/* * Copyright (c) 2004 Topspin Communications. All rights reserved. * Copyright (c) 2005 Intel Corporation. All rights reserved. * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. * Copyright (c) 2005 Voltaire, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include #include #include #include "core_priv.h" struct ib_pkey_cache { int table_len; u16 table[0]; }; struct ib_update_work { struct work_struct work; struct ib_device *device; u8 port_num; bool enforce_security; }; union ib_gid zgid; EXPORT_SYMBOL(zgid); enum gid_attr_find_mask { GID_ATTR_FIND_MASK_GID = 1UL << 0, GID_ATTR_FIND_MASK_NETDEV = 1UL << 1, GID_ATTR_FIND_MASK_DEFAULT = 1UL << 2, GID_ATTR_FIND_MASK_GID_TYPE = 1UL << 3, }; enum gid_table_entry_props { GID_TABLE_ENTRY_INVALID = 1UL << 0, GID_TABLE_ENTRY_DEFAULT = 1UL << 1, }; struct ib_gid_table_entry { unsigned long props; union ib_gid gid; struct ib_gid_attr attr; void *context; }; struct ib_gid_table { int sz; /* In RoCE, adding a GID to the table requires: * (a) Find if this GID is already exists. * (b) Find a free space. * (c) Write the new GID * * Delete requires different set of operations: * (a) Find the GID * (b) Delete it. * **/ /* Any writer to data_vec must hold this lock and the write side of * rwlock. readers must hold only rwlock. All writers must be in a * sleepable context. */ struct mutex lock; /* rwlock protects data_vec[ix]->props. */ rwlock_t rwlock; struct ib_gid_table_entry *data_vec; }; static void dispatch_gid_change_event(struct ib_device *ib_dev, u8 port) { struct ib_event event; event.device = ib_dev; event.element.port_num = port; event.event = IB_EVENT_GID_CHANGE; ib_dispatch_event(&event); } static const char * const gid_type_str[] = { [IB_GID_TYPE_IB] = "IB/RoCE v1", [IB_GID_TYPE_ROCE_UDP_ENCAP] = "RoCE v2", }; const char *ib_cache_gid_type_str(enum ib_gid_type gid_type) { if (gid_type < ARRAY_SIZE(gid_type_str) && gid_type_str[gid_type]) return gid_type_str[gid_type]; return "Invalid GID type"; } EXPORT_SYMBOL(ib_cache_gid_type_str); /** rdma_is_zero_gid - Check if given GID is zero or not. * @gid: GID to check * Returns true if given GID is zero, returns false otherwise. */ bool rdma_is_zero_gid(const union ib_gid *gid) { return !memcmp(gid, &zgid, sizeof(*gid)); } EXPORT_SYMBOL(rdma_is_zero_gid); int ib_cache_gid_parse_type_str(const char *buf) { unsigned int i; size_t len; int err = -EINVAL; len = strlen(buf); if (len == 0) return -EINVAL; if (buf[len - 1] == '\n') len--; for (i = 0; i < ARRAY_SIZE(gid_type_str); ++i) if (gid_type_str[i] && !strncmp(buf, gid_type_str[i], len) && len == strlen(gid_type_str[i])) { err = i; break; } return err; } EXPORT_SYMBOL(ib_cache_gid_parse_type_str); static void del_roce_gid(struct ib_device *device, u8 port_num, struct ib_gid_table *table, int ix) { pr_debug("%s device=%s port=%d index=%d gid %pI6\n", __func__, device->name, port_num, ix, table->data_vec[ix].gid.raw); if (rdma_cap_roce_gid_table(device, port_num)) device->del_gid(&table->data_vec[ix].attr, &table->data_vec[ix].context); dev_put(table->data_vec[ix].attr.ndev); } static int add_roce_gid(struct ib_gid_table *table, const union ib_gid *gid, const struct ib_gid_attr *attr) { struct ib_gid_table_entry *entry; int ix = attr->index; int ret = 0; if (!attr->ndev) { pr_err("%s NULL netdev device=%s port=%d index=%d\n", __func__, attr->device->name, attr->port_num, attr->index); return -EINVAL; } entry = &table->data_vec[ix]; if ((entry->props & GID_TABLE_ENTRY_INVALID) == 0) { WARN(1, "GID table corruption device=%s port=%d index=%d\n", attr->device->name, attr->port_num, attr->index); return -EINVAL; } if (rdma_cap_roce_gid_table(attr->device, attr->port_num)) { ret = attr->device->add_gid(gid, attr, &entry->context); if (ret) { pr_err("%s GID add failed device=%s port=%d index=%d\n", __func__, attr->device->name, attr->port_num, attr->index); goto add_err; } } dev_hold(attr->ndev); add_err: if (!ret) pr_debug("%s device=%s port=%d index=%d gid %pI6\n", __func__, attr->device->name, attr->port_num, ix, gid->raw); return ret; } /** * add_modify_gid - Add or modify GID table entry * * @table: GID table in which GID to be added or modified * @gid: GID content * @attr: Attributes of the GID * * Returns 0 on success or appropriate error code. It accepts zero * GID addition for non RoCE ports for HCA's who report them as valid * GID. However such zero GIDs are not added to the cache. */ static int add_modify_gid(struct ib_gid_table *table, const union ib_gid *gid, const struct ib_gid_attr *attr) { int ret; if (rdma_protocol_roce(attr->device, attr->port_num)) { ret = add_roce_gid(table, gid, attr); if (ret) return ret; } else { /* * Some HCA's report multiple GID entries with only one * valid GID, but remaining as zero GID. * So ignore such behavior for IB link layer and don't * fail the call, but don't add such entry to GID cache. */ if (rdma_is_zero_gid(gid)) return 0; } lockdep_assert_held(&table->lock); memcpy(&table->data_vec[attr->index].gid, gid, sizeof(*gid)); memcpy(&table->data_vec[attr->index].attr, attr, sizeof(*attr)); write_lock_irq(&table->rwlock); table->data_vec[attr->index].props &= ~GID_TABLE_ENTRY_INVALID; write_unlock_irq(&table->rwlock); return 0; } /** * del_gid - Delete GID table entry * * @ib_dev: IB device whose GID entry to be deleted * @port: Port number of the IB device * @table: GID table of the IB device for a port * @ix: GID entry index to delete * */ static void del_gid(struct ib_device *ib_dev, u8 port, struct ib_gid_table *table, int ix) { lockdep_assert_held(&table->lock); write_lock_irq(&table->rwlock); table->data_vec[ix].props |= GID_TABLE_ENTRY_INVALID; write_unlock_irq(&table->rwlock); if (rdma_protocol_roce(ib_dev, port)) del_roce_gid(ib_dev, port, table, ix); memset(&table->data_vec[ix].gid, 0, sizeof(table->data_vec[ix].gid)); memset(&table->data_vec[ix].attr, 0, sizeof(table->data_vec[ix].attr)); table->data_vec[ix].context = NULL; } /* rwlock should be read locked, or lock should be held */ static int find_gid(struct ib_gid_table *table, const union ib_gid *gid, const struct ib_gid_attr *val, bool default_gid, unsigned long mask, int *pempty) { int i = 0; int found = -1; int empty = pempty ? -1 : 0; while (i < table->sz && (found < 0 || empty < 0)) { struct ib_gid_table_entry *data = &table->data_vec[i]; struct ib_gid_attr *attr = &data->attr; int curr_index = i; i++; /* find_gid() is used during GID addition where it is expected * to return a free entry slot which is not duplicate. * Free entry slot is requested and returned if pempty is set, * so lookup free slot only if requested. */ if (pempty && empty < 0) { if (data->props & GID_TABLE_ENTRY_INVALID && (default_gid == !!(data->props & GID_TABLE_ENTRY_DEFAULT))) { /* * Found an invalid (free) entry; allocate it. * If default GID is requested, then our * found slot must be one of the DEFAULT * reserved slots or we fail. * This ensures that only DEFAULT reserved * slots are used for default property GIDs. */ empty = curr_index; } } /* * Additionally find_gid() is used to find valid entry during * lookup operation, where validity needs to be checked. So * find the empty entry first to continue to search for a free * slot and ignore its INVALID flag. */ if (data->props & GID_TABLE_ENTRY_INVALID) continue; if (found >= 0) continue; if (mask & GID_ATTR_FIND_MASK_GID_TYPE && attr->gid_type != val->gid_type) continue; if (mask & GID_ATTR_FIND_MASK_GID && memcmp(gid, &data->gid, sizeof(*gid))) continue; if (mask & GID_ATTR_FIND_MASK_NETDEV && attr->ndev != val->ndev) continue; if (mask & GID_ATTR_FIND_MASK_DEFAULT && !!(data->props & GID_TABLE_ENTRY_DEFAULT) != default_gid) continue; found = curr_index; } if (pempty) *pempty = empty; return found; } static void make_default_gid(struct net_device *dev, union ib_gid *gid) { gid->global.subnet_prefix = cpu_to_be64(0xfe80000000000000LL); addrconf_ifid_eui48(&gid->raw[8], dev); } static int __ib_cache_gid_add(struct ib_device *ib_dev, u8 port, union ib_gid *gid, struct ib_gid_attr *attr, unsigned long mask, bool default_gid) { struct ib_gid_table *table; int ret = 0; int empty; int ix; /* Do not allow adding zero GID in support of * IB spec version 1.3 section 4.1.1 point (6) and * section 12.7.10 and section 12.7.20 */ if (rdma_is_zero_gid(gid)) return -EINVAL; table = ib_dev->cache.ports[port - rdma_start_port(ib_dev)].gid; mutex_lock(&table->lock); ix = find_gid(table, gid, attr, default_gid, mask, &empty); if (ix >= 0) goto out_unlock; if (empty < 0) { ret = -ENOSPC; goto out_unlock; } attr->device = ib_dev; attr->index = empty; attr->port_num = port; ret = add_modify_gid(table, gid, attr); if (!ret) dispatch_gid_change_event(ib_dev, port); out_unlock: mutex_unlock(&table->lock); if (ret) pr_warn("%s: unable to add gid %pI6 error=%d\n", __func__, gid->raw, ret); return ret; } int ib_cache_gid_add(struct ib_device *ib_dev, u8 port, union ib_gid *gid, struct ib_gid_attr *attr) { struct net_device *idev; unsigned long mask; int ret; if (ib_dev->get_netdev) { idev = ib_dev->get_netdev(ib_dev, port); if (idev && attr->ndev != idev) { union ib_gid default_gid; /* Adding default GIDs in not permitted */ make_default_gid(idev, &default_gid); if (!memcmp(gid, &default_gid, sizeof(*gid))) { dev_put(idev); return -EPERM; } } if (idev) dev_put(idev); } mask = GID_ATTR_FIND_MASK_GID | GID_ATTR_FIND_MASK_GID_TYPE | GID_ATTR_FIND_MASK_NETDEV; ret = __ib_cache_gid_add(ib_dev, port, gid, attr, mask, false); return ret; } static int _ib_cache_gid_del(struct ib_device *ib_dev, u8 port, union ib_gid *gid, struct ib_gid_attr *attr, unsigned long mask, bool default_gid) { struct ib_gid_table *table; int ret = 0; int ix; table = ib_dev->cache.ports[port - rdma_start_port(ib_dev)].gid; mutex_lock(&table->lock); ix = find_gid(table, gid, attr, default_gid, mask, NULL); if (ix < 0) { ret = -EINVAL; goto out_unlock; } del_gid(ib_dev, port, table, ix); dispatch_gid_change_event(ib_dev, port); out_unlock: mutex_unlock(&table->lock); if (ret) pr_debug("%s: can't delete gid %pI6 error=%d\n", __func__, gid->raw, ret); return ret; } int ib_cache_gid_del(struct ib_device *ib_dev, u8 port, union ib_gid *gid, struct ib_gid_attr *attr) { unsigned long mask = GID_ATTR_FIND_MASK_GID | GID_ATTR_FIND_MASK_GID_TYPE | GID_ATTR_FIND_MASK_DEFAULT | GID_ATTR_FIND_MASK_NETDEV; return _ib_cache_gid_del(ib_dev, port, gid, attr, mask, false); } int ib_cache_gid_del_all_netdev_gids(struct ib_device *ib_dev, u8 port, struct net_device *ndev) { struct ib_gid_table *table; int ix; bool deleted = false; table = ib_dev->cache.ports[port - rdma_start_port(ib_dev)].gid; mutex_lock(&table->lock); for (ix = 0; ix < table->sz; ix++) { if (table->data_vec[ix].attr.ndev == ndev) { del_gid(ib_dev, port, table, ix); deleted = true; } } mutex_unlock(&table->lock); if (deleted) dispatch_gid_change_event(ib_dev, port); return 0; } static int __ib_cache_gid_get(struct ib_device *ib_dev, u8 port, int index, union ib_gid *gid, struct ib_gid_attr *attr) { struct ib_gid_table *table; table = ib_dev->cache.ports[port - rdma_start_port(ib_dev)].gid; if (index < 0 || index >= table->sz) return -EINVAL; if (table->data_vec[index].props & GID_TABLE_ENTRY_INVALID) return -EAGAIN; memcpy(gid, &table->data_vec[index].gid, sizeof(*gid)); if (attr) { memcpy(attr, &table->data_vec[index].attr, sizeof(*attr)); if (attr->ndev) dev_hold(attr->ndev); } return 0; } static int _ib_cache_gid_table_find(struct ib_device *ib_dev, const union ib_gid *gid, const struct ib_gid_attr *val, unsigned long mask, u8 *port, u16 *index) { struct ib_gid_table *table; u8 p; int local_index; unsigned long flags; for (p = 0; p < ib_dev->phys_port_cnt; p++) { table = ib_dev->cache.ports[p].gid; read_lock_irqsave(&table->rwlock, flags); local_index = find_gid(table, gid, val, false, mask, NULL); if (local_index >= 0) { if (index) *index = local_index; if (port) *port = p + rdma_start_port(ib_dev); read_unlock_irqrestore(&table->rwlock, flags); return 0; } read_unlock_irqrestore(&table->rwlock, flags); } return -ENOENT; } static int ib_cache_gid_find(struct ib_device *ib_dev, const union ib_gid *gid, enum ib_gid_type gid_type, struct net_device *ndev, u8 *port, u16 *index) { unsigned long mask = GID_ATTR_FIND_MASK_GID | GID_ATTR_FIND_MASK_GID_TYPE; struct ib_gid_attr gid_attr_val = {.ndev = ndev, .gid_type = gid_type}; if (ndev) mask |= GID_ATTR_FIND_MASK_NETDEV; return _ib_cache_gid_table_find(ib_dev, gid, &gid_attr_val, mask, port, index); } /** * ib_find_cached_gid_by_port - Returns the GID table index where a specified * GID value occurs. It searches for the specified GID value in the local * software cache. * @device: The device to query. * @gid: The GID value to search for. * @gid_type: The GID type to search for. * @port_num: The port number of the device where the GID value should be * searched. * @ndev: In RoCE, the net device of the device. Null means ignore. * @index: The index into the cached GID table where the GID was found. This * parameter may be NULL. */ int ib_find_cached_gid_by_port(struct ib_device *ib_dev, const union ib_gid *gid, enum ib_gid_type gid_type, u8 port, struct net_device *ndev, u16 *index) { int local_index; struct ib_gid_table *table; unsigned long mask = GID_ATTR_FIND_MASK_GID | GID_ATTR_FIND_MASK_GID_TYPE; struct ib_gid_attr val = {.ndev = ndev, .gid_type = gid_type}; unsigned long flags; if (!rdma_is_port_valid(ib_dev, port)) return -ENOENT; table = ib_dev->cache.ports[port - rdma_start_port(ib_dev)].gid; if (ndev) mask |= GID_ATTR_FIND_MASK_NETDEV; read_lock_irqsave(&table->rwlock, flags); local_index = find_gid(table, gid, &val, false, mask, NULL); if (local_index >= 0) { if (index) *index = local_index; read_unlock_irqrestore(&table->rwlock, flags); return 0; } read_unlock_irqrestore(&table->rwlock, flags); return -ENOENT; } EXPORT_SYMBOL(ib_find_cached_gid_by_port); /** * ib_cache_gid_find_by_filter - Returns the GID table index where a specified * GID value occurs * @device: The device to query. * @gid: The GID value to search for. * @port_num: The port number of the device where the GID value could be * searched. * @filter: The filter function is executed on any matching GID in the table. * If the filter function returns true, the corresponding index is returned, * otherwise, we continue searching the GID table. It's guaranteed that * while filter is executed, ndev field is valid and the structure won't * change. filter is executed in an atomic context. filter must not be NULL. * @index: The index into the cached GID table where the GID was found. This * parameter may be NULL. * * ib_cache_gid_find_by_filter() searches for the specified GID value * of which the filter function returns true in the port's GID table. * This function is only supported on RoCE ports. * */ static int ib_cache_gid_find_by_filter(struct ib_device *ib_dev, const union ib_gid *gid, u8 port, bool (*filter)(const union ib_gid *, const struct ib_gid_attr *, void *), void *context, u16 *index) { struct ib_gid_table *table; unsigned int i; unsigned long flags; bool found = false; if (!rdma_is_port_valid(ib_dev, port) || !rdma_protocol_roce(ib_dev, port)) return -EPROTONOSUPPORT; table = ib_dev->cache.ports[port - rdma_start_port(ib_dev)].gid; read_lock_irqsave(&table->rwlock, flags); for (i = 0; i < table->sz; i++) { struct ib_gid_attr attr; if (table->data_vec[i].props & GID_TABLE_ENTRY_INVALID) continue; if (memcmp(gid, &table->data_vec[i].gid, sizeof(*gid))) continue; memcpy(&attr, &table->data_vec[i].attr, sizeof(attr)); if (filter(gid, &attr, context)) { found = true; if (index) *index = i; break; } } read_unlock_irqrestore(&table->rwlock, flags); if (!found) return -ENOENT; return 0; } static struct ib_gid_table *alloc_gid_table(int sz) { struct ib_gid_table *table = kzalloc(sizeof(struct ib_gid_table), GFP_KERNEL); int i; if (!table) return NULL; table->data_vec = kcalloc(sz, sizeof(*table->data_vec), GFP_KERNEL); if (!table->data_vec) goto err_free_table; mutex_init(&table->lock); table->sz = sz; rwlock_init(&table->rwlock); /* Mark all entries as invalid so that allocator can allocate * one of the invalid (free) entry. */ for (i = 0; i < sz; i++) table->data_vec[i].props |= GID_TABLE_ENTRY_INVALID; return table; err_free_table: kfree(table); return NULL; } static void release_gid_table(struct ib_gid_table *table) { if (table) { kfree(table->data_vec); kfree(table); } } static void cleanup_gid_table_port(struct ib_device *ib_dev, u8 port, struct ib_gid_table *table) { int i; bool deleted = false; if (!table) return; mutex_lock(&table->lock); for (i = 0; i < table->sz; ++i) { if (!rdma_is_zero_gid(&table->data_vec[i].gid)) { del_gid(ib_dev, port, table, i); deleted = true; } } mutex_unlock(&table->lock); if (deleted) dispatch_gid_change_event(ib_dev, port); } void ib_cache_gid_set_default_gid(struct ib_device *ib_dev, u8 port, struct net_device *ndev, unsigned long gid_type_mask, enum ib_cache_gid_default_mode mode) { union ib_gid gid = { }; struct ib_gid_attr gid_attr; struct ib_gid_table *table; unsigned int gid_type; unsigned long mask; table = ib_dev->cache.ports[port - rdma_start_port(ib_dev)].gid; mask = GID_ATTR_FIND_MASK_GID_TYPE | GID_ATTR_FIND_MASK_DEFAULT | GID_ATTR_FIND_MASK_NETDEV; memset(&gid_attr, 0, sizeof(gid_attr)); gid_attr.ndev = ndev; for (gid_type = 0; gid_type < IB_GID_TYPE_SIZE; ++gid_type) { if (1UL << gid_type & ~gid_type_mask) continue; gid_attr.gid_type = gid_type; if (mode == IB_CACHE_GID_DEFAULT_MODE_SET) { make_default_gid(ndev, &gid); __ib_cache_gid_add(ib_dev, port, &gid, &gid_attr, mask, true); } else if (mode == IB_CACHE_GID_DEFAULT_MODE_DELETE) { _ib_cache_gid_del(ib_dev, port, &gid, &gid_attr, mask, true); } } } static void gid_table_reserve_default(struct ib_device *ib_dev, u8 port, struct ib_gid_table *table) { unsigned int i; unsigned long roce_gid_type_mask; unsigned int num_default_gids; unsigned int current_gid = 0; roce_gid_type_mask = roce_gid_type_mask_support(ib_dev, port); num_default_gids = hweight_long(roce_gid_type_mask); for (i = 0; i < num_default_gids && i < table->sz; i++) { struct ib_gid_table_entry *entry = &table->data_vec[i]; entry->props |= GID_TABLE_ENTRY_DEFAULT; current_gid = find_next_bit(&roce_gid_type_mask, BITS_PER_LONG, current_gid); entry->attr.gid_type = current_gid++; } } static void gid_table_release_one(struct ib_device *ib_dev) { struct ib_gid_table *table; u8 port; for (port = 0; port < ib_dev->phys_port_cnt; port++) { table = ib_dev->cache.ports[port].gid; release_gid_table(table); ib_dev->cache.ports[port].gid = NULL; } } static int _gid_table_setup_one(struct ib_device *ib_dev) { u8 port; struct ib_gid_table *table; for (port = 0; port < ib_dev->phys_port_cnt; port++) { u8 rdma_port = port + rdma_start_port(ib_dev); table = alloc_gid_table( ib_dev->port_immutable[rdma_port].gid_tbl_len); if (!table) goto rollback_table_setup; gid_table_reserve_default(ib_dev, rdma_port, table); ib_dev->cache.ports[port].gid = table; } return 0; rollback_table_setup: gid_table_release_one(ib_dev); return -ENOMEM; } static void gid_table_cleanup_one(struct ib_device *ib_dev) { struct ib_gid_table *table; u8 port; for (port = 0; port < ib_dev->phys_port_cnt; port++) { table = ib_dev->cache.ports[port].gid; cleanup_gid_table_port(ib_dev, port + rdma_start_port(ib_dev), table); } } static int gid_table_setup_one(struct ib_device *ib_dev) { int err; err = _gid_table_setup_one(ib_dev); if (err) return err; rdma_roce_rescan_device(ib_dev); return err; } int ib_get_cached_gid(struct ib_device *device, u8 port_num, int index, union ib_gid *gid, struct ib_gid_attr *gid_attr) { int res; unsigned long flags; struct ib_gid_table *table; if (!rdma_is_port_valid(device, port_num)) return -EINVAL; table = device->cache.ports[port_num - rdma_start_port(device)].gid; read_lock_irqsave(&table->rwlock, flags); res = __ib_cache_gid_get(device, port_num, index, gid, gid_attr); read_unlock_irqrestore(&table->rwlock, flags); return res; } EXPORT_SYMBOL(ib_get_cached_gid); /** * ib_find_cached_gid - Returns the port number and GID table index where * a specified GID value occurs. * @device: The device to query. * @gid: The GID value to search for. * @gid_type: The GID type to search for. * @ndev: In RoCE, the net device of the device. NULL means ignore. * @port_num: The port number of the device where the GID value was found. * @index: The index into the cached GID table where the GID was found. This * parameter may be NULL. * * ib_find_cached_gid() searches for the specified GID value in * the local software cache. */ int ib_find_cached_gid(struct ib_device *device, const union ib_gid *gid, enum ib_gid_type gid_type, struct net_device *ndev, u8 *port_num, u16 *index) { return ib_cache_gid_find(device, gid, gid_type, ndev, port_num, index); } EXPORT_SYMBOL(ib_find_cached_gid); int ib_find_gid_by_filter(struct ib_device *device, const union ib_gid *gid, u8 port_num, bool (*filter)(const union ib_gid *gid, const struct ib_gid_attr *, void *), void *context, u16 *index) { /* Only RoCE GID table supports filter function */ if (!rdma_protocol_roce(device, port_num) && filter) return -EPROTONOSUPPORT; return ib_cache_gid_find_by_filter(device, gid, port_num, filter, context, index); } int ib_get_cached_pkey(struct ib_device *device, u8 port_num, int index, u16 *pkey) { struct ib_pkey_cache *cache; unsigned long flags; int ret = 0; if (!rdma_is_port_valid(device, port_num)) return -EINVAL; read_lock_irqsave(&device->cache.lock, flags); cache = device->cache.ports[port_num - rdma_start_port(device)].pkey; if (index < 0 || index >= cache->table_len) ret = -EINVAL; else *pkey = cache->table[index]; read_unlock_irqrestore(&device->cache.lock, flags); return ret; } EXPORT_SYMBOL(ib_get_cached_pkey); int ib_get_cached_subnet_prefix(struct ib_device *device, u8 port_num, u64 *sn_pfx) { unsigned long flags; int p; if (!rdma_is_port_valid(device, port_num)) return -EINVAL; p = port_num - rdma_start_port(device); read_lock_irqsave(&device->cache.lock, flags); *sn_pfx = device->cache.ports[p].subnet_prefix; read_unlock_irqrestore(&device->cache.lock, flags); return 0; } EXPORT_SYMBOL(ib_get_cached_subnet_prefix); int ib_find_cached_pkey(struct ib_device *device, u8 port_num, u16 pkey, u16 *index) { struct ib_pkey_cache *cache; unsigned long flags; int i; int ret = -ENOENT; int partial_ix = -1; if (!rdma_is_port_valid(device, port_num)) return -EINVAL; read_lock_irqsave(&device->cache.lock, flags); cache = device->cache.ports[port_num - rdma_start_port(device)].pkey; *index = -1; for (i = 0; i < cache->table_len; ++i) if ((cache->table[i] & 0x7fff) == (pkey & 0x7fff)) { if (cache->table[i] & 0x8000) { *index = i; ret = 0; break; } else partial_ix = i; } if (ret && partial_ix >= 0) { *index = partial_ix; ret = 0; } read_unlock_irqrestore(&device->cache.lock, flags); return ret; } EXPORT_SYMBOL(ib_find_cached_pkey); int ib_find_exact_cached_pkey(struct ib_device *device, u8 port_num, u16 pkey, u16 *index) { struct ib_pkey_cache *cache; unsigned long flags; int i; int ret = -ENOENT; if (!rdma_is_port_valid(device, port_num)) return -EINVAL; read_lock_irqsave(&device->cache.lock, flags); cache = device->cache.ports[port_num - rdma_start_port(device)].pkey; *index = -1; for (i = 0; i < cache->table_len; ++i) if (cache->table[i] == pkey) { *index = i; ret = 0; break; } read_unlock_irqrestore(&device->cache.lock, flags); return ret; } EXPORT_SYMBOL(ib_find_exact_cached_pkey); int ib_get_cached_lmc(struct ib_device *device, u8 port_num, u8 *lmc) { unsigned long flags; int ret = 0; if (!rdma_is_port_valid(device, port_num)) return -EINVAL; read_lock_irqsave(&device->cache.lock, flags); *lmc = device->cache.ports[port_num - rdma_start_port(device)].lmc; read_unlock_irqrestore(&device->cache.lock, flags); return ret; } EXPORT_SYMBOL(ib_get_cached_lmc); int ib_get_cached_port_state(struct ib_device *device, u8 port_num, enum ib_port_state *port_state) { unsigned long flags; int ret = 0; if (!rdma_is_port_valid(device, port_num)) return -EINVAL; read_lock_irqsave(&device->cache.lock, flags); *port_state = device->cache.ports[port_num - rdma_start_port(device)].port_state; read_unlock_irqrestore(&device->cache.lock, flags); return ret; } EXPORT_SYMBOL(ib_get_cached_port_state); static int config_non_roce_gid_cache(struct ib_device *device, u8 port, int gid_tbl_len) { struct ib_gid_attr gid_attr = {}; struct ib_gid_table *table; union ib_gid gid; int ret = 0; int i; gid_attr.device = device; gid_attr.port_num = port; table = device->cache.ports[port - rdma_start_port(device)].gid; mutex_lock(&table->lock); for (i = 0; i < gid_tbl_len; ++i) { if (!device->query_gid) continue; ret = device->query_gid(device, port, i, &gid); if (ret) { pr_warn("query_gid failed (%d) for %s (index %d)\n", ret, device->name, i); goto err; } gid_attr.index = i; add_modify_gid(table, &gid, &gid_attr); } err: mutex_unlock(&table->lock); return ret; } static void ib_cache_update(struct ib_device *device, u8 port, bool enforce_security) { struct ib_port_attr *tprops = NULL; struct ib_pkey_cache *pkey_cache = NULL, *old_pkey_cache; int i; int ret; struct ib_gid_table *table; if (!rdma_is_port_valid(device, port)) return; table = device->cache.ports[port - rdma_start_port(device)].gid; tprops = kmalloc(sizeof *tprops, GFP_KERNEL); if (!tprops) return; ret = ib_query_port(device, port, tprops); if (ret) { pr_warn("ib_query_port failed (%d) for %s\n", ret, device->name); goto err; } if (!rdma_protocol_roce(device, port)) { ret = config_non_roce_gid_cache(device, port, tprops->gid_tbl_len); if (ret) goto err; } pkey_cache = kmalloc(sizeof *pkey_cache + tprops->pkey_tbl_len * sizeof *pkey_cache->table, GFP_KERNEL); if (!pkey_cache) goto err; pkey_cache->table_len = tprops->pkey_tbl_len; for (i = 0; i < pkey_cache->table_len; ++i) { ret = ib_query_pkey(device, port, i, pkey_cache->table + i); if (ret) { pr_warn("ib_query_pkey failed (%d) for %s (index %d)\n", ret, device->name, i); goto err; } } write_lock_irq(&device->cache.lock); old_pkey_cache = device->cache.ports[port - rdma_start_port(device)].pkey; device->cache.ports[port - rdma_start_port(device)].pkey = pkey_cache; device->cache.ports[port - rdma_start_port(device)].lmc = tprops->lmc; device->cache.ports[port - rdma_start_port(device)].port_state = tprops->state; device->cache.ports[port - rdma_start_port(device)].subnet_prefix = tprops->subnet_prefix; write_unlock_irq(&device->cache.lock); if (enforce_security) ib_security_cache_change(device, port, tprops->subnet_prefix); kfree(old_pkey_cache); kfree(tprops); return; err: kfree(pkey_cache); kfree(tprops); } static void ib_cache_task(struct work_struct *_work) { struct ib_update_work *work = container_of(_work, struct ib_update_work, work); ib_cache_update(work->device, work->port_num, work->enforce_security); kfree(work); } static void ib_cache_event(struct ib_event_handler *handler, struct ib_event *event) { struct ib_update_work *work; if (event->event == IB_EVENT_PORT_ERR || event->event == IB_EVENT_PORT_ACTIVE || event->event == IB_EVENT_LID_CHANGE || event->event == IB_EVENT_PKEY_CHANGE || event->event == IB_EVENT_SM_CHANGE || event->event == IB_EVENT_CLIENT_REREGISTER || event->event == IB_EVENT_GID_CHANGE) { work = kmalloc(sizeof *work, GFP_ATOMIC); if (work) { INIT_WORK(&work->work, ib_cache_task); work->device = event->device; work->port_num = event->element.port_num; if (event->event == IB_EVENT_PKEY_CHANGE || event->event == IB_EVENT_GID_CHANGE) work->enforce_security = true; else work->enforce_security = false; queue_work(ib_wq, &work->work); } } } int ib_cache_setup_one(struct ib_device *device) { int p; int err; rwlock_init(&device->cache.lock); device->cache.ports = kzalloc(sizeof(*device->cache.ports) * (rdma_end_port(device) - rdma_start_port(device) + 1), GFP_KERNEL); if (!device->cache.ports) return -ENOMEM; err = gid_table_setup_one(device); if (err) { kfree(device->cache.ports); device->cache.ports = NULL; return err; } for (p = 0; p <= rdma_end_port(device) - rdma_start_port(device); ++p) ib_cache_update(device, p + rdma_start_port(device), true); INIT_IB_EVENT_HANDLER(&device->cache.event_handler, device, ib_cache_event); ib_register_event_handler(&device->cache.event_handler); return 0; } void ib_cache_release_one(struct ib_device *device) { int p; /* * The release function frees all the cache elements. * This function should be called as part of freeing * all the device's resources when the cache could no * longer be accessed. */ for (p = 0; p <= rdma_end_port(device) - rdma_start_port(device); ++p) kfree(device->cache.ports[p].pkey); gid_table_release_one(device); kfree(device->cache.ports); } void ib_cache_cleanup_one(struct ib_device *device) { /* The cleanup function unregisters the event handler, * waits for all in-progress workqueue elements and cleans * up the GID cache. This function should be called after * the device was removed from the devices list and all * clients were removed, so the cache exists but is * non-functional and shouldn't be updated anymore. */ ib_unregister_event_handler(&device->cache.event_handler); flush_workqueue(ib_wq); gid_table_cleanup_one(device); } void __init ib_cache_setup(void) { roce_gid_mgmt_init(); } void __exit ib_cache_cleanup(void) { roce_gid_mgmt_cleanup(); }