/* * Copyright(c) 2015-2017 Intel Corporation. * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * BSD LICENSE * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include #include #include #include #include #include #include "hfi.h" #include "pio.h" #include "device.h" #include "common.h" #include "trace.h" #include "user_sdma.h" #include "user_exp_rcv.h" #include "aspm.h" #include "mmu_rb.h" #undef pr_fmt #define pr_fmt(fmt) DRIVER_NAME ": " fmt #define SEND_CTXT_HALT_TIMEOUT 1000 /* msecs */ /* * File operation functions */ static int hfi1_file_open(struct inode *, struct file *); static int hfi1_file_close(struct inode *, struct file *); static ssize_t hfi1_write_iter(struct kiocb *, struct iov_iter *); static unsigned int hfi1_poll(struct file *, struct poll_table_struct *); static int hfi1_file_mmap(struct file *, struct vm_area_struct *); static u64 kvirt_to_phys(void *); static int assign_ctxt(struct file *, struct hfi1_user_info *); static int init_subctxts(struct hfi1_ctxtdata *, const struct hfi1_user_info *); static int user_init(struct file *); static int get_ctxt_info(struct file *, void __user *, __u32); static int get_base_info(struct file *, void __user *, __u32); static int setup_ctxt(struct file *); static int setup_subctxt(struct hfi1_ctxtdata *); static int get_user_context(struct file *, struct hfi1_user_info *, int); static int find_shared_ctxt(struct file *, const struct hfi1_user_info *); static int allocate_ctxt(struct file *, struct hfi1_devdata *, struct hfi1_user_info *); static unsigned int poll_urgent(struct file *, struct poll_table_struct *); static unsigned int poll_next(struct file *, struct poll_table_struct *); static int user_event_ack(struct hfi1_ctxtdata *, int, unsigned long); static int set_ctxt_pkey(struct hfi1_ctxtdata *, unsigned, u16); static int manage_rcvq(struct hfi1_ctxtdata *, unsigned, int); static int vma_fault(struct vm_fault *); static long hfi1_file_ioctl(struct file *fp, unsigned int cmd, unsigned long arg); static const struct file_operations hfi1_file_ops = { .owner = THIS_MODULE, .write_iter = hfi1_write_iter, .open = hfi1_file_open, .release = hfi1_file_close, .unlocked_ioctl = hfi1_file_ioctl, .poll = hfi1_poll, .mmap = hfi1_file_mmap, .llseek = noop_llseek, }; static struct vm_operations_struct vm_ops = { .fault = vma_fault, }; /* * Types of memories mapped into user processes' space */ enum mmap_types { PIO_BUFS = 1, PIO_BUFS_SOP, PIO_CRED, RCV_HDRQ, RCV_EGRBUF, UREGS, EVENTS, STATUS, RTAIL, SUBCTXT_UREGS, SUBCTXT_RCV_HDRQ, SUBCTXT_EGRBUF, SDMA_COMP }; /* * Masks and offsets defining the mmap tokens */ #define HFI1_MMAP_OFFSET_MASK 0xfffULL #define HFI1_MMAP_OFFSET_SHIFT 0 #define HFI1_MMAP_SUBCTXT_MASK 0xfULL #define HFI1_MMAP_SUBCTXT_SHIFT 12 #define HFI1_MMAP_CTXT_MASK 0xffULL #define HFI1_MMAP_CTXT_SHIFT 16 #define HFI1_MMAP_TYPE_MASK 0xfULL #define HFI1_MMAP_TYPE_SHIFT 24 #define HFI1_MMAP_MAGIC_MASK 0xffffffffULL #define HFI1_MMAP_MAGIC_SHIFT 32 #define HFI1_MMAP_MAGIC 0xdabbad00 #define HFI1_MMAP_TOKEN_SET(field, val) \ (((val) & HFI1_MMAP_##field##_MASK) << HFI1_MMAP_##field##_SHIFT) #define HFI1_MMAP_TOKEN_GET(field, token) \ (((token) >> HFI1_MMAP_##field##_SHIFT) & HFI1_MMAP_##field##_MASK) #define HFI1_MMAP_TOKEN(type, ctxt, subctxt, addr) \ (HFI1_MMAP_TOKEN_SET(MAGIC, HFI1_MMAP_MAGIC) | \ HFI1_MMAP_TOKEN_SET(TYPE, type) | \ HFI1_MMAP_TOKEN_SET(CTXT, ctxt) | \ HFI1_MMAP_TOKEN_SET(SUBCTXT, subctxt) | \ HFI1_MMAP_TOKEN_SET(OFFSET, (offset_in_page(addr)))) #define dbg(fmt, ...) \ pr_info(fmt, ##__VA_ARGS__) static inline int is_valid_mmap(u64 token) { return (HFI1_MMAP_TOKEN_GET(MAGIC, token) == HFI1_MMAP_MAGIC); } static int hfi1_file_open(struct inode *inode, struct file *fp) { struct hfi1_filedata *fd; struct hfi1_devdata *dd = container_of(inode->i_cdev, struct hfi1_devdata, user_cdev); if (!atomic_inc_not_zero(&dd->user_refcount)) return -ENXIO; /* Just take a ref now. Not all opens result in a context assign */ kobject_get(&dd->kobj); /* The real work is performed later in assign_ctxt() */ fd = kzalloc(sizeof(*fd), GFP_KERNEL); if (fd) { fd->rec_cpu_num = -1; /* no cpu affinity by default */ fd->mm = current->mm; mmgrab(fd->mm); fp->private_data = fd; } else { fp->private_data = NULL; if (atomic_dec_and_test(&dd->user_refcount)) complete(&dd->user_comp); return -ENOMEM; } return 0; } static long hfi1_file_ioctl(struct file *fp, unsigned int cmd, unsigned long arg) { struct hfi1_filedata *fd = fp->private_data; struct hfi1_ctxtdata *uctxt = fd->uctxt; struct hfi1_user_info uinfo; struct hfi1_tid_info tinfo; int ret = 0; unsigned long addr; int uval = 0; unsigned long ul_uval = 0; u16 uval16 = 0; hfi1_cdbg(IOCTL, "IOCTL recv: 0x%x", cmd); if (cmd != HFI1_IOCTL_ASSIGN_CTXT && cmd != HFI1_IOCTL_GET_VERS && !uctxt) return -EINVAL; switch (cmd) { case HFI1_IOCTL_ASSIGN_CTXT: if (uctxt) return -EINVAL; if (copy_from_user(&uinfo, (struct hfi1_user_info __user *)arg, sizeof(uinfo))) return -EFAULT; ret = assign_ctxt(fp, &uinfo); if (ret < 0) return ret; ret = setup_ctxt(fp); if (ret) return ret; ret = user_init(fp); break; case HFI1_IOCTL_CTXT_INFO: ret = get_ctxt_info(fp, (void __user *)(unsigned long)arg, sizeof(struct hfi1_ctxt_info)); break; case HFI1_IOCTL_USER_INFO: ret = get_base_info(fp, (void __user *)(unsigned long)arg, sizeof(struct hfi1_base_info)); break; case HFI1_IOCTL_CREDIT_UPD: if (uctxt) sc_return_credits(uctxt->sc); break; case HFI1_IOCTL_TID_UPDATE: if (copy_from_user(&tinfo, (struct hfi11_tid_info __user *)arg, sizeof(tinfo))) return -EFAULT; ret = hfi1_user_exp_rcv_setup(fp, &tinfo); if (!ret) { /* * Copy the number of tidlist entries we used * and the length of the buffer we registered. * These fields are adjacent in the structure so * we can copy them at the same time. */ addr = arg + offsetof(struct hfi1_tid_info, tidcnt); if (copy_to_user((void __user *)addr, &tinfo.tidcnt, sizeof(tinfo.tidcnt) + sizeof(tinfo.length))) ret = -EFAULT; } break; case HFI1_IOCTL_TID_FREE: if (copy_from_user(&tinfo, (struct hfi11_tid_info __user *)arg, sizeof(tinfo))) return -EFAULT; ret = hfi1_user_exp_rcv_clear(fp, &tinfo); if (ret) break; addr = arg + offsetof(struct hfi1_tid_info, tidcnt); if (copy_to_user((void __user *)addr, &tinfo.tidcnt, sizeof(tinfo.tidcnt))) ret = -EFAULT; break; case HFI1_IOCTL_TID_INVAL_READ: if (copy_from_user(&tinfo, (struct hfi11_tid_info __user *)arg, sizeof(tinfo))) return -EFAULT; ret = hfi1_user_exp_rcv_invalid(fp, &tinfo); if (ret) break; addr = arg + offsetof(struct hfi1_tid_info, tidcnt); if (copy_to_user((void __user *)addr, &tinfo.tidcnt, sizeof(tinfo.tidcnt))) ret = -EFAULT; break; case HFI1_IOCTL_RECV_CTRL: ret = get_user(uval, (int __user *)arg); if (ret != 0) return -EFAULT; ret = manage_rcvq(uctxt, fd->subctxt, uval); break; case HFI1_IOCTL_POLL_TYPE: ret = get_user(uval, (int __user *)arg); if (ret != 0) return -EFAULT; uctxt->poll_type = (typeof(uctxt->poll_type))uval; break; case HFI1_IOCTL_ACK_EVENT: ret = get_user(ul_uval, (unsigned long __user *)arg); if (ret != 0) return -EFAULT; ret = user_event_ack(uctxt, fd->subctxt, ul_uval); break; case HFI1_IOCTL_SET_PKEY: ret = get_user(uval16, (u16 __user *)arg); if (ret != 0) return -EFAULT; if (HFI1_CAP_IS_USET(PKEY_CHECK)) ret = set_ctxt_pkey(uctxt, fd->subctxt, uval16); else return -EPERM; break; case HFI1_IOCTL_CTXT_RESET: { struct send_context *sc; struct hfi1_devdata *dd; if (!uctxt || !uctxt->dd || !uctxt->sc) return -EINVAL; /* * There is no protection here. User level has to * guarantee that no one will be writing to the send * context while it is being re-initialized. * If user level breaks that guarantee, it will break * it's own context and no one else's. */ dd = uctxt->dd; sc = uctxt->sc; /* * Wait until the interrupt handler has marked the * context as halted or frozen. Report error if we time * out. */ wait_event_interruptible_timeout( sc->halt_wait, (sc->flags & SCF_HALTED), msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT)); if (!(sc->flags & SCF_HALTED)) return -ENOLCK; /* * If the send context was halted due to a Freeze, * wait until the device has been "unfrozen" before * resetting the context. */ if (sc->flags & SCF_FROZEN) { wait_event_interruptible_timeout( dd->event_queue, !(ACCESS_ONCE(dd->flags) & HFI1_FROZEN), msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT)); if (dd->flags & HFI1_FROZEN) return -ENOLCK; if (dd->flags & HFI1_FORCED_FREEZE) /* * Don't allow context reset if we are into * forced freeze */ return -ENODEV; sc_disable(sc); ret = sc_enable(sc); hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB, uctxt->ctxt); } else { ret = sc_restart(sc); } if (!ret) sc_return_credits(sc); break; } case HFI1_IOCTL_GET_VERS: uval = HFI1_USER_SWVERSION; if (put_user(uval, (int __user *)arg)) return -EFAULT; break; default: return -EINVAL; } return ret; } static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from) { struct hfi1_filedata *fd = kiocb->ki_filp->private_data; struct hfi1_user_sdma_pkt_q *pq = fd->pq; struct hfi1_user_sdma_comp_q *cq = fd->cq; int done = 0, reqs = 0; unsigned long dim = from->nr_segs; if (!cq || !pq) return -EIO; if (!iter_is_iovec(from) || !dim) return -EINVAL; hfi1_cdbg(SDMA, "SDMA request from %u:%u (%lu)", fd->uctxt->ctxt, fd->subctxt, dim); if (atomic_read(&pq->n_reqs) == pq->n_max_reqs) return -ENOSPC; while (dim) { int ret; unsigned long count = 0; ret = hfi1_user_sdma_process_request( kiocb->ki_filp, (struct iovec *)(from->iov + done), dim, &count); if (ret) { reqs = ret; break; } dim -= count; done += count; reqs++; } return reqs; } static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma) { struct hfi1_filedata *fd = fp->private_data; struct hfi1_ctxtdata *uctxt = fd->uctxt; struct hfi1_devdata *dd; unsigned long flags; u64 token = vma->vm_pgoff << PAGE_SHIFT, memaddr = 0; void *memvirt = NULL; u8 subctxt, mapio = 0, vmf = 0, type; ssize_t memlen = 0; int ret = 0; u16 ctxt; if (!is_valid_mmap(token) || !uctxt || !(vma->vm_flags & VM_SHARED)) { ret = -EINVAL; goto done; } dd = uctxt->dd; ctxt = HFI1_MMAP_TOKEN_GET(CTXT, token); subctxt = HFI1_MMAP_TOKEN_GET(SUBCTXT, token); type = HFI1_MMAP_TOKEN_GET(TYPE, token); if (ctxt != uctxt->ctxt || subctxt != fd->subctxt) { ret = -EINVAL; goto done; } flags = vma->vm_flags; switch (type) { case PIO_BUFS: case PIO_BUFS_SOP: memaddr = ((dd->physaddr + TXE_PIO_SEND) + /* chip pio base */ (uctxt->sc->hw_context * BIT(16))) + /* 64K PIO space / ctxt */ (type == PIO_BUFS_SOP ? (TXE_PIO_SIZE / 2) : 0); /* sop? */ /* * Map only the amount allocated to the context, not the * entire available context's PIO space. */ memlen = PAGE_ALIGN(uctxt->sc->credits * PIO_BLOCK_SIZE); flags &= ~VM_MAYREAD; flags |= VM_DONTCOPY | VM_DONTEXPAND; vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); mapio = 1; break; case PIO_CRED: if (flags & VM_WRITE) { ret = -EPERM; goto done; } /* * The credit return location for this context could be on the * second or third page allocated for credit returns (if number * of enabled contexts > 64 and 128 respectively). */ memvirt = dd->cr_base[uctxt->numa_id].va; memaddr = virt_to_phys(memvirt) + (((u64)uctxt->sc->hw_free - (u64)dd->cr_base[uctxt->numa_id].va) & PAGE_MASK); memlen = PAGE_SIZE; flags &= ~VM_MAYWRITE; flags |= VM_DONTCOPY | VM_DONTEXPAND; /* * The driver has already allocated memory for credit * returns and programmed it into the chip. Has that * memory been flagged as non-cached? */ /* vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); */ mapio = 1; break; case RCV_HDRQ: memlen = uctxt->rcvhdrq_size; memvirt = uctxt->rcvhdrq; break; case RCV_EGRBUF: { unsigned long addr; int i; /* * The RcvEgr buffer need to be handled differently * as multiple non-contiguous pages need to be mapped * into the user process. */ memlen = uctxt->egrbufs.size; if ((vma->vm_end - vma->vm_start) != memlen) { dd_dev_err(dd, "Eager buffer map size invalid (%lu != %lu)\n", (vma->vm_end - vma->vm_start), memlen); ret = -EINVAL; goto done; } if (vma->vm_flags & VM_WRITE) { ret = -EPERM; goto done; } vma->vm_flags &= ~VM_MAYWRITE; addr = vma->vm_start; for (i = 0 ; i < uctxt->egrbufs.numbufs; i++) { memlen = uctxt->egrbufs.buffers[i].len; memvirt = uctxt->egrbufs.buffers[i].addr; ret = remap_pfn_range( vma, addr, /* * virt_to_pfn() does the same, but * it's not available on x86_64 * when CONFIG_MMU is enabled. */ PFN_DOWN(__pa(memvirt)), memlen, vma->vm_page_prot); if (ret < 0) goto done; addr += memlen; } ret = 0; goto done; } case UREGS: /* * Map only the page that contains this context's user * registers. */ memaddr = (unsigned long) (dd->physaddr + RXE_PER_CONTEXT_USER) + (uctxt->ctxt * RXE_PER_CONTEXT_SIZE); /* * TidFlow table is on the same page as the rest of the * user registers. */ memlen = PAGE_SIZE; flags |= VM_DONTCOPY | VM_DONTEXPAND; vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); mapio = 1; break; case EVENTS: /* * Use the page where this context's flags are. User level * knows where it's own bitmap is within the page. */ memaddr = (unsigned long)(dd->events + ((uctxt->ctxt - dd->first_dyn_alloc_ctxt) * HFI1_MAX_SHARED_CTXTS)) & PAGE_MASK; memlen = PAGE_SIZE; /* * v3.7 removes VM_RESERVED but the effect is kept by * using VM_IO. */ flags |= VM_IO | VM_DONTEXPAND; vmf = 1; break; case STATUS: if (flags & (unsigned long)(VM_WRITE | VM_EXEC)) { ret = -EPERM; goto done; } memaddr = kvirt_to_phys((void *)dd->status); memlen = PAGE_SIZE; flags |= VM_IO | VM_DONTEXPAND; break; case RTAIL: if (!HFI1_CAP_IS_USET(DMA_RTAIL)) { /* * If the memory allocation failed, the context alloc * also would have failed, so we would never get here */ ret = -EINVAL; goto done; } if (flags & VM_WRITE) { ret = -EPERM; goto done; } memlen = PAGE_SIZE; memvirt = (void *)uctxt->rcvhdrtail_kvaddr; flags &= ~VM_MAYWRITE; break; case SUBCTXT_UREGS: memaddr = (u64)uctxt->subctxt_uregbase; memlen = PAGE_SIZE; flags |= VM_IO | VM_DONTEXPAND; vmf = 1; break; case SUBCTXT_RCV_HDRQ: memaddr = (u64)uctxt->subctxt_rcvhdr_base; memlen = uctxt->rcvhdrq_size * uctxt->subctxt_cnt; flags |= VM_IO | VM_DONTEXPAND; vmf = 1; break; case SUBCTXT_EGRBUF: memaddr = (u64)uctxt->subctxt_rcvegrbuf; memlen = uctxt->egrbufs.size * uctxt->subctxt_cnt; flags |= VM_IO | VM_DONTEXPAND; flags &= ~VM_MAYWRITE; vmf = 1; break; case SDMA_COMP: { struct hfi1_user_sdma_comp_q *cq = fd->cq; if (!cq) { ret = -EFAULT; goto done; } memaddr = (u64)cq->comps; memlen = PAGE_ALIGN(sizeof(*cq->comps) * cq->nentries); flags |= VM_IO | VM_DONTEXPAND; vmf = 1; break; } default: ret = -EINVAL; break; } if ((vma->vm_end - vma->vm_start) != memlen) { hfi1_cdbg(PROC, "%u:%u Memory size mismatch %lu:%lu", uctxt->ctxt, fd->subctxt, (vma->vm_end - vma->vm_start), memlen); ret = -EINVAL; goto done; } vma->vm_flags = flags; hfi1_cdbg(PROC, "%u:%u type:%u io/vf:%d/%d, addr:0x%llx, len:%lu(%lu), flags:0x%lx\n", ctxt, subctxt, type, mapio, vmf, memaddr, memlen, vma->vm_end - vma->vm_start, vma->vm_flags); if (vmf) { vma->vm_pgoff = PFN_DOWN(memaddr); vma->vm_ops = &vm_ops; ret = 0; } else if (mapio) { ret = io_remap_pfn_range(vma, vma->vm_start, PFN_DOWN(memaddr), memlen, vma->vm_page_prot); } else if (memvirt) { ret = remap_pfn_range(vma, vma->vm_start, PFN_DOWN(__pa(memvirt)), memlen, vma->vm_page_prot); } else { ret = remap_pfn_range(vma, vma->vm_start, PFN_DOWN(memaddr), memlen, vma->vm_page_prot); } done: return ret; } /* * Local (non-chip) user memory is not mapped right away but as it is * accessed by the user-level code. */ static int vma_fault(struct vm_fault *vmf) { struct page *page; page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT)); if (!page) return VM_FAULT_SIGBUS; get_page(page); vmf->page = page; return 0; } static unsigned int hfi1_poll(struct file *fp, struct poll_table_struct *pt) { struct hfi1_ctxtdata *uctxt; unsigned pollflag; uctxt = ((struct hfi1_filedata *)fp->private_data)->uctxt; if (!uctxt) pollflag = POLLERR; else if (uctxt->poll_type == HFI1_POLL_TYPE_URGENT) pollflag = poll_urgent(fp, pt); else if (uctxt->poll_type == HFI1_POLL_TYPE_ANYRCV) pollflag = poll_next(fp, pt); else /* invalid */ pollflag = POLLERR; return pollflag; } static int hfi1_file_close(struct inode *inode, struct file *fp) { struct hfi1_filedata *fdata = fp->private_data; struct hfi1_ctxtdata *uctxt = fdata->uctxt; struct hfi1_devdata *dd = container_of(inode->i_cdev, struct hfi1_devdata, user_cdev); unsigned long flags, *ev; fp->private_data = NULL; if (!uctxt) goto done; hfi1_cdbg(PROC, "freeing ctxt %u:%u", uctxt->ctxt, fdata->subctxt); mutex_lock(&hfi1_mutex); flush_wc(); /* drain user sdma queue */ hfi1_user_sdma_free_queues(fdata); /* release the cpu */ hfi1_put_proc_affinity(fdata->rec_cpu_num); /* clean up rcv side */ hfi1_user_exp_rcv_free(fdata); /* * Clear any left over, unhandled events so the next process that * gets this context doesn't get confused. */ ev = dd->events + ((uctxt->ctxt - dd->first_dyn_alloc_ctxt) * HFI1_MAX_SHARED_CTXTS) + fdata->subctxt; *ev = 0; if (--uctxt->cnt) { uctxt->active_slaves &= ~(1 << fdata->subctxt); mutex_unlock(&hfi1_mutex); goto done; } spin_lock_irqsave(&dd->uctxt_lock, flags); /* * Disable receive context and interrupt available, reset all * RcvCtxtCtrl bits to default values. */ hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS | HFI1_RCVCTRL_TIDFLOW_DIS | HFI1_RCVCTRL_INTRAVAIL_DIS | HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_ONE_PKT_EGR_DIS | HFI1_RCVCTRL_NO_RHQ_DROP_DIS | HFI1_RCVCTRL_NO_EGR_DROP_DIS, uctxt->ctxt); /* Clear the context's J_KEY */ hfi1_clear_ctxt_jkey(dd, uctxt->ctxt); /* * Reset context integrity checks to default. * (writes to CSRs probably belong in chip.c) */ write_kctxt_csr(dd, uctxt->sc->hw_context, SEND_CTXT_CHECK_ENABLE, hfi1_pkt_default_send_ctxt_mask(dd, uctxt->sc->type)); sc_disable(uctxt->sc); spin_unlock_irqrestore(&dd->uctxt_lock, flags); dd->rcd[uctxt->ctxt] = NULL; hfi1_user_exp_rcv_grp_free(uctxt); hfi1_clear_ctxt_pkey(dd, uctxt->ctxt); uctxt->rcvwait_to = 0; uctxt->piowait_to = 0; uctxt->rcvnowait = 0; uctxt->pionowait = 0; uctxt->event_flags = 0; hfi1_stats.sps_ctxts--; if (++dd->freectxts == dd->num_user_contexts) aspm_enable_all(dd); mutex_unlock(&hfi1_mutex); hfi1_free_ctxtdata(dd, uctxt); done: mmdrop(fdata->mm); kobject_put(&dd->kobj); if (atomic_dec_and_test(&dd->user_refcount)) complete(&dd->user_comp); kfree(fdata); return 0; } /* * Convert kernel *virtual* addresses to physical addresses. * This is used to vmalloc'ed addresses. */ static u64 kvirt_to_phys(void *addr) { struct page *page; u64 paddr = 0; page = vmalloc_to_page(addr); if (page) paddr = page_to_pfn(page) << PAGE_SHIFT; return paddr; } static int assign_ctxt(struct file *fp, struct hfi1_user_info *uinfo) { int i_minor, ret = 0; unsigned int swmajor, swminor; swmajor = uinfo->userversion >> 16; if (swmajor != HFI1_USER_SWMAJOR) { ret = -ENODEV; goto done; } swminor = uinfo->userversion & 0xffff; mutex_lock(&hfi1_mutex); /* First, lets check if we need to setup a shared context? */ if (uinfo->subctxt_cnt) { struct hfi1_filedata *fd = fp->private_data; ret = find_shared_ctxt(fp, uinfo); if (ret < 0) goto done_unlock; if (ret) { fd->rec_cpu_num = hfi1_get_proc_affinity(fd->uctxt->numa_id); } } /* * We execute the following block if we couldn't find a * shared context or if context sharing is not required. */ if (!ret) { i_minor = iminor(file_inode(fp)) - HFI1_USER_MINOR_BASE; ret = get_user_context(fp, uinfo, i_minor); } done_unlock: mutex_unlock(&hfi1_mutex); done: return ret; } static int get_user_context(struct file *fp, struct hfi1_user_info *uinfo, int devno) { struct hfi1_devdata *dd = NULL; int devmax, npresent, nup; devmax = hfi1_count_units(&npresent, &nup); if (!npresent) return -ENXIO; if (!nup) return -ENETDOWN; dd = hfi1_lookup(devno); if (!dd) return -ENODEV; else if (!dd->freectxts) return -EBUSY; return allocate_ctxt(fp, dd, uinfo); } static int find_shared_ctxt(struct file *fp, const struct hfi1_user_info *uinfo) { int devmax, ndev, i; int ret = 0; struct hfi1_filedata *fd = fp->private_data; devmax = hfi1_count_units(NULL, NULL); for (ndev = 0; ndev < devmax; ndev++) { struct hfi1_devdata *dd = hfi1_lookup(ndev); if (!(dd && (dd->flags & HFI1_PRESENT) && dd->kregbase)) continue; for (i = dd->first_dyn_alloc_ctxt; i < dd->num_rcv_contexts; i++) { struct hfi1_ctxtdata *uctxt = dd->rcd[i]; /* Skip ctxts which are not yet open */ if (!uctxt || !uctxt->cnt) continue; /* Skip dynamically allocted kernel contexts */ if (uctxt->sc && (uctxt->sc->type == SC_KERNEL)) continue; /* Skip ctxt if it doesn't match the requested one */ if (memcmp(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid)) || uctxt->jkey != generate_jkey(current_uid()) || uctxt->subctxt_id != uinfo->subctxt_id || uctxt->subctxt_cnt != uinfo->subctxt_cnt) continue; /* Verify the sharing process matches the master */ if (uctxt->userversion != uinfo->userversion || uctxt->cnt >= uctxt->subctxt_cnt) { ret = -EINVAL; goto done; } fd->uctxt = uctxt; fd->subctxt = uctxt->cnt++; uctxt->active_slaves |= 1 << fd->subctxt; ret = 1; goto done; } } done: return ret; } static int allocate_ctxt(struct file *fp, struct hfi1_devdata *dd, struct hfi1_user_info *uinfo) { struct hfi1_filedata *fd = fp->private_data; struct hfi1_ctxtdata *uctxt; unsigned ctxt; int ret, numa; if (dd->flags & HFI1_FROZEN) { /* * Pick an error that is unique from all other errors * that are returned so the user process knows that * it tried to allocate while the SPC was frozen. It * it should be able to retry with success in a short * while. */ return -EIO; } for (ctxt = dd->first_dyn_alloc_ctxt; ctxt < dd->num_rcv_contexts; ctxt++) if (!dd->rcd[ctxt]) break; if (ctxt == dd->num_rcv_contexts) return -EBUSY; /* * If we don't have a NUMA node requested, preference is towards * device NUMA node. */ fd->rec_cpu_num = hfi1_get_proc_affinity(dd->node); if (fd->rec_cpu_num != -1) numa = cpu_to_node(fd->rec_cpu_num); else numa = numa_node_id(); uctxt = hfi1_create_ctxtdata(dd->pport, ctxt, numa); if (!uctxt) { dd_dev_err(dd, "Unable to allocate ctxtdata memory, failing open\n"); return -ENOMEM; } hfi1_cdbg(PROC, "[%u:%u] pid %u assigned to CPU %d (NUMA %u)", uctxt->ctxt, fd->subctxt, current->pid, fd->rec_cpu_num, uctxt->numa_id); /* * Allocate and enable a PIO send context. */ uctxt->sc = sc_alloc(dd, SC_USER, uctxt->rcvhdrqentsize, uctxt->dd->node); if (!uctxt->sc) { ret = -ENOMEM; goto ctxdata_free; } hfi1_cdbg(PROC, "allocated send context %u(%u)\n", uctxt->sc->sw_index, uctxt->sc->hw_context); ret = sc_enable(uctxt->sc); if (ret) goto ctxdata_free; /* * Setup shared context resources if the user-level has requested * shared contexts and this is the 'master' process. * This has to be done here so the rest of the sub-contexts find the * proper master. */ if (uinfo->subctxt_cnt && !fd->subctxt) { ret = init_subctxts(uctxt, uinfo); /* * On error, we don't need to disable and de-allocate the * send context because it will be done during file close */ if (ret) goto ctxdata_free; } uctxt->userversion = uinfo->userversion; uctxt->flags = hfi1_cap_mask; /* save current flag state */ init_waitqueue_head(&uctxt->wait); strlcpy(uctxt->comm, current->comm, sizeof(uctxt->comm)); memcpy(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid)); uctxt->jkey = generate_jkey(current_uid()); INIT_LIST_HEAD(&uctxt->sdma_queues); spin_lock_init(&uctxt->sdma_qlock); hfi1_stats.sps_ctxts++; /* * Disable ASPM when there are open user/PSM contexts to avoid * issues with ASPM L1 exit latency */ if (dd->freectxts-- == dd->num_user_contexts) aspm_disable_all(dd); fd->uctxt = uctxt; return 0; ctxdata_free: dd->rcd[ctxt] = NULL; hfi1_free_ctxtdata(dd, uctxt); return ret; } static int init_subctxts(struct hfi1_ctxtdata *uctxt, const struct hfi1_user_info *uinfo) { unsigned num_subctxts; num_subctxts = uinfo->subctxt_cnt; if (num_subctxts > HFI1_MAX_SHARED_CTXTS) return -EINVAL; uctxt->subctxt_cnt = uinfo->subctxt_cnt; uctxt->subctxt_id = uinfo->subctxt_id; uctxt->active_slaves = 1; uctxt->redirect_seq_cnt = 1; set_bit(HFI1_CTXT_MASTER_UNINIT, &uctxt->event_flags); return 0; } static int setup_subctxt(struct hfi1_ctxtdata *uctxt) { int ret = 0; unsigned num_subctxts = uctxt->subctxt_cnt; uctxt->subctxt_uregbase = vmalloc_user(PAGE_SIZE); if (!uctxt->subctxt_uregbase) { ret = -ENOMEM; goto bail; } /* We can take the size of the RcvHdr Queue from the master */ uctxt->subctxt_rcvhdr_base = vmalloc_user(uctxt->rcvhdrq_size * num_subctxts); if (!uctxt->subctxt_rcvhdr_base) { ret = -ENOMEM; goto bail_ureg; } uctxt->subctxt_rcvegrbuf = vmalloc_user(uctxt->egrbufs.size * num_subctxts); if (!uctxt->subctxt_rcvegrbuf) { ret = -ENOMEM; goto bail_rhdr; } goto bail; bail_rhdr: vfree(uctxt->subctxt_rcvhdr_base); bail_ureg: vfree(uctxt->subctxt_uregbase); uctxt->subctxt_uregbase = NULL; bail: return ret; } static int user_init(struct file *fp) { unsigned int rcvctrl_ops = 0; struct hfi1_filedata *fd = fp->private_data; struct hfi1_ctxtdata *uctxt = fd->uctxt; /* make sure that the context has already been setup */ if (!test_bit(HFI1_CTXT_SETUP_DONE, &uctxt->event_flags)) return -EFAULT; /* initialize poll variables... */ uctxt->urgent = 0; uctxt->urgent_poll = 0; /* * Now enable the ctxt for receive. * For chips that are set to DMA the tail register to memory * when they change (and when the update bit transitions from * 0 to 1. So for those chips, we turn it off and then back on. * This will (very briefly) affect any other open ctxts, but the * duration is very short, and therefore isn't an issue. We * explicitly set the in-memory tail copy to 0 beforehand, so we * don't have to wait to be sure the DMA update has happened * (chip resets head/tail to 0 on transition to enable). */ if (uctxt->rcvhdrtail_kvaddr) clear_rcvhdrtail(uctxt); /* Setup J_KEY before enabling the context */ hfi1_set_ctxt_jkey(uctxt->dd, uctxt->ctxt, uctxt->jkey); rcvctrl_ops = HFI1_RCVCTRL_CTXT_ENB; if (HFI1_CAP_UGET_MASK(uctxt->flags, HDRSUPP)) rcvctrl_ops |= HFI1_RCVCTRL_TIDFLOW_ENB; /* * Ignore the bit in the flags for now until proper * support for multiple packet per rcv array entry is * added. */ if (!HFI1_CAP_UGET_MASK(uctxt->flags, MULTI_PKT_EGR)) rcvctrl_ops |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB; if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_EGR_FULL)) rcvctrl_ops |= HFI1_RCVCTRL_NO_EGR_DROP_ENB; if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_RHQ_FULL)) rcvctrl_ops |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB; /* * The RcvCtxtCtrl.TailUpd bit has to be explicitly written. * We can't rely on the correct value to be set from prior * uses of the chip or ctxt. Therefore, add the rcvctrl op * for both cases. */ if (HFI1_CAP_UGET_MASK(uctxt->flags, DMA_RTAIL)) rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_ENB; else rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_DIS; hfi1_rcvctrl(uctxt->dd, rcvctrl_ops, uctxt->ctxt); /* Notify any waiting slaves */ if (uctxt->subctxt_cnt) { clear_bit(HFI1_CTXT_MASTER_UNINIT, &uctxt->event_flags); wake_up(&uctxt->wait); } return 0; } static int get_ctxt_info(struct file *fp, void __user *ubase, __u32 len) { struct hfi1_ctxt_info cinfo; struct hfi1_filedata *fd = fp->private_data; struct hfi1_ctxtdata *uctxt = fd->uctxt; int ret = 0; memset(&cinfo, 0, sizeof(cinfo)); cinfo.runtime_flags = (((uctxt->flags >> HFI1_CAP_MISC_SHIFT) & HFI1_CAP_MISC_MASK) << HFI1_CAP_USER_SHIFT) | HFI1_CAP_UGET_MASK(uctxt->flags, MASK) | HFI1_CAP_KGET_MASK(uctxt->flags, K2U); /* adjust flag if this fd is not able to cache */ if (!fd->handler) cinfo.runtime_flags |= HFI1_CAP_TID_UNMAP; /* no caching */ cinfo.num_active = hfi1_count_active_units(); cinfo.unit = uctxt->dd->unit; cinfo.ctxt = uctxt->ctxt; cinfo.subctxt = fd->subctxt; cinfo.rcvtids = roundup(uctxt->egrbufs.alloced, uctxt->dd->rcv_entries.group_size) + uctxt->expected_count; cinfo.credits = uctxt->sc->credits; cinfo.numa_node = uctxt->numa_id; cinfo.rec_cpu = fd->rec_cpu_num; cinfo.send_ctxt = uctxt->sc->hw_context; cinfo.egrtids = uctxt->egrbufs.alloced; cinfo.rcvhdrq_cnt = uctxt->rcvhdrq_cnt; cinfo.rcvhdrq_entsize = uctxt->rcvhdrqentsize << 2; cinfo.sdma_ring_size = fd->cq->nentries; cinfo.rcvegr_size = uctxt->egrbufs.rcvtid_size; trace_hfi1_ctxt_info(uctxt->dd, uctxt->ctxt, fd->subctxt, cinfo); if (copy_to_user(ubase, &cinfo, sizeof(cinfo))) ret = -EFAULT; return ret; } static int setup_ctxt(struct file *fp) { struct hfi1_filedata *fd = fp->private_data; struct hfi1_ctxtdata *uctxt = fd->uctxt; struct hfi1_devdata *dd = uctxt->dd; int ret = 0; /* * Context should be set up only once, including allocation and * programming of eager buffers. This is done if context sharing * is not requested or by the master process. */ if (!uctxt->subctxt_cnt || !fd->subctxt) { ret = hfi1_init_ctxt(uctxt->sc); if (ret) goto done; /* Now allocate the RcvHdr queue and eager buffers. */ ret = hfi1_create_rcvhdrq(dd, uctxt); if (ret) goto done; ret = hfi1_setup_eagerbufs(uctxt); if (ret) goto done; if (uctxt->subctxt_cnt && !fd->subctxt) { ret = setup_subctxt(uctxt); if (ret) goto done; } } else { ret = wait_event_interruptible(uctxt->wait, !test_bit( HFI1_CTXT_MASTER_UNINIT, &uctxt->event_flags)); if (ret) goto done; } ret = hfi1_user_sdma_alloc_queues(uctxt, fp); if (ret) goto done; /* * Expected receive has to be setup for all processes (including * shared contexts). However, it has to be done after the master * context has been fully configured as it depends on the * eager/expected split of the RcvArray entries. * Setting it up here ensures that the subcontexts will be waiting * (due to the above wait_event_interruptible() until the master * is setup. */ ret = hfi1_user_exp_rcv_init(fp); if (ret) goto done; set_bit(HFI1_CTXT_SETUP_DONE, &uctxt->event_flags); done: return ret; } static int get_base_info(struct file *fp, void __user *ubase, __u32 len) { struct hfi1_base_info binfo; struct hfi1_filedata *fd = fp->private_data; struct hfi1_ctxtdata *uctxt = fd->uctxt; struct hfi1_devdata *dd = uctxt->dd; ssize_t sz; unsigned offset; int ret = 0; trace_hfi1_uctxtdata(uctxt->dd, uctxt); memset(&binfo, 0, sizeof(binfo)); binfo.hw_version = dd->revision; binfo.sw_version = HFI1_KERN_SWVERSION; binfo.bthqp = kdeth_qp; binfo.jkey = uctxt->jkey; /* * If more than 64 contexts are enabled the allocated credit * return will span two or three contiguous pages. Since we only * map the page containing the context's credit return address, * we need to calculate the offset in the proper page. */ offset = ((u64)uctxt->sc->hw_free - (u64)dd->cr_base[uctxt->numa_id].va) % PAGE_SIZE; binfo.sc_credits_addr = HFI1_MMAP_TOKEN(PIO_CRED, uctxt->ctxt, fd->subctxt, offset); binfo.pio_bufbase = HFI1_MMAP_TOKEN(PIO_BUFS, uctxt->ctxt, fd->subctxt, uctxt->sc->base_addr); binfo.pio_bufbase_sop = HFI1_MMAP_TOKEN(PIO_BUFS_SOP, uctxt->ctxt, fd->subctxt, uctxt->sc->base_addr); binfo.rcvhdr_bufbase = HFI1_MMAP_TOKEN(RCV_HDRQ, uctxt->ctxt, fd->subctxt, uctxt->rcvhdrq); binfo.rcvegr_bufbase = HFI1_MMAP_TOKEN(RCV_EGRBUF, uctxt->ctxt, fd->subctxt, uctxt->egrbufs.rcvtids[0].dma); binfo.sdma_comp_bufbase = HFI1_MMAP_TOKEN(SDMA_COMP, uctxt->ctxt, fd->subctxt, 0); /* * user regs are at * (RXE_PER_CONTEXT_USER + (ctxt * RXE_PER_CONTEXT_SIZE)) */ binfo.user_regbase = HFI1_MMAP_TOKEN(UREGS, uctxt->ctxt, fd->subctxt, 0); offset = offset_in_page((((uctxt->ctxt - dd->first_dyn_alloc_ctxt) * HFI1_MAX_SHARED_CTXTS) + fd->subctxt) * sizeof(*dd->events)); binfo.events_bufbase = HFI1_MMAP_TOKEN(EVENTS, uctxt->ctxt, fd->subctxt, offset); binfo.status_bufbase = HFI1_MMAP_TOKEN(STATUS, uctxt->ctxt, fd->subctxt, dd->status); if (HFI1_CAP_IS_USET(DMA_RTAIL)) binfo.rcvhdrtail_base = HFI1_MMAP_TOKEN(RTAIL, uctxt->ctxt, fd->subctxt, 0); if (uctxt->subctxt_cnt) { binfo.subctxt_uregbase = HFI1_MMAP_TOKEN(SUBCTXT_UREGS, uctxt->ctxt, fd->subctxt, 0); binfo.subctxt_rcvhdrbuf = HFI1_MMAP_TOKEN(SUBCTXT_RCV_HDRQ, uctxt->ctxt, fd->subctxt, 0); binfo.subctxt_rcvegrbuf = HFI1_MMAP_TOKEN(SUBCTXT_EGRBUF, uctxt->ctxt, fd->subctxt, 0); } sz = (len < sizeof(binfo)) ? len : sizeof(binfo); if (copy_to_user(ubase, &binfo, sz)) ret = -EFAULT; return ret; } static unsigned int poll_urgent(struct file *fp, struct poll_table_struct *pt) { struct hfi1_filedata *fd = fp->private_data; struct hfi1_ctxtdata *uctxt = fd->uctxt; struct hfi1_devdata *dd = uctxt->dd; unsigned pollflag; poll_wait(fp, &uctxt->wait, pt); spin_lock_irq(&dd->uctxt_lock); if (uctxt->urgent != uctxt->urgent_poll) { pollflag = POLLIN | POLLRDNORM; uctxt->urgent_poll = uctxt->urgent; } else { pollflag = 0; set_bit(HFI1_CTXT_WAITING_URG, &uctxt->event_flags); } spin_unlock_irq(&dd->uctxt_lock); return pollflag; } static unsigned int poll_next(struct file *fp, struct poll_table_struct *pt) { struct hfi1_filedata *fd = fp->private_data; struct hfi1_ctxtdata *uctxt = fd->uctxt; struct hfi1_devdata *dd = uctxt->dd; unsigned pollflag; poll_wait(fp, &uctxt->wait, pt); spin_lock_irq(&dd->uctxt_lock); if (hdrqempty(uctxt)) { set_bit(HFI1_CTXT_WAITING_RCV, &uctxt->event_flags); hfi1_rcvctrl(dd, HFI1_RCVCTRL_INTRAVAIL_ENB, uctxt->ctxt); pollflag = 0; } else { pollflag = POLLIN | POLLRDNORM; } spin_unlock_irq(&dd->uctxt_lock); return pollflag; } /* * Find all user contexts in use, and set the specified bit in their * event mask. * See also find_ctxt() for a similar use, that is specific to send buffers. */ int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit) { struct hfi1_ctxtdata *uctxt; struct hfi1_devdata *dd = ppd->dd; unsigned ctxt; int ret = 0; unsigned long flags; if (!dd->events) { ret = -EINVAL; goto done; } spin_lock_irqsave(&dd->uctxt_lock, flags); for (ctxt = dd->first_dyn_alloc_ctxt; ctxt < dd->num_rcv_contexts; ctxt++) { uctxt = dd->rcd[ctxt]; if (uctxt) { unsigned long *evs = dd->events + (uctxt->ctxt - dd->first_dyn_alloc_ctxt) * HFI1_MAX_SHARED_CTXTS; int i; /* * subctxt_cnt is 0 if not shared, so do base * separately, first, then remaining subctxt, if any */ set_bit(evtbit, evs); for (i = 1; i < uctxt->subctxt_cnt; i++) set_bit(evtbit, evs + i); } } spin_unlock_irqrestore(&dd->uctxt_lock, flags); done: return ret; } /** * manage_rcvq - manage a context's receive queue * @uctxt: the context * @subctxt: the sub-context * @start_stop: action to carry out * * start_stop == 0 disables receive on the context, for use in queue * overflow conditions. start_stop==1 re-enables, to be used to * re-init the software copy of the head register */ static int manage_rcvq(struct hfi1_ctxtdata *uctxt, unsigned subctxt, int start_stop) { struct hfi1_devdata *dd = uctxt->dd; unsigned int rcvctrl_op; if (subctxt) goto bail; /* atomically clear receive enable ctxt. */ if (start_stop) { /* * On enable, force in-memory copy of the tail register to * 0, so that protocol code doesn't have to worry about * whether or not the chip has yet updated the in-memory * copy or not on return from the system call. The chip * always resets it's tail register back to 0 on a * transition from disabled to enabled. */ if (uctxt->rcvhdrtail_kvaddr) clear_rcvhdrtail(uctxt); rcvctrl_op = HFI1_RCVCTRL_CTXT_ENB; } else { rcvctrl_op = HFI1_RCVCTRL_CTXT_DIS; } hfi1_rcvctrl(dd, rcvctrl_op, uctxt->ctxt); /* always; new head should be equal to new tail; see above */ bail: return 0; } /* * clear the event notifier events for this context. * User process then performs actions appropriate to bit having been * set, if desired, and checks again in future. */ static int user_event_ack(struct hfi1_ctxtdata *uctxt, int subctxt, unsigned long events) { int i; struct hfi1_devdata *dd = uctxt->dd; unsigned long *evs; if (!dd->events) return 0; evs = dd->events + ((uctxt->ctxt - dd->first_dyn_alloc_ctxt) * HFI1_MAX_SHARED_CTXTS) + subctxt; for (i = 0; i <= _HFI1_MAX_EVENT_BIT; i++) { if (!test_bit(i, &events)) continue; clear_bit(i, evs); } return 0; } static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned subctxt, u16 pkey) { int ret = -ENOENT, i, intable = 0; struct hfi1_pportdata *ppd = uctxt->ppd; struct hfi1_devdata *dd = uctxt->dd; if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY) { ret = -EINVAL; goto done; } for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) if (pkey == ppd->pkeys[i]) { intable = 1; break; } if (intable) ret = hfi1_set_ctxt_pkey(dd, uctxt->ctxt, pkey); done: return ret; } static void user_remove(struct hfi1_devdata *dd) { hfi1_cdev_cleanup(&dd->user_cdev, &dd->user_device); } static int user_add(struct hfi1_devdata *dd) { char name[10]; int ret; snprintf(name, sizeof(name), "%s_%d", class_name(), dd->unit); ret = hfi1_cdev_init(dd->unit, name, &hfi1_file_ops, &dd->user_cdev, &dd->user_device, true, &dd->kobj); if (ret) user_remove(dd); return ret; } /* * Create per-unit files in /dev */ int hfi1_device_create(struct hfi1_devdata *dd) { return user_add(dd); } /* * Remove per-unit files in /dev * void, core kernel returns no errors for this stuff */ void hfi1_device_remove(struct hfi1_devdata *dd) { user_remove(dd); }