buffer_free(dev, HID_BUFFER_SIZE, hid->ctrlbuf, hid->ctrlbuf_dma); } static struct hid_device *usb_hid_configure(struct usb_interface *intf) { struct usb_host_interface *interface = intf->cur_altsetting; struct usb_device *dev = interface_to_usbdev (intf); struct hid_descriptor *hdesc; struct hid_device *hid; unsigned quirks = 0, rsize = 0; char *buf, *rdesc; int n; for (n = 0; hid_blacklist[n].idVendor; n++) if ((hid_blacklist[n].idVendor == le16_to_cpu(dev->descriptor.idVendor)) && (hid_blacklist[n].idProduct == le16_to_cpu(dev->descriptor.idProduct))) quirks = hid_blacklist[n].quirks; if (quirks & HID_QUIRK_IGNORE) return NULL; if (usb_get_extra_descriptor(interface, HID_DT_HID, &hdesc) && ((!interface->desc.bNumEndpoints) || usb_get_extra_descriptor(&interface->endpoint[0], HID_DT_HID, &hdesc))) { dbg("class descriptor not present\n"); return NULL; } for (n = 0; n < hdesc->bNumDescriptors; n++) if (hdesc->desc[n].bDescriptorType == HID_DT_REPORT) rsize = le16_to_cpu(hdesc->desc[n].wDescriptorLength); if (!rsize || rsize > HID_MAX_DESCRIPTOR_SIZE) { dbg("weird size of report descriptor (%u)", rsize); return NULL; } if (!(rdesc = kmalloc(rsize, GFP_KERNEL))) { dbg("couldn't allocate rdesc memory"); return NULL; } if ((n = hid_get_class_descriptor(dev, interface->desc.bInterfaceNumber, HID_DT_REPORT, rdesc, rsize)) < 0) { dbg("reading report descriptor failed"); kfree(rdesc); return NULL; } #ifdef DEBUG_DATA printk(KERN_DEBUG __FILE__ ": report descriptor (size %u, read %d) = ", rsize, n); for (n = 0; n < rsize; n++) printk(" %02x", (unsigned char) rdesc[n]); printk("\n"); #endif if (!(hid = hid_parse_report(rdesc, n))) { dbg("parsing report descriptor failed"); kfree(rdesc); return NULL; } kfree(rdesc); hid->quirks = quirks; if (hid_alloc_buffers(dev, hid)) { hid_free_buffers(dev, hid); goto fail; } for (n = 0; n < interface->desc.bNumEndpoints; n++) { struct usb_endpoint_descriptor *endpoint; int pipe; int interval; endpoint = &interface->endpoint[n].desc; if ((endpoint->bmAttributes & 3) != 3) /* Not an interrupt endpoint */ continue; /* handle potential highspeed HID correctly */ interval = endpoint->bInterval; if (dev->speed == USB_SPEED_HIGH) interval = 1 << (interval - 1); /* Change the polling interval of mice. */ if (hid->collection->usage == HID_GD_MOUSE && hid_mousepoll_interval > 0) interval = hid_mousepoll_interval; if (endpoint->bEndpointAddress & USB_DIR_IN) { if (hid->urbin) continue; if (!(hid->urbin = usb_alloc_urb(0, GFP_KERNEL))) goto fail; pipe = usb_rcvintpipe(dev, endpoint->bEndpointAddress); usb_fill_int_urb(hid->urbin, dev, pipe, hid->inbuf, 0, hid_irq_in, hid, interval); hid->urbin->transfer_dma = hid->inbuf_dma; hid->urbin->transfer_flags |=(URB_NO_TRANSFER_DMA_MAP | URB_ASYNC_UNLINK); } else { if (hid->urbout) continue; if (!(hid->urbout = usb_alloc_urb(0, GFP_KERNEL))) goto fail; pipe = usb_sndintpipe(dev, endpoint->bEndpointAddress); usb_fill_int_urb(hid->urbout, dev, pipe, hid->outbuf, 0, hid_irq_out, hid, interval); hid->urbout->transfer_dma = hid->outbuf_dma; hid->urbout->transfer_flags |= (URB_NO_TRANSFER_DMA_MAP | URB_ASYNC_UNLINK); } } if (!hid->urbin) { err("couldn't find an input interrupt endpoint"); goto fail; } init_waitqueue_head(&hid->wait); spin_lock_init(&hid->outlock); spin_lock_init(&hid->ctrllock); hid->version = le16_to_cpu(hdesc->bcdHID); hid->country = hdesc->bCountryCode; hid->dev = dev; hid->intf = intf; hid->ifnum = interface->desc.bInterfaceNumber; hid->name[0] = 0; if (!(buf = kmalloc(64, GFP_KERNEL))) goto fail; if (dev->manufacturer) { strcat(hid->name, dev->manufacturer); if (dev->product) snprintf(hid->name, 64, "%s %s", hid->name, dev->product); } else if (dev->product) { snprintf(hid->name, 128, "%s", dev->product); } else snprintf(hid->name, 128, "%04x:%04x", le16_to_cpu(dev->descriptor.idVendor), le16_to_cpu(dev->descriptor.idProduct)); usb_make_path(dev, buf, 64); snprintf(hid->phys, 64, "%s/input%d", buf, intf->altsetting[0].desc.bInterfaceNumber); if (usb_string(dev, dev->descriptor.iSerialNumber, hid->uniq, 64) <= 0) hid->uniq[0] = 0; kfree(buf); hid->urbctrl = usb_alloc_urb(0, GFP_KERNEL); if (!hid->urbctrl) goto fail; usb_fill_control_urb(hid->urbctrl, dev, 0, (void *) hid->cr, hid->ctrlbuf, 1, hid_ctrl, hid); hid->urbctrl->setup_dma = hid->cr_dma; hid->urbctrl->transfer_dma = hid->ctrlbuf_dma; hid->urbctrl->transfer_flags |= (URB_NO_TRANSFER_DMA_MAP | URB_NO_SETUP_DMA_MAP | URB_ASYNC_UNLINK); return hid; fail: if (hid->urbin) usb_free_urb(hid->urbin); if (hid->urbout) usb_free_urb(hid->urbout); if (hid->urbctrl) usb_free_urb(hid->urbctrl); hid_free_buffers(dev, hid); hid_free_device(hid); return NULL; } static void hid_disconnect(struct usb_interface *intf) { struct hid_device *hid = usb_get_intfdata (intf); if (!hid) return; usb_set_intfdata(intf, NULL); usb_kill_urb(hid->urbin); usb_kill_urb(hid->urbout); usb_kill_urb(hid->urbctrl); if (hid->claimed & HID_CLAIMED_INPUT) hidinput_disconnect(hid); if (hid->claimed & HID_CLAIMED_HIDDEV) hiddev_disconnect(hid); usb_free_urb(hid->urbin); usb_free_urb(hid->urbctrl); if (hid->urbout) usb_free_urb(hid->urbout); hid_free_buffers(hid->dev, hid); hid_free_device(hid); } static int hid_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct hid_device *hid; char path[64]; int i; char *c; dbg("HID probe called for ifnum %d", intf->altsetting->desc.bInterfaceNumber); if (!(hid = usb_hid_configure(intf))) return -EIO; hid_init_reports(hid); hid_dump_device(hid); if (!hidinput_connect(hid)) hid->claimed |= HID_CLAIMED_INPUT; if (!hiddev_connect(hid)) hid->claimed |= HID_CLAIMED_HIDDEV; usb_set_intfdata(intf, hid); if (!hid->claimed) { printk ("HID device not claimed by input or hiddev\n"); hid_disconnect(intf); return -EIO; } printk(KERN_INFO); if (hid->claimed & HID_CLAIMED_INPUT) printk("input"); if (hid->claimed == (HID_CLAIMED_INPUT | HID_CLAIMED_HIDDEV)) printk(","); if (hid->claimed & HID_CLAIMED_HIDDEV) printk("hiddev%d", hid->minor); c = "Device"; for (i = 0; i < hid->maxcollection; i++) { if (hid->collection[i].type == HID_COLLECTION_APPLICATION && (hid->collection[i].usage & HID_USAGE_PAGE) == HID_UP_GENDESK && (hid->collection[i].usage & 0xffff) < ARRAY_SIZE(hid_types)) { c = hid_types[hid->collection[i].usage & 0xffff]; break; } } usb_make_path(interface_to_usbdev(intf), path, 63); printk(": USB HID v%x.%02x %s [%s] on %s\n", hid->version >> 8, hid->version & 0xff, c, hid->name, path); return 0; } static int hid_suspend(struct usb_interface *intf, pm_message_t message) { struct hid_device *hid = usb_get_intfdata (intf); usb_kill_urb(hid->urbin); intf->dev.power.power_state = PMSG_SUSPEND; dev_dbg(&intf->dev, "suspend\n"); return 0; } static int hid_resume(struct usb_interface *intf) { struct hid_device *hid = usb_get_intfdata (intf); int status; intf->dev.power.power_state = PMSG_ON; if (hid->open) status = usb_submit_urb(hid->urbin, GFP_NOIO); else status = 0; dev_dbg(&intf->dev, "resume status %d\n", status); return status; } static struct usb_device_id hid_usb_ids [] = { { .match_flags = USB_DEVICE_ID_MATCH_INT_CLASS, .bInterfaceClass = USB_INTERFACE_CLASS_HID }, { } /* Terminating entry */ }; MODULE_DEVICE_TABLE (usb, hid_usb_ids); static struct usb_driver hid_driver = { .owner = THIS_MODULE, .name = "usbhid", .probe = hid_probe, .disconnect = hid_disconnect, .suspend = hid_suspend, .resume = hid_resume, .id_table = hid_usb_ids, }; static int __init hid_init(void) { int retval; retval = hiddev_init(); if (retval) goto hiddev_init_fail; retval = usb_register(&hid_driver); if (retval) goto usb_register_fail; info(DRIVER_VERSION ":" DRIVER_DESC); return 0; usb_register_fail: hiddev_exit(); hiddev_init_fail: return retval; } static void __exit hid_exit(void) { usb_deregister(&hid_driver); hiddev_exit(); } module_init(hid_init); module_exit(hid_exit); MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_LICENSE(DRIVER_LICENSE);