/* * Performance counter x86 architecture code * * Copyright(C) 2008 Thomas Gleixner * Copyright(C) 2008 Red Hat, Inc., Ingo Molnar * * For licencing details see kernel-base/COPYING */ #include #include #include #include #include #include #include #include #include #include static bool perf_counters_initialized __read_mostly; /* * Number of (generic) HW counters: */ static int nr_counters_generic __read_mostly; static u64 perf_counter_mask __read_mostly; static u64 counter_value_mask __read_mostly; static int nr_counters_fixed __read_mostly; struct cpu_hw_counters { struct perf_counter *counters[X86_PMC_IDX_MAX]; unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)]; unsigned long interrupts; u64 global_enable; }; /* * Intel PerfMon v3. Used on Core2 and later. */ static DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters); static const int intel_perfmon_event_map[] = { [PERF_COUNT_CPU_CYCLES] = 0x003c, [PERF_COUNT_INSTRUCTIONS] = 0x00c0, [PERF_COUNT_CACHE_REFERENCES] = 0x4f2e, [PERF_COUNT_CACHE_MISSES] = 0x412e, [PERF_COUNT_BRANCH_INSTRUCTIONS] = 0x00c4, [PERF_COUNT_BRANCH_MISSES] = 0x00c5, [PERF_COUNT_BUS_CYCLES] = 0x013c, }; static const int max_intel_perfmon_events = ARRAY_SIZE(intel_perfmon_event_map); /* * Propagate counter elapsed time into the generic counter. * Can only be executed on the CPU where the counter is active. * Returns the delta events processed. */ static void x86_perf_counter_update(struct perf_counter *counter, struct hw_perf_counter *hwc, int idx) { u64 prev_raw_count, new_raw_count, delta; /* * Careful: an NMI might modify the previous counter value. * * Our tactic to handle this is to first atomically read and * exchange a new raw count - then add that new-prev delta * count to the generic counter atomically: */ again: prev_raw_count = atomic64_read(&hwc->prev_count); rdmsrl(hwc->counter_base + idx, new_raw_count); if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count, new_raw_count) != prev_raw_count) goto again; /* * Now we have the new raw value and have updated the prev * timestamp already. We can now calculate the elapsed delta * (counter-)time and add that to the generic counter. * * Careful, not all hw sign-extends above the physical width * of the count, so we do that by clipping the delta to 32 bits: */ delta = (u64)(u32)((s32)new_raw_count - (s32)prev_raw_count); atomic64_add(delta, &counter->count); atomic64_sub(delta, &hwc->period_left); } /* * Setup the hardware configuration for a given hw_event_type */ static int __hw_perf_counter_init(struct perf_counter *counter) { struct perf_counter_hw_event *hw_event = &counter->hw_event; struct hw_perf_counter *hwc = &counter->hw; if (unlikely(!perf_counters_initialized)) return -EINVAL; /* * Count user events, and generate PMC IRQs: * (keep 'enabled' bit clear for now) */ hwc->config = ARCH_PERFMON_EVENTSEL_USR | ARCH_PERFMON_EVENTSEL_INT; /* * If privileged enough, count OS events too, and allow * NMI events as well: */ hwc->nmi = 0; if (capable(CAP_SYS_ADMIN)) { hwc->config |= ARCH_PERFMON_EVENTSEL_OS; if (hw_event->nmi) hwc->nmi = 1; } hwc->irq_period = hw_event->irq_period; /* * Intel PMCs cannot be accessed sanely above 32 bit width, * so we install an artificial 1<<31 period regardless of * the generic counter period: */ if ((s64)hwc->irq_period <= 0 || hwc->irq_period > 0x7FFFFFFF) hwc->irq_period = 0x7FFFFFFF; atomic64_set(&hwc->period_left, hwc->irq_period); /* * Raw event type provide the config in the event structure */ if (hw_event->raw) { hwc->config |= hw_event->type; } else { if (hw_event->type >= max_intel_perfmon_events) return -EINVAL; /* * The generic map: */ hwc->config |= intel_perfmon_event_map[hw_event->type]; } counter->wakeup_pending = 0; return 0; } u64 hw_perf_save_disable(void) { u64 ctrl; if (unlikely(!perf_counters_initialized)) return 0; rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl); wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0); return ctrl; } EXPORT_SYMBOL_GPL(hw_perf_save_disable); void hw_perf_restore(u64 ctrl) { if (unlikely(!perf_counters_initialized)) return; wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl); } EXPORT_SYMBOL_GPL(hw_perf_restore); static inline void __pmc_fixed_disable(struct perf_counter *counter, struct hw_perf_counter *hwc, unsigned int __idx) { int idx = __idx - X86_PMC_IDX_FIXED; u64 ctrl_val, mask; int err; mask = 0xfULL << (idx * 4); rdmsrl(hwc->config_base, ctrl_val); ctrl_val &= ~mask; err = checking_wrmsrl(hwc->config_base, ctrl_val); } static inline void __pmc_generic_disable(struct perf_counter *counter, struct hw_perf_counter *hwc, unsigned int idx) { if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) __pmc_fixed_disable(counter, hwc, idx); else wrmsr_safe(hwc->config_base + idx, hwc->config, 0); } static DEFINE_PER_CPU(u64, prev_left[X86_PMC_IDX_MAX]); /* * Set the next IRQ period, based on the hwc->period_left value. * To be called with the counter disabled in hw: */ static void __hw_perf_counter_set_period(struct perf_counter *counter, struct hw_perf_counter *hwc, int idx) { s64 left = atomic64_read(&hwc->period_left); s32 period = hwc->irq_period; int err; /* * If we are way outside a reasoable range then just skip forward: */ if (unlikely(left <= -period)) { left = period; atomic64_set(&hwc->period_left, left); } if (unlikely(left <= 0)) { left += period; atomic64_set(&hwc->period_left, left); } per_cpu(prev_left[idx], smp_processor_id()) = left; /* * The hw counter starts counting from this counter offset, * mark it to be able to extra future deltas: */ atomic64_set(&hwc->prev_count, (u64)-left); err = checking_wrmsrl(hwc->counter_base + idx, (u64)(-left) & counter_value_mask); } static inline void __pmc_fixed_enable(struct perf_counter *counter, struct hw_perf_counter *hwc, unsigned int __idx) { int idx = __idx - X86_PMC_IDX_FIXED; u64 ctrl_val, bits, mask; int err; /* * Enable IRQ generation (0x8) and ring-3 counting (0x2), * and enable ring-0 counting if allowed: */ bits = 0x8ULL | 0x2ULL; if (hwc->config & ARCH_PERFMON_EVENTSEL_OS) bits |= 0x1; bits <<= (idx * 4); mask = 0xfULL << (idx * 4); rdmsrl(hwc->config_base, ctrl_val); ctrl_val &= ~mask; ctrl_val |= bits; err = checking_wrmsrl(hwc->config_base, ctrl_val); } static void __pmc_generic_enable(struct perf_counter *counter, struct hw_perf_counter *hwc, int idx) { if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) __pmc_fixed_enable(counter, hwc, idx); else wrmsr(hwc->config_base + idx, hwc->config | ARCH_PERFMON_EVENTSEL0_ENABLE, 0); } static int fixed_mode_idx(struct perf_counter *counter, struct hw_perf_counter *hwc) { unsigned int event; if (unlikely(hwc->nmi)) return -1; event = hwc->config & ARCH_PERFMON_EVENT_MASK; if (unlikely(event == intel_perfmon_event_map[PERF_COUNT_INSTRUCTIONS])) return X86_PMC_IDX_FIXED_INSTRUCTIONS; if (unlikely(event == intel_perfmon_event_map[PERF_COUNT_CPU_CYCLES])) return X86_PMC_IDX_FIXED_CPU_CYCLES; if (unlikely(event == intel_perfmon_event_map[PERF_COUNT_BUS_CYCLES])) return X86_PMC_IDX_FIXED_BUS_CYCLES; return -1; } /* * Find a PMC slot for the freshly enabled / scheduled in counter: */ static int pmc_generic_enable(struct perf_counter *counter) { struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters); struct hw_perf_counter *hwc = &counter->hw; int idx; idx = fixed_mode_idx(counter, hwc); if (idx >= 0) { /* * Try to get the fixed counter, if that is already taken * then try to get a generic counter: */ if (test_and_set_bit(idx, cpuc->used)) goto try_generic; hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL; /* * We set it so that counter_base + idx in wrmsr/rdmsr maps to * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2: */ hwc->counter_base = MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED; hwc->idx = idx; } else { idx = hwc->idx; /* Try to get the previous generic counter again */ if (test_and_set_bit(idx, cpuc->used)) { try_generic: idx = find_first_zero_bit(cpuc->used, nr_counters_generic); if (idx == nr_counters_generic) return -EAGAIN; set_bit(idx, cpuc->used); hwc->idx = idx; } hwc->config_base = MSR_ARCH_PERFMON_EVENTSEL0; hwc->counter_base = MSR_ARCH_PERFMON_PERFCTR0; } perf_counters_lapic_init(hwc->nmi); __pmc_generic_disable(counter, hwc, idx); cpuc->counters[idx] = counter; /* * Make it visible before enabling the hw: */ smp_wmb(); __hw_perf_counter_set_period(counter, hwc, idx); __pmc_generic_enable(counter, hwc, idx); return 0; } void perf_counter_print_debug(void) { u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed; struct cpu_hw_counters *cpuc; int cpu, idx; if (!nr_counters_generic) return; local_irq_disable(); cpu = smp_processor_id(); cpuc = &per_cpu(cpu_hw_counters, cpu); rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl); rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status); rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow); rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed); printk(KERN_INFO "\n"); printk(KERN_INFO "CPU#%d: ctrl: %016llx\n", cpu, ctrl); printk(KERN_INFO "CPU#%d: status: %016llx\n", cpu, status); printk(KERN_INFO "CPU#%d: overflow: %016llx\n", cpu, overflow); printk(KERN_INFO "CPU#%d: fixed: %016llx\n", cpu, fixed); printk(KERN_INFO "CPU#%d: used: %016llx\n", cpu, *(u64 *)cpuc->used); for (idx = 0; idx < nr_counters_generic; idx++) { rdmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + idx, pmc_ctrl); rdmsrl(MSR_ARCH_PERFMON_PERFCTR0 + idx, pmc_count); prev_left = per_cpu(prev_left[idx], cpu); printk(KERN_INFO "CPU#%d: gen-PMC%d ctrl: %016llx\n", cpu, idx, pmc_ctrl); printk(KERN_INFO "CPU#%d: gen-PMC%d count: %016llx\n", cpu, idx, pmc_count); printk(KERN_INFO "CPU#%d: gen-PMC%d left: %016llx\n", cpu, idx, prev_left); } for (idx = 0; idx < nr_counters_fixed; idx++) { rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count); printk(KERN_INFO "CPU#%d: fixed-PMC%d count: %016llx\n", cpu, idx, pmc_count); } local_irq_enable(); } static void pmc_generic_disable(struct perf_counter *counter) { struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters); struct hw_perf_counter *hwc = &counter->hw; unsigned int idx = hwc->idx; __pmc_generic_disable(counter, hwc, idx); clear_bit(idx, cpuc->used); cpuc->counters[idx] = NULL; /* * Make sure the cleared pointer becomes visible before we * (potentially) free the counter: */ smp_wmb(); /* * Drain the remaining delta count out of a counter * that we are disabling: */ x86_perf_counter_update(counter, hwc, idx); } static void perf_store_irq_data(struct perf_counter *counter, u64 data) { struct perf_data *irqdata = counter->irqdata; if (irqdata->len > PERF_DATA_BUFLEN - sizeof(u64)) { irqdata->overrun++; } else { u64 *p = (u64 *) &irqdata->data[irqdata->len]; *p = data; irqdata->len += sizeof(u64); } } /* * Save and restart an expired counter. Called by NMI contexts, * so it has to be careful about preempting normal counter ops: */ static void perf_save_and_restart(struct perf_counter *counter) { struct hw_perf_counter *hwc = &counter->hw; int idx = hwc->idx; x86_perf_counter_update(counter, hwc, idx); __hw_perf_counter_set_period(counter, hwc, idx); if (counter->state == PERF_COUNTER_STATE_ACTIVE) __pmc_generic_enable(counter, hwc, idx); } static void perf_handle_group(struct perf_counter *sibling, u64 *status, u64 *overflown) { struct perf_counter *counter, *group_leader = sibling->group_leader; /* * Store sibling timestamps (if any): */ list_for_each_entry(counter, &group_leader->sibling_list, list_entry) { x86_perf_counter_update(counter, &counter->hw, counter->hw.idx); perf_store_irq_data(sibling, counter->hw_event.type); perf_store_irq_data(sibling, atomic64_read(&counter->count)); } } /* * Maximum interrupt frequency of 100KHz per CPU */ #define PERFMON_MAX_INTERRUPTS 100000/HZ /* * This handler is triggered by the local APIC, so the APIC IRQ handling * rules apply: */ static void __smp_perf_counter_interrupt(struct pt_regs *regs, int nmi) { int bit, cpu = smp_processor_id(); u64 ack, status; struct cpu_hw_counters *cpuc = &per_cpu(cpu_hw_counters, cpu); rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, cpuc->global_enable); /* Disable counters globally */ wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0); ack_APIC_irq(); rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status); if (!status) goto out; again: ack = status; for_each_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) { struct perf_counter *counter = cpuc->counters[bit]; clear_bit(bit, (unsigned long *) &status); if (!counter) continue; perf_save_and_restart(counter); switch (counter->hw_event.record_type) { case PERF_RECORD_SIMPLE: continue; case PERF_RECORD_IRQ: perf_store_irq_data(counter, instruction_pointer(regs)); break; case PERF_RECORD_GROUP: perf_handle_group(counter, &status, &ack); break; } /* * From NMI context we cannot call into the scheduler to * do a task wakeup - but we mark these generic as * wakeup_pending and initate a wakeup callback: */ if (nmi) { counter->wakeup_pending = 1; set_tsk_thread_flag(current, TIF_PERF_COUNTERS); } else { wake_up(&counter->waitq); } } wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack); /* * Repeat if there is more work to be done: */ rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status); if (status) goto again; out: /* * Restore - do not reenable when global enable is off or throttled: */ if (++cpuc->interrupts < PERFMON_MAX_INTERRUPTS) wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, cpuc->global_enable); } void perf_counter_unthrottle(void) { struct cpu_hw_counters *cpuc; u64 global_enable; if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) return; if (unlikely(!perf_counters_initialized)) return; cpuc = &per_cpu(cpu_hw_counters, smp_processor_id()); if (cpuc->interrupts >= PERFMON_MAX_INTERRUPTS) { if (printk_ratelimit()) printk(KERN_WARNING "PERFMON: max interrupts exceeded!\n"); wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, cpuc->global_enable); } rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, global_enable); if (unlikely(cpuc->global_enable && !global_enable)) wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, cpuc->global_enable); cpuc->interrupts = 0; } void smp_perf_counter_interrupt(struct pt_regs *regs) { irq_enter(); inc_irq_stat(apic_perf_irqs); apic_write(APIC_LVTPC, LOCAL_PERF_VECTOR); __smp_perf_counter_interrupt(regs, 0); irq_exit(); } /* * This handler is triggered by NMI contexts: */ void perf_counter_notify(struct pt_regs *regs) { struct cpu_hw_counters *cpuc; unsigned long flags; int bit, cpu; local_irq_save(flags); cpu = smp_processor_id(); cpuc = &per_cpu(cpu_hw_counters, cpu); for_each_bit(bit, cpuc->used, X86_PMC_IDX_MAX) { struct perf_counter *counter = cpuc->counters[bit]; if (!counter) continue; if (counter->wakeup_pending) { counter->wakeup_pending = 0; wake_up(&counter->waitq); } } local_irq_restore(flags); } void perf_counters_lapic_init(int nmi) { u32 apic_val; if (!perf_counters_initialized) return; /* * Enable the performance counter vector in the APIC LVT: */ apic_val = apic_read(APIC_LVTERR); apic_write(APIC_LVTERR, apic_val | APIC_LVT_MASKED); if (nmi) apic_write(APIC_LVTPC, APIC_DM_NMI); else apic_write(APIC_LVTPC, LOCAL_PERF_VECTOR); apic_write(APIC_LVTERR, apic_val); } static int __kprobes perf_counter_nmi_handler(struct notifier_block *self, unsigned long cmd, void *__args) { struct die_args *args = __args; struct pt_regs *regs; if (likely(cmd != DIE_NMI_IPI)) return NOTIFY_DONE; regs = args->regs; apic_write(APIC_LVTPC, APIC_DM_NMI); __smp_perf_counter_interrupt(regs, 1); return NOTIFY_STOP; } static __read_mostly struct notifier_block perf_counter_nmi_notifier = { .notifier_call = perf_counter_nmi_handler, .next = NULL, .priority = 1 }; void __init init_hw_perf_counters(void) { union cpuid10_eax eax; unsigned int ebx; unsigned int unused; union cpuid10_edx edx; if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) return; /* * Check whether the Architectural PerfMon supports * Branch Misses Retired Event or not. */ cpuid(10, &eax.full, &ebx, &unused, &edx.full); if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED) return; printk(KERN_INFO "Intel Performance Monitoring support detected.\n"); printk(KERN_INFO "... version: %d\n", eax.split.version_id); printk(KERN_INFO "... num counters: %d\n", eax.split.num_counters); nr_counters_generic = eax.split.num_counters; if (nr_counters_generic > X86_PMC_MAX_GENERIC) { nr_counters_generic = X86_PMC_MAX_GENERIC; WARN(1, KERN_ERR "hw perf counters %d > max(%d), clipping!", nr_counters_generic, X86_PMC_MAX_GENERIC); } perf_counter_mask = (1 << nr_counters_generic) - 1; perf_max_counters = nr_counters_generic; printk(KERN_INFO "... bit width: %d\n", eax.split.bit_width); counter_value_mask = (1ULL << eax.split.bit_width) - 1; printk(KERN_INFO "... value mask: %016Lx\n", counter_value_mask); printk(KERN_INFO "... mask length: %d\n", eax.split.mask_length); nr_counters_fixed = edx.split.num_counters_fixed; if (nr_counters_fixed > X86_PMC_MAX_FIXED) { nr_counters_fixed = X86_PMC_MAX_FIXED; WARN(1, KERN_ERR "hw perf counters fixed %d > max(%d), clipping!", nr_counters_fixed, X86_PMC_MAX_FIXED); } printk(KERN_INFO "... fixed counters: %d\n", nr_counters_fixed); perf_counter_mask |= ((1LL << nr_counters_fixed)-1) << X86_PMC_IDX_FIXED; printk(KERN_INFO "... counter mask: %016Lx\n", perf_counter_mask); perf_counters_initialized = true; perf_counters_lapic_init(0); register_die_notifier(&perf_counter_nmi_notifier); } static void pmc_generic_read(struct perf_counter *counter) { x86_perf_counter_update(counter, &counter->hw, counter->hw.idx); } static const struct hw_perf_counter_ops x86_perf_counter_ops = { .enable = pmc_generic_enable, .disable = pmc_generic_disable, .read = pmc_generic_read, }; const struct hw_perf_counter_ops * hw_perf_counter_init(struct perf_counter *counter) { int err; err = __hw_perf_counter_init(counter); if (err) return NULL; return &x86_perf_counter_ops; }