/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include #include "i915_drv.h" static void intel_breadcrumbs_fake_irq(unsigned long data) { struct intel_engine_cs *engine = (struct intel_engine_cs *)data; /* * The timer persists in case we cannot enable interrupts, * or if we have previously seen seqno/interrupt incoherency * ("missed interrupt" syndrome). Here the worker will wake up * every jiffie in order to kick the oldest waiter to do the * coherent seqno check. */ rcu_read_lock(); if (intel_engine_wakeup(engine)) mod_timer(&engine->breadcrumbs.fake_irq, jiffies + 1); rcu_read_unlock(); } static void irq_enable(struct intel_engine_cs *engine) { /* Enabling the IRQ may miss the generation of the interrupt, but * we still need to force the barrier before reading the seqno, * just in case. */ engine->breadcrumbs.irq_posted = true; spin_lock_irq(&engine->i915->irq_lock); engine->irq_enable(engine); spin_unlock_irq(&engine->i915->irq_lock); } static void irq_disable(struct intel_engine_cs *engine) { spin_lock_irq(&engine->i915->irq_lock); engine->irq_disable(engine); spin_unlock_irq(&engine->i915->irq_lock); engine->breadcrumbs.irq_posted = false; } static void __intel_breadcrumbs_enable_irq(struct intel_breadcrumbs *b) { struct intel_engine_cs *engine = container_of(b, struct intel_engine_cs, breadcrumbs); struct drm_i915_private *i915 = engine->i915; assert_spin_locked(&b->lock); if (b->rpm_wakelock) return; /* Since we are waiting on a request, the GPU should be busy * and should have its own rpm reference. For completeness, * record an rpm reference for ourselves to cover the * interrupt we unmask. */ intel_runtime_pm_get_noresume(i915); b->rpm_wakelock = true; /* No interrupts? Kick the waiter every jiffie! */ if (intel_irqs_enabled(i915)) { if (!test_bit(engine->id, &i915->gpu_error.test_irq_rings)) irq_enable(engine); b->irq_enabled = true; } if (!b->irq_enabled || test_bit(engine->id, &i915->gpu_error.missed_irq_rings)) mod_timer(&b->fake_irq, jiffies + 1); /* Ensure that even if the GPU hangs, we get woken up. * * However, note that if no one is waiting, we never notice * a gpu hang. Eventually, we will have to wait for a resource * held by the GPU and so trigger a hangcheck. In the most * pathological case, this will be upon memory starvation! */ i915_queue_hangcheck(i915); } static void __intel_breadcrumbs_disable_irq(struct intel_breadcrumbs *b) { struct intel_engine_cs *engine = container_of(b, struct intel_engine_cs, breadcrumbs); assert_spin_locked(&b->lock); if (!b->rpm_wakelock) return; if (b->irq_enabled) { irq_disable(engine); b->irq_enabled = false; } intel_runtime_pm_put(engine->i915); b->rpm_wakelock = false; } static inline struct intel_wait *to_wait(struct rb_node *node) { return container_of(node, struct intel_wait, node); } static inline void __intel_breadcrumbs_finish(struct intel_breadcrumbs *b, struct intel_wait *wait) { assert_spin_locked(&b->lock); /* This request is completed, so remove it from the tree, mark it as * complete, and *then* wake up the associated task. */ rb_erase(&wait->node, &b->waiters); RB_CLEAR_NODE(&wait->node); wake_up_process(wait->tsk); /* implicit smp_wmb() */ } static bool __intel_engine_add_wait(struct intel_engine_cs *engine, struct intel_wait *wait) { struct intel_breadcrumbs *b = &engine->breadcrumbs; struct rb_node **p, *parent, *completed; bool first; u32 seqno; /* Insert the request into the retirement ordered list * of waiters by walking the rbtree. If we are the oldest * seqno in the tree (the first to be retired), then * set ourselves as the bottom-half. * * As we descend the tree, prune completed branches since we hold the * spinlock we know that the first_waiter must be delayed and can * reduce some of the sequential wake up latency if we take action * ourselves and wake up the completed tasks in parallel. Also, by * removing stale elements in the tree, we may be able to reduce the * ping-pong between the old bottom-half and ourselves as first-waiter. */ first = true; parent = NULL; completed = NULL; seqno = intel_engine_get_seqno(engine); /* If the request completed before we managed to grab the spinlock, * return now before adding ourselves to the rbtree. We let the * current bottom-half handle any pending wakeups and instead * try and get out of the way quickly. */ if (i915_seqno_passed(seqno, wait->seqno)) { RB_CLEAR_NODE(&wait->node); return first; } p = &b->waiters.rb_node; while (*p) { parent = *p; if (wait->seqno == to_wait(parent)->seqno) { /* We have multiple waiters on the same seqno, select * the highest priority task (that with the smallest * task->prio) to serve as the bottom-half for this * group. */ if (wait->tsk->prio > to_wait(parent)->tsk->prio) { p = &parent->rb_right; first = false; } else { p = &parent->rb_left; } } else if (i915_seqno_passed(wait->seqno, to_wait(parent)->seqno)) { p = &parent->rb_right; if (i915_seqno_passed(seqno, to_wait(parent)->seqno)) completed = parent; else first = false; } else { p = &parent->rb_left; } } rb_link_node(&wait->node, parent, p); rb_insert_color(&wait->node, &b->waiters); GEM_BUG_ON(!first && !b->irq_seqno_bh); if (completed) { struct rb_node *next = rb_next(completed); GEM_BUG_ON(!next && !first); if (next && next != &wait->node) { GEM_BUG_ON(first); b->first_wait = to_wait(next); smp_store_mb(b->irq_seqno_bh, b->first_wait->tsk); /* As there is a delay between reading the current * seqno, processing the completed tasks and selecting * the next waiter, we may have missed the interrupt * and so need for the next bottom-half to wakeup. * * Also as we enable the IRQ, we may miss the * interrupt for that seqno, so we have to wake up * the next bottom-half in order to do a coherent check * in case the seqno passed. */ __intel_breadcrumbs_enable_irq(b); if (READ_ONCE(b->irq_posted)) wake_up_process(to_wait(next)->tsk); } do { struct intel_wait *crumb = to_wait(completed); completed = rb_prev(completed); __intel_breadcrumbs_finish(b, crumb); } while (completed); } if (first) { GEM_BUG_ON(rb_first(&b->waiters) != &wait->node); b->first_wait = wait; smp_store_mb(b->irq_seqno_bh, wait->tsk); /* After assigning ourselves as the new bottom-half, we must * perform a cursory check to prevent a missed interrupt. * Either we miss the interrupt whilst programming the hardware, * or if there was a previous waiter (for a later seqno) they * may be woken instead of us (due to the inherent race * in the unlocked read of b->irq_seqno_bh in the irq handler) * and so we miss the wake up. */ __intel_breadcrumbs_enable_irq(b); } GEM_BUG_ON(!b->irq_seqno_bh); GEM_BUG_ON(!b->first_wait); GEM_BUG_ON(rb_first(&b->waiters) != &b->first_wait->node); return first; } bool intel_engine_add_wait(struct intel_engine_cs *engine, struct intel_wait *wait) { struct intel_breadcrumbs *b = &engine->breadcrumbs; bool first; spin_lock(&b->lock); first = __intel_engine_add_wait(engine, wait); spin_unlock(&b->lock); return first; } void intel_engine_enable_fake_irq(struct intel_engine_cs *engine) { mod_timer(&engine->breadcrumbs.fake_irq, jiffies + 1); } static inline bool chain_wakeup(struct rb_node *rb, int priority) { return rb && to_wait(rb)->tsk->prio <= priority; } static inline int wakeup_priority(struct intel_breadcrumbs *b, struct task_struct *tsk) { if (tsk == b->signaler) return INT_MIN; else return tsk->prio; } void intel_engine_remove_wait(struct intel_engine_cs *engine, struct intel_wait *wait) { struct intel_breadcrumbs *b = &engine->breadcrumbs; /* Quick check to see if this waiter was already decoupled from * the tree by the bottom-half to avoid contention on the spinlock * by the herd. */ if (RB_EMPTY_NODE(&wait->node)) return; spin_lock(&b->lock); if (RB_EMPTY_NODE(&wait->node)) goto out_unlock; if (b->first_wait == wait) { const int priority = wakeup_priority(b, wait->tsk); struct rb_node *next; GEM_BUG_ON(b->irq_seqno_bh != wait->tsk); /* We are the current bottom-half. Find the next candidate, * the first waiter in the queue on the remaining oldest * request. As multiple seqnos may complete in the time it * takes us to wake up and find the next waiter, we have to * wake up that waiter for it to perform its own coherent * completion check. */ next = rb_next(&wait->node); if (chain_wakeup(next, priority)) { /* If the next waiter is already complete, * wake it up and continue onto the next waiter. So * if have a small herd, they will wake up in parallel * rather than sequentially, which should reduce * the overall latency in waking all the completed * clients. * * However, waking up a chain adds extra latency to * the first_waiter. This is undesirable if that * waiter is a high priority task. */ u32 seqno = intel_engine_get_seqno(engine); while (i915_seqno_passed(seqno, to_wait(next)->seqno)) { struct rb_node *n = rb_next(next); __intel_breadcrumbs_finish(b, to_wait(next)); next = n; if (!chain_wakeup(next, priority)) break; } } if (next) { /* In our haste, we may have completed the first waiter * before we enabled the interrupt. Do so now as we * have a second waiter for a future seqno. Afterwards, * we have to wake up that waiter in case we missed * the interrupt, or if we have to handle an * exception rather than a seqno completion. */ b->first_wait = to_wait(next); smp_store_mb(b->irq_seqno_bh, b->first_wait->tsk); if (b->first_wait->seqno != wait->seqno) __intel_breadcrumbs_enable_irq(b); wake_up_process(b->irq_seqno_bh); } else { b->first_wait = NULL; WRITE_ONCE(b->irq_seqno_bh, NULL); __intel_breadcrumbs_disable_irq(b); } } else { GEM_BUG_ON(rb_first(&b->waiters) == &wait->node); } GEM_BUG_ON(RB_EMPTY_NODE(&wait->node)); rb_erase(&wait->node, &b->waiters); out_unlock: GEM_BUG_ON(b->first_wait == wait); GEM_BUG_ON(rb_first(&b->waiters) != (b->first_wait ? &b->first_wait->node : NULL)); GEM_BUG_ON(!b->irq_seqno_bh ^ RB_EMPTY_ROOT(&b->waiters)); spin_unlock(&b->lock); } static bool signal_complete(struct drm_i915_gem_request *request) { if (!request) return false; /* If another process served as the bottom-half it may have already * signalled that this wait is already completed. */ if (intel_wait_complete(&request->signaling.wait)) return true; /* Carefully check if the request is complete, giving time for the * seqno to be visible or if the GPU hung. */ if (__i915_request_irq_complete(request)) return true; return false; } static struct drm_i915_gem_request *to_signaler(struct rb_node *rb) { return container_of(rb, struct drm_i915_gem_request, signaling.node); } static void signaler_set_rtpriority(void) { struct sched_param param = { .sched_priority = 1 }; sched_setscheduler_nocheck(current, SCHED_FIFO, ¶m); } static int intel_breadcrumbs_signaler(void *arg) { struct intel_engine_cs *engine = arg; struct intel_breadcrumbs *b = &engine->breadcrumbs; struct drm_i915_gem_request *request; /* Install ourselves with high priority to reduce signalling latency */ signaler_set_rtpriority(); do { set_current_state(TASK_INTERRUPTIBLE); /* We are either woken up by the interrupt bottom-half, * or by a client adding a new signaller. In both cases, * the GPU seqno may have advanced beyond our oldest signal. * If it has, propagate the signal, remove the waiter and * check again with the next oldest signal. Otherwise we * need to wait for a new interrupt from the GPU or for * a new client. */ request = READ_ONCE(b->first_signal); if (signal_complete(request)) { /* Wake up all other completed waiters and select the * next bottom-half for the next user interrupt. */ intel_engine_remove_wait(engine, &request->signaling.wait); fence_signal(&request->fence); /* Find the next oldest signal. Note that as we have * not been holding the lock, another client may * have installed an even older signal than the one * we just completed - so double check we are still * the oldest before picking the next one. */ spin_lock(&b->lock); if (request == b->first_signal) { struct rb_node *rb = rb_next(&request->signaling.node); b->first_signal = rb ? to_signaler(rb) : NULL; } rb_erase(&request->signaling.node, &b->signals); spin_unlock(&b->lock); i915_gem_request_put(request); } else { if (kthread_should_stop()) break; schedule(); } } while (1); __set_current_state(TASK_RUNNING); return 0; } void intel_engine_enable_signaling(struct drm_i915_gem_request *request) { struct intel_engine_cs *engine = request->engine; struct intel_breadcrumbs *b = &engine->breadcrumbs; struct rb_node *parent, **p; bool first, wakeup; if (unlikely(READ_ONCE(request->signaling.wait.tsk))) return; spin_lock(&b->lock); if (unlikely(request->signaling.wait.tsk)) { wakeup = false; goto unlock; } request->signaling.wait.tsk = b->signaler; request->signaling.wait.seqno = request->fence.seqno; i915_gem_request_get(request); /* First add ourselves into the list of waiters, but register our * bottom-half as the signaller thread. As per usual, only the oldest * waiter (not just signaller) is tasked as the bottom-half waking * up all completed waiters after the user interrupt. * * If we are the oldest waiter, enable the irq (after which we * must double check that the seqno did not complete). */ wakeup = __intel_engine_add_wait(engine, &request->signaling.wait); /* Now insert ourselves into the retirement ordered list of signals * on this engine. We track the oldest seqno as that will be the * first signal to complete. */ parent = NULL; first = true; p = &b->signals.rb_node; while (*p) { parent = *p; if (i915_seqno_passed(request->fence.seqno, to_signaler(parent)->fence.seqno)) { p = &parent->rb_right; first = false; } else { p = &parent->rb_left; } } rb_link_node(&request->signaling.node, parent, p); rb_insert_color(&request->signaling.node, &b->signals); if (first) smp_store_mb(b->first_signal, request); unlock: spin_unlock(&b->lock); if (wakeup) wake_up_process(b->signaler); } int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine) { struct intel_breadcrumbs *b = &engine->breadcrumbs; struct task_struct *tsk; spin_lock_init(&b->lock); setup_timer(&b->fake_irq, intel_breadcrumbs_fake_irq, (unsigned long)engine); /* Spawn a thread to provide a common bottom-half for all signals. * As this is an asynchronous interface we cannot steal the current * task for handling the bottom-half to the user interrupt, therefore * we create a thread to do the coherent seqno dance after the * interrupt and then signal the waitqueue (via the dma-buf/fence). */ tsk = kthread_run(intel_breadcrumbs_signaler, engine, "i915/signal:%d", engine->id); if (IS_ERR(tsk)) return PTR_ERR(tsk); b->signaler = tsk; return 0; } void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine) { struct intel_breadcrumbs *b = &engine->breadcrumbs; if (!IS_ERR_OR_NULL(b->signaler)) kthread_stop(b->signaler); del_timer_sync(&b->fake_irq); } unsigned int intel_kick_waiters(struct drm_i915_private *i915) { struct intel_engine_cs *engine; unsigned int mask = 0; /* To avoid the task_struct disappearing beneath us as we wake up * the process, we must first inspect the task_struct->state under the * RCU lock, i.e. as we call wake_up_process() we must be holding the * rcu_read_lock(). */ rcu_read_lock(); for_each_engine(engine, i915) if (unlikely(intel_engine_wakeup(engine))) mask |= intel_engine_flag(engine); rcu_read_unlock(); return mask; } unsigned int intel_kick_signalers(struct drm_i915_private *i915) { struct intel_engine_cs *engine; unsigned int mask = 0; for_each_engine(engine, i915) { if (unlikely(READ_ONCE(engine->breadcrumbs.first_signal))) { wake_up_process(engine->breadcrumbs.signaler); mask |= intel_engine_flag(engine); } } return mask; }