/* * Copyright (C) 2011 STRATO. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include #include #include #include #include #include #include #include #include "ctree.h" #include "transaction.h" #include "disk-io.h" #include "locking.h" #include "ulist.h" #include "backref.h" #include "extent_io.h" #include "qgroup.h" /* TODO XXX FIXME * - subvol delete -> delete when ref goes to 0? delete limits also? * - reorganize keys * - compressed * - sync * - copy also limits on subvol creation * - limit * - caches fuer ulists * - performance benchmarks * - check all ioctl parameters */ /* * one struct for each qgroup, organized in fs_info->qgroup_tree. */ struct btrfs_qgroup { u64 qgroupid; /* * state */ u64 rfer; /* referenced */ u64 rfer_cmpr; /* referenced compressed */ u64 excl; /* exclusive */ u64 excl_cmpr; /* exclusive compressed */ /* * limits */ u64 lim_flags; /* which limits are set */ u64 max_rfer; u64 max_excl; u64 rsv_rfer; u64 rsv_excl; /* * reservation tracking */ u64 reserved; /* * lists */ struct list_head groups; /* groups this group is member of */ struct list_head members; /* groups that are members of this group */ struct list_head dirty; /* dirty groups */ struct rb_node node; /* tree of qgroups */ /* * temp variables for accounting operations * Refer to qgroup_shared_accouting() for details. */ u64 old_refcnt; u64 new_refcnt; }; static void btrfs_qgroup_update_old_refcnt(struct btrfs_qgroup *qg, u64 seq, int mod) { if (qg->old_refcnt < seq) qg->old_refcnt = seq; qg->old_refcnt += mod; } static void btrfs_qgroup_update_new_refcnt(struct btrfs_qgroup *qg, u64 seq, int mod) { if (qg->new_refcnt < seq) qg->new_refcnt = seq; qg->new_refcnt += mod; } static inline u64 btrfs_qgroup_get_old_refcnt(struct btrfs_qgroup *qg, u64 seq) { if (qg->old_refcnt < seq) return 0; return qg->old_refcnt - seq; } static inline u64 btrfs_qgroup_get_new_refcnt(struct btrfs_qgroup *qg, u64 seq) { if (qg->new_refcnt < seq) return 0; return qg->new_refcnt - seq; } /* * glue structure to represent the relations between qgroups. */ struct btrfs_qgroup_list { struct list_head next_group; struct list_head next_member; struct btrfs_qgroup *group; struct btrfs_qgroup *member; }; #define ptr_to_u64(x) ((u64)(uintptr_t)x) #define u64_to_ptr(x) ((struct btrfs_qgroup *)(uintptr_t)x) static int qgroup_rescan_init(struct btrfs_fs_info *fs_info, u64 progress_objectid, int init_flags); static void qgroup_rescan_zero_tracking(struct btrfs_fs_info *fs_info); /* must be called with qgroup_ioctl_lock held */ static struct btrfs_qgroup *find_qgroup_rb(struct btrfs_fs_info *fs_info, u64 qgroupid) { struct rb_node *n = fs_info->qgroup_tree.rb_node; struct btrfs_qgroup *qgroup; while (n) { qgroup = rb_entry(n, struct btrfs_qgroup, node); if (qgroup->qgroupid < qgroupid) n = n->rb_left; else if (qgroup->qgroupid > qgroupid) n = n->rb_right; else return qgroup; } return NULL; } /* must be called with qgroup_lock held */ static struct btrfs_qgroup *add_qgroup_rb(struct btrfs_fs_info *fs_info, u64 qgroupid) { struct rb_node **p = &fs_info->qgroup_tree.rb_node; struct rb_node *parent = NULL; struct btrfs_qgroup *qgroup; while (*p) { parent = *p; qgroup = rb_entry(parent, struct btrfs_qgroup, node); if (qgroup->qgroupid < qgroupid) p = &(*p)->rb_left; else if (qgroup->qgroupid > qgroupid) p = &(*p)->rb_right; else return qgroup; } qgroup = kzalloc(sizeof(*qgroup), GFP_ATOMIC); if (!qgroup) return ERR_PTR(-ENOMEM); qgroup->qgroupid = qgroupid; INIT_LIST_HEAD(&qgroup->groups); INIT_LIST_HEAD(&qgroup->members); INIT_LIST_HEAD(&qgroup->dirty); rb_link_node(&qgroup->node, parent, p); rb_insert_color(&qgroup->node, &fs_info->qgroup_tree); return qgroup; } static void __del_qgroup_rb(struct btrfs_qgroup *qgroup) { struct btrfs_qgroup_list *list; list_del(&qgroup->dirty); while (!list_empty(&qgroup->groups)) { list = list_first_entry(&qgroup->groups, struct btrfs_qgroup_list, next_group); list_del(&list->next_group); list_del(&list->next_member); kfree(list); } while (!list_empty(&qgroup->members)) { list = list_first_entry(&qgroup->members, struct btrfs_qgroup_list, next_member); list_del(&list->next_group); list_del(&list->next_member); kfree(list); } kfree(qgroup); } /* must be called with qgroup_lock held */ static int del_qgroup_rb(struct btrfs_fs_info *fs_info, u64 qgroupid) { struct btrfs_qgroup *qgroup = find_qgroup_rb(fs_info, qgroupid); if (!qgroup) return -ENOENT; rb_erase(&qgroup->node, &fs_info->qgroup_tree); __del_qgroup_rb(qgroup); return 0; } /* must be called with qgroup_lock held */ static int add_relation_rb(struct btrfs_fs_info *fs_info, u64 memberid, u64 parentid) { struct btrfs_qgroup *member; struct btrfs_qgroup *parent; struct btrfs_qgroup_list *list; member = find_qgroup_rb(fs_info, memberid); parent = find_qgroup_rb(fs_info, parentid); if (!member || !parent) return -ENOENT; list = kzalloc(sizeof(*list), GFP_ATOMIC); if (!list) return -ENOMEM; list->group = parent; list->member = member; list_add_tail(&list->next_group, &member->groups); list_add_tail(&list->next_member, &parent->members); return 0; } /* must be called with qgroup_lock held */ static int del_relation_rb(struct btrfs_fs_info *fs_info, u64 memberid, u64 parentid) { struct btrfs_qgroup *member; struct btrfs_qgroup *parent; struct btrfs_qgroup_list *list; member = find_qgroup_rb(fs_info, memberid); parent = find_qgroup_rb(fs_info, parentid); if (!member || !parent) return -ENOENT; list_for_each_entry(list, &member->groups, next_group) { if (list->group == parent) { list_del(&list->next_group); list_del(&list->next_member); kfree(list); return 0; } } return -ENOENT; } #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS int btrfs_verify_qgroup_counts(struct btrfs_fs_info *fs_info, u64 qgroupid, u64 rfer, u64 excl) { struct btrfs_qgroup *qgroup; qgroup = find_qgroup_rb(fs_info, qgroupid); if (!qgroup) return -EINVAL; if (qgroup->rfer != rfer || qgroup->excl != excl) return -EINVAL; return 0; } #endif /* * The full config is read in one go, only called from open_ctree() * It doesn't use any locking, as at this point we're still single-threaded */ int btrfs_read_qgroup_config(struct btrfs_fs_info *fs_info) { struct btrfs_key key; struct btrfs_key found_key; struct btrfs_root *quota_root = fs_info->quota_root; struct btrfs_path *path = NULL; struct extent_buffer *l; int slot; int ret = 0; u64 flags = 0; u64 rescan_progress = 0; if (!fs_info->quota_enabled) return 0; fs_info->qgroup_ulist = ulist_alloc(GFP_NOFS); if (!fs_info->qgroup_ulist) { ret = -ENOMEM; goto out; } path = btrfs_alloc_path(); if (!path) { ret = -ENOMEM; goto out; } /* default this to quota off, in case no status key is found */ fs_info->qgroup_flags = 0; /* * pass 1: read status, all qgroup infos and limits */ key.objectid = 0; key.type = 0; key.offset = 0; ret = btrfs_search_slot_for_read(quota_root, &key, path, 1, 1); if (ret) goto out; while (1) { struct btrfs_qgroup *qgroup; slot = path->slots[0]; l = path->nodes[0]; btrfs_item_key_to_cpu(l, &found_key, slot); if (found_key.type == BTRFS_QGROUP_STATUS_KEY) { struct btrfs_qgroup_status_item *ptr; ptr = btrfs_item_ptr(l, slot, struct btrfs_qgroup_status_item); if (btrfs_qgroup_status_version(l, ptr) != BTRFS_QGROUP_STATUS_VERSION) { btrfs_err(fs_info, "old qgroup version, quota disabled"); goto out; } if (btrfs_qgroup_status_generation(l, ptr) != fs_info->generation) { flags |= BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT; btrfs_err(fs_info, "qgroup generation mismatch, " "marked as inconsistent"); } fs_info->qgroup_flags = btrfs_qgroup_status_flags(l, ptr); rescan_progress = btrfs_qgroup_status_rescan(l, ptr); goto next1; } if (found_key.type != BTRFS_QGROUP_INFO_KEY && found_key.type != BTRFS_QGROUP_LIMIT_KEY) goto next1; qgroup = find_qgroup_rb(fs_info, found_key.offset); if ((qgroup && found_key.type == BTRFS_QGROUP_INFO_KEY) || (!qgroup && found_key.type == BTRFS_QGROUP_LIMIT_KEY)) { btrfs_err(fs_info, "inconsitent qgroup config"); flags |= BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT; } if (!qgroup) { qgroup = add_qgroup_rb(fs_info, found_key.offset); if (IS_ERR(qgroup)) { ret = PTR_ERR(qgroup); goto out; } } switch (found_key.type) { case BTRFS_QGROUP_INFO_KEY: { struct btrfs_qgroup_info_item *ptr; ptr = btrfs_item_ptr(l, slot, struct btrfs_qgroup_info_item); qgroup->rfer = btrfs_qgroup_info_rfer(l, ptr); qgroup->rfer_cmpr = btrfs_qgroup_info_rfer_cmpr(l, ptr); qgroup->excl = btrfs_qgroup_info_excl(l, ptr); qgroup->excl_cmpr = btrfs_qgroup_info_excl_cmpr(l, ptr); /* generation currently unused */ break; } case BTRFS_QGROUP_LIMIT_KEY: { struct btrfs_qgroup_limit_item *ptr; ptr = btrfs_item_ptr(l, slot, struct btrfs_qgroup_limit_item); qgroup->lim_flags = btrfs_qgroup_limit_flags(l, ptr); qgroup->max_rfer = btrfs_qgroup_limit_max_rfer(l, ptr); qgroup->max_excl = btrfs_qgroup_limit_max_excl(l, ptr); qgroup->rsv_rfer = btrfs_qgroup_limit_rsv_rfer(l, ptr); qgroup->rsv_excl = btrfs_qgroup_limit_rsv_excl(l, ptr); break; } } next1: ret = btrfs_next_item(quota_root, path); if (ret < 0) goto out; if (ret) break; } btrfs_release_path(path); /* * pass 2: read all qgroup relations */ key.objectid = 0; key.type = BTRFS_QGROUP_RELATION_KEY; key.offset = 0; ret = btrfs_search_slot_for_read(quota_root, &key, path, 1, 0); if (ret) goto out; while (1) { slot = path->slots[0]; l = path->nodes[0]; btrfs_item_key_to_cpu(l, &found_key, slot); if (found_key.type != BTRFS_QGROUP_RELATION_KEY) goto next2; if (found_key.objectid > found_key.offset) { /* parent <- member, not needed to build config */ /* FIXME should we omit the key completely? */ goto next2; } ret = add_relation_rb(fs_info, found_key.objectid, found_key.offset); if (ret == -ENOENT) { btrfs_warn(fs_info, "orphan qgroup relation 0x%llx->0x%llx", found_key.objectid, found_key.offset); ret = 0; /* ignore the error */ } if (ret) goto out; next2: ret = btrfs_next_item(quota_root, path); if (ret < 0) goto out; if (ret) break; } out: fs_info->qgroup_flags |= flags; if (!(fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_ON)) { fs_info->quota_enabled = 0; fs_info->pending_quota_state = 0; } else if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN && ret >= 0) { ret = qgroup_rescan_init(fs_info, rescan_progress, 0); } btrfs_free_path(path); if (ret < 0) { ulist_free(fs_info->qgroup_ulist); fs_info->qgroup_ulist = NULL; fs_info->qgroup_flags &= ~BTRFS_QGROUP_STATUS_FLAG_RESCAN; } return ret < 0 ? ret : 0; } /* * This is called from close_ctree() or open_ctree() or btrfs_quota_disable(), * first two are in single-threaded paths.And for the third one, we have set * quota_root to be null with qgroup_lock held before, so it is safe to clean * up the in-memory structures without qgroup_lock held. */ void btrfs_free_qgroup_config(struct btrfs_fs_info *fs_info) { struct rb_node *n; struct btrfs_qgroup *qgroup; while ((n = rb_first(&fs_info->qgroup_tree))) { qgroup = rb_entry(n, struct btrfs_qgroup, node); rb_erase(n, &fs_info->qgroup_tree); __del_qgroup_rb(qgroup); } /* * we call btrfs_free_qgroup_config() when umounting * filesystem and disabling quota, so we set qgroup_ulit * to be null here to avoid double free. */ ulist_free(fs_info->qgroup_ulist); fs_info->qgroup_ulist = NULL; } static int add_qgroup_relation_item(struct btrfs_trans_handle *trans, struct btrfs_root *quota_root, u64 src, u64 dst) { int ret; struct btrfs_path *path; struct btrfs_key key; path = btrfs_alloc_path(); if (!path) return -ENOMEM; key.objectid = src; key.type = BTRFS_QGROUP_RELATION_KEY; key.offset = dst; ret = btrfs_insert_empty_item(trans, quota_root, path, &key, 0); btrfs_mark_buffer_dirty(path->nodes[0]); btrfs_free_path(path); return ret; } static int del_qgroup_relation_item(struct btrfs_trans_handle *trans, struct btrfs_root *quota_root, u64 src, u64 dst) { int ret; struct btrfs_path *path; struct btrfs_key key; path = btrfs_alloc_path(); if (!path) return -ENOMEM; key.objectid = src; key.type = BTRFS_QGROUP_RELATION_KEY; key.offset = dst; ret = btrfs_search_slot(trans, quota_root, &key, path, -1, 1); if (ret < 0) goto out; if (ret > 0) { ret = -ENOENT; goto out; } ret = btrfs_del_item(trans, quota_root, path); out: btrfs_free_path(path); return ret; } static int add_qgroup_item(struct btrfs_trans_handle *trans, struct btrfs_root *quota_root, u64 qgroupid) { int ret; struct btrfs_path *path; struct btrfs_qgroup_info_item *qgroup_info; struct btrfs_qgroup_limit_item *qgroup_limit; struct extent_buffer *leaf; struct btrfs_key key; if (btrfs_test_is_dummy_root(quota_root)) return 0; path = btrfs_alloc_path(); if (!path) return -ENOMEM; key.objectid = 0; key.type = BTRFS_QGROUP_INFO_KEY; key.offset = qgroupid; /* * Avoid a transaction abort by catching -EEXIST here. In that * case, we proceed by re-initializing the existing structure * on disk. */ ret = btrfs_insert_empty_item(trans, quota_root, path, &key, sizeof(*qgroup_info)); if (ret && ret != -EEXIST) goto out; leaf = path->nodes[0]; qgroup_info = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_qgroup_info_item); btrfs_set_qgroup_info_generation(leaf, qgroup_info, trans->transid); btrfs_set_qgroup_info_rfer(leaf, qgroup_info, 0); btrfs_set_qgroup_info_rfer_cmpr(leaf, qgroup_info, 0); btrfs_set_qgroup_info_excl(leaf, qgroup_info, 0); btrfs_set_qgroup_info_excl_cmpr(leaf, qgroup_info, 0); btrfs_mark_buffer_dirty(leaf); btrfs_release_path(path); key.type = BTRFS_QGROUP_LIMIT_KEY; ret = btrfs_insert_empty_item(trans, quota_root, path, &key, sizeof(*qgroup_limit)); if (ret && ret != -EEXIST) goto out; leaf = path->nodes[0]; qgroup_limit = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_qgroup_limit_item); btrfs_set_qgroup_limit_flags(leaf, qgroup_limit, 0); btrfs_set_qgroup_limit_max_rfer(leaf, qgroup_limit, 0); btrfs_set_qgroup_limit_max_excl(leaf, qgroup_limit, 0); btrfs_set_qgroup_limit_rsv_rfer(leaf, qgroup_limit, 0); btrfs_set_qgroup_limit_rsv_excl(leaf, qgroup_limit, 0); btrfs_mark_buffer_dirty(leaf); ret = 0; out: btrfs_free_path(path); return ret; } static int del_qgroup_item(struct btrfs_trans_handle *trans, struct btrfs_root *quota_root, u64 qgroupid) { int ret; struct btrfs_path *path; struct btrfs_key key; path = btrfs_alloc_path(); if (!path) return -ENOMEM; key.objectid = 0; key.type = BTRFS_QGROUP_INFO_KEY; key.offset = qgroupid; ret = btrfs_search_slot(trans, quota_root, &key, path, -1, 1); if (ret < 0) goto out; if (ret > 0) { ret = -ENOENT; goto out; } ret = btrfs_del_item(trans, quota_root, path); if (ret) goto out; btrfs_release_path(path); key.type = BTRFS_QGROUP_LIMIT_KEY; ret = btrfs_search_slot(trans, quota_root, &key, path, -1, 1); if (ret < 0) goto out; if (ret > 0) { ret = -ENOENT; goto out; } ret = btrfs_del_item(trans, quota_root, path); out: btrfs_free_path(path); return ret; } static int update_qgroup_limit_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_qgroup *qgroup) { struct btrfs_path *path; struct btrfs_key key; struct extent_buffer *l; struct btrfs_qgroup_limit_item *qgroup_limit; int ret; int slot; key.objectid = 0; key.type = BTRFS_QGROUP_LIMIT_KEY; key.offset = qgroup->qgroupid; path = btrfs_alloc_path(); if (!path) return -ENOMEM; ret = btrfs_search_slot(trans, root, &key, path, 0, 1); if (ret > 0) ret = -ENOENT; if (ret) goto out; l = path->nodes[0]; slot = path->slots[0]; qgroup_limit = btrfs_item_ptr(l, slot, struct btrfs_qgroup_limit_item); btrfs_set_qgroup_limit_flags(l, qgroup_limit, qgroup->lim_flags); btrfs_set_qgroup_limit_max_rfer(l, qgroup_limit, qgroup->max_rfer); btrfs_set_qgroup_limit_max_excl(l, qgroup_limit, qgroup->max_excl); btrfs_set_qgroup_limit_rsv_rfer(l, qgroup_limit, qgroup->rsv_rfer); btrfs_set_qgroup_limit_rsv_excl(l, qgroup_limit, qgroup->rsv_excl); btrfs_mark_buffer_dirty(l); out: btrfs_free_path(path); return ret; } static int update_qgroup_info_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_qgroup *qgroup) { struct btrfs_path *path; struct btrfs_key key; struct extent_buffer *l; struct btrfs_qgroup_info_item *qgroup_info; int ret; int slot; if (btrfs_test_is_dummy_root(root)) return 0; key.objectid = 0; key.type = BTRFS_QGROUP_INFO_KEY; key.offset = qgroup->qgroupid; path = btrfs_alloc_path(); if (!path) return -ENOMEM; ret = btrfs_search_slot(trans, root, &key, path, 0, 1); if (ret > 0) ret = -ENOENT; if (ret) goto out; l = path->nodes[0]; slot = path->slots[0]; qgroup_info = btrfs_item_ptr(l, slot, struct btrfs_qgroup_info_item); btrfs_set_qgroup_info_generation(l, qgroup_info, trans->transid); btrfs_set_qgroup_info_rfer(l, qgroup_info, qgroup->rfer); btrfs_set_qgroup_info_rfer_cmpr(l, qgroup_info, qgroup->rfer_cmpr); btrfs_set_qgroup_info_excl(l, qgroup_info, qgroup->excl); btrfs_set_qgroup_info_excl_cmpr(l, qgroup_info, qgroup->excl_cmpr); btrfs_mark_buffer_dirty(l); out: btrfs_free_path(path); return ret; } static int update_qgroup_status_item(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, struct btrfs_root *root) { struct btrfs_path *path; struct btrfs_key key; struct extent_buffer *l; struct btrfs_qgroup_status_item *ptr; int ret; int slot; key.objectid = 0; key.type = BTRFS_QGROUP_STATUS_KEY; key.offset = 0; path = btrfs_alloc_path(); if (!path) return -ENOMEM; ret = btrfs_search_slot(trans, root, &key, path, 0, 1); if (ret > 0) ret = -ENOENT; if (ret) goto out; l = path->nodes[0]; slot = path->slots[0]; ptr = btrfs_item_ptr(l, slot, struct btrfs_qgroup_status_item); btrfs_set_qgroup_status_flags(l, ptr, fs_info->qgroup_flags); btrfs_set_qgroup_status_generation(l, ptr, trans->transid); btrfs_set_qgroup_status_rescan(l, ptr, fs_info->qgroup_rescan_progress.objectid); btrfs_mark_buffer_dirty(l); out: btrfs_free_path(path); return ret; } /* * called with qgroup_lock held */ static int btrfs_clean_quota_tree(struct btrfs_trans_handle *trans, struct btrfs_root *root) { struct btrfs_path *path; struct btrfs_key key; struct extent_buffer *leaf = NULL; int ret; int nr = 0; path = btrfs_alloc_path(); if (!path) return -ENOMEM; path->leave_spinning = 1; key.objectid = 0; key.offset = 0; key.type = 0; while (1) { ret = btrfs_search_slot(trans, root, &key, path, -1, 1); if (ret < 0) goto out; leaf = path->nodes[0]; nr = btrfs_header_nritems(leaf); if (!nr) break; /* * delete the leaf one by one * since the whole tree is going * to be deleted. */ path->slots[0] = 0; ret = btrfs_del_items(trans, root, path, 0, nr); if (ret) goto out; btrfs_release_path(path); } ret = 0; out: root->fs_info->pending_quota_state = 0; btrfs_free_path(path); return ret; } int btrfs_quota_enable(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info) { struct btrfs_root *quota_root; struct btrfs_root *tree_root = fs_info->tree_root; struct btrfs_path *path = NULL; struct btrfs_qgroup_status_item *ptr; struct extent_buffer *leaf; struct btrfs_key key; struct btrfs_key found_key; struct btrfs_qgroup *qgroup = NULL; int ret = 0; int slot; mutex_lock(&fs_info->qgroup_ioctl_lock); if (fs_info->quota_root) { fs_info->pending_quota_state = 1; goto out; } fs_info->qgroup_ulist = ulist_alloc(GFP_NOFS); if (!fs_info->qgroup_ulist) { ret = -ENOMEM; goto out; } /* * initially create the quota tree */ quota_root = btrfs_create_tree(trans, fs_info, BTRFS_QUOTA_TREE_OBJECTID); if (IS_ERR(quota_root)) { ret = PTR_ERR(quota_root); goto out; } path = btrfs_alloc_path(); if (!path) { ret = -ENOMEM; goto out_free_root; } key.objectid = 0; key.type = BTRFS_QGROUP_STATUS_KEY; key.offset = 0; ret = btrfs_insert_empty_item(trans, quota_root, path, &key, sizeof(*ptr)); if (ret) goto out_free_path; leaf = path->nodes[0]; ptr = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_qgroup_status_item); btrfs_set_qgroup_status_generation(leaf, ptr, trans->transid); btrfs_set_qgroup_status_version(leaf, ptr, BTRFS_QGROUP_STATUS_VERSION); fs_info->qgroup_flags = BTRFS_QGROUP_STATUS_FLAG_ON | BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT; btrfs_set_qgroup_status_flags(leaf, ptr, fs_info->qgroup_flags); btrfs_set_qgroup_status_rescan(leaf, ptr, 0); btrfs_mark_buffer_dirty(leaf); key.objectid = 0; key.type = BTRFS_ROOT_REF_KEY; key.offset = 0; btrfs_release_path(path); ret = btrfs_search_slot_for_read(tree_root, &key, path, 1, 0); if (ret > 0) goto out_add_root; if (ret < 0) goto out_free_path; while (1) { slot = path->slots[0]; leaf = path->nodes[0]; btrfs_item_key_to_cpu(leaf, &found_key, slot); if (found_key.type == BTRFS_ROOT_REF_KEY) { ret = add_qgroup_item(trans, quota_root, found_key.offset); if (ret) goto out_free_path; qgroup = add_qgroup_rb(fs_info, found_key.offset); if (IS_ERR(qgroup)) { ret = PTR_ERR(qgroup); goto out_free_path; } } ret = btrfs_next_item(tree_root, path); if (ret < 0) goto out_free_path; if (ret) break; } out_add_root: btrfs_release_path(path); ret = add_qgroup_item(trans, quota_root, BTRFS_FS_TREE_OBJECTID); if (ret) goto out_free_path; qgroup = add_qgroup_rb(fs_info, BTRFS_FS_TREE_OBJECTID); if (IS_ERR(qgroup)) { ret = PTR_ERR(qgroup); goto out_free_path; } spin_lock(&fs_info->qgroup_lock); fs_info->quota_root = quota_root; fs_info->pending_quota_state = 1; spin_unlock(&fs_info->qgroup_lock); out_free_path: btrfs_free_path(path); out_free_root: if (ret) { free_extent_buffer(quota_root->node); free_extent_buffer(quota_root->commit_root); kfree(quota_root); } out: if (ret) { ulist_free(fs_info->qgroup_ulist); fs_info->qgroup_ulist = NULL; } mutex_unlock(&fs_info->qgroup_ioctl_lock); return ret; } int btrfs_quota_disable(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info) { struct btrfs_root *tree_root = fs_info->tree_root; struct btrfs_root *quota_root; int ret = 0; mutex_lock(&fs_info->qgroup_ioctl_lock); if (!fs_info->quota_root) goto out; spin_lock(&fs_info->qgroup_lock); fs_info->quota_enabled = 0; fs_info->pending_quota_state = 0; quota_root = fs_info->quota_root; fs_info->quota_root = NULL; fs_info->qgroup_flags &= ~BTRFS_QGROUP_STATUS_FLAG_ON; spin_unlock(&fs_info->qgroup_lock); btrfs_free_qgroup_config(fs_info); ret = btrfs_clean_quota_tree(trans, quota_root); if (ret) goto out; ret = btrfs_del_root(trans, tree_root, "a_root->root_key); if (ret) goto out; list_del("a_root->dirty_list); btrfs_tree_lock(quota_root->node); clean_tree_block(trans, tree_root->fs_info, quota_root->node); btrfs_tree_unlock(quota_root->node); btrfs_free_tree_block(trans, quota_root, quota_root->node, 0, 1); free_extent_buffer(quota_root->node); free_extent_buffer(quota_root->commit_root); kfree(quota_root); out: mutex_unlock(&fs_info->qgroup_ioctl_lock); return ret; } static void qgroup_dirty(struct btrfs_fs_info *fs_info, struct btrfs_qgroup *qgroup) { if (list_empty(&qgroup->dirty)) list_add(&qgroup->dirty, &fs_info->dirty_qgroups); } /* * The easy accounting, if we are adding/removing the only ref for an extent * then this qgroup and all of the parent qgroups get their refrence and * exclusive counts adjusted. * * Caller should hold fs_info->qgroup_lock. */ static int __qgroup_excl_accounting(struct btrfs_fs_info *fs_info, struct ulist *tmp, u64 ref_root, u64 num_bytes, int sign) { struct btrfs_qgroup *qgroup; struct btrfs_qgroup_list *glist; struct ulist_node *unode; struct ulist_iterator uiter; int ret = 0; qgroup = find_qgroup_rb(fs_info, ref_root); if (!qgroup) goto out; qgroup->rfer += sign * num_bytes; qgroup->rfer_cmpr += sign * num_bytes; WARN_ON(sign < 0 && qgroup->excl < num_bytes); qgroup->excl += sign * num_bytes; qgroup->excl_cmpr += sign * num_bytes; if (sign > 0) qgroup->reserved -= num_bytes; qgroup_dirty(fs_info, qgroup); /* Get all of the parent groups that contain this qgroup */ list_for_each_entry(glist, &qgroup->groups, next_group) { ret = ulist_add(tmp, glist->group->qgroupid, ptr_to_u64(glist->group), GFP_ATOMIC); if (ret < 0) goto out; } /* Iterate all of the parents and adjust their reference counts */ ULIST_ITER_INIT(&uiter); while ((unode = ulist_next(tmp, &uiter))) { qgroup = u64_to_ptr(unode->aux); qgroup->rfer += sign * num_bytes; qgroup->rfer_cmpr += sign * num_bytes; WARN_ON(sign < 0 && qgroup->excl < num_bytes); qgroup->excl += sign * num_bytes; if (sign > 0) qgroup->reserved -= num_bytes; qgroup->excl_cmpr += sign * num_bytes; qgroup_dirty(fs_info, qgroup); /* Add any parents of the parents */ list_for_each_entry(glist, &qgroup->groups, next_group) { ret = ulist_add(tmp, glist->group->qgroupid, ptr_to_u64(glist->group), GFP_ATOMIC); if (ret < 0) goto out; } } ret = 0; out: return ret; } /* * Quick path for updating qgroup with only excl refs. * * In that case, just update all parent will be enough. * Or we needs to do a full rescan. * Caller should also hold fs_info->qgroup_lock. * * Return 0 for quick update, return >0 for need to full rescan * and mark INCONSISTENT flag. * Return < 0 for other error. */ static int quick_update_accounting(struct btrfs_fs_info *fs_info, struct ulist *tmp, u64 src, u64 dst, int sign) { struct btrfs_qgroup *qgroup; int ret = 1; int err = 0; qgroup = find_qgroup_rb(fs_info, src); if (!qgroup) goto out; if (qgroup->excl == qgroup->rfer) { ret = 0; err = __qgroup_excl_accounting(fs_info, tmp, dst, qgroup->excl, sign); if (err < 0) { ret = err; goto out; } } out: if (ret) fs_info->qgroup_flags |= BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT; return ret; } int btrfs_add_qgroup_relation(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, u64 src, u64 dst) { struct btrfs_root *quota_root; struct btrfs_qgroup *parent; struct btrfs_qgroup *member; struct btrfs_qgroup_list *list; struct ulist *tmp; int ret = 0; /* Check the level of src and dst first */ if (btrfs_qgroup_level(src) >= btrfs_qgroup_level(dst)) return -EINVAL; tmp = ulist_alloc(GFP_NOFS); if (!tmp) return -ENOMEM; mutex_lock(&fs_info->qgroup_ioctl_lock); quota_root = fs_info->quota_root; if (!quota_root) { ret = -EINVAL; goto out; } member = find_qgroup_rb(fs_info, src); parent = find_qgroup_rb(fs_info, dst); if (!member || !parent) { ret = -EINVAL; goto out; } /* check if such qgroup relation exist firstly */ list_for_each_entry(list, &member->groups, next_group) { if (list->group == parent) { ret = -EEXIST; goto out; } } ret = add_qgroup_relation_item(trans, quota_root, src, dst); if (ret) goto out; ret = add_qgroup_relation_item(trans, quota_root, dst, src); if (ret) { del_qgroup_relation_item(trans, quota_root, src, dst); goto out; } spin_lock(&fs_info->qgroup_lock); ret = add_relation_rb(quota_root->fs_info, src, dst); if (ret < 0) { spin_unlock(&fs_info->qgroup_lock); goto out; } ret = quick_update_accounting(fs_info, tmp, src, dst, 1); spin_unlock(&fs_info->qgroup_lock); out: mutex_unlock(&fs_info->qgroup_ioctl_lock); ulist_free(tmp); return ret; } int __del_qgroup_relation(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, u64 src, u64 dst) { struct btrfs_root *quota_root; struct btrfs_qgroup *parent; struct btrfs_qgroup *member; struct btrfs_qgroup_list *list; struct ulist *tmp; int ret = 0; int err; tmp = ulist_alloc(GFP_NOFS); if (!tmp) return -ENOMEM; quota_root = fs_info->quota_root; if (!quota_root) { ret = -EINVAL; goto out; } member = find_qgroup_rb(fs_info, src); parent = find_qgroup_rb(fs_info, dst); if (!member || !parent) { ret = -EINVAL; goto out; } /* check if such qgroup relation exist firstly */ list_for_each_entry(list, &member->groups, next_group) { if (list->group == parent) goto exist; } ret = -ENOENT; goto out; exist: ret = del_qgroup_relation_item(trans, quota_root, src, dst); err = del_qgroup_relation_item(trans, quota_root, dst, src); if (err && !ret) ret = err; spin_lock(&fs_info->qgroup_lock); del_relation_rb(fs_info, src, dst); ret = quick_update_accounting(fs_info, tmp, src, dst, -1); spin_unlock(&fs_info->qgroup_lock); out: ulist_free(tmp); return ret; } int btrfs_del_qgroup_relation(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, u64 src, u64 dst) { int ret = 0; mutex_lock(&fs_info->qgroup_ioctl_lock); ret = __del_qgroup_relation(trans, fs_info, src, dst); mutex_unlock(&fs_info->qgroup_ioctl_lock); return ret; } int btrfs_create_qgroup(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, u64 qgroupid) { struct btrfs_root *quota_root; struct btrfs_qgroup *qgroup; int ret = 0; mutex_lock(&fs_info->qgroup_ioctl_lock); quota_root = fs_info->quota_root; if (!quota_root) { ret = -EINVAL; goto out; } qgroup = find_qgroup_rb(fs_info, qgroupid); if (qgroup) { ret = -EEXIST; goto out; } ret = add_qgroup_item(trans, quota_root, qgroupid); if (ret) goto out; spin_lock(&fs_info->qgroup_lock); qgroup = add_qgroup_rb(fs_info, qgroupid); spin_unlock(&fs_info->qgroup_lock); if (IS_ERR(qgroup)) ret = PTR_ERR(qgroup); out: mutex_unlock(&fs_info->qgroup_ioctl_lock); return ret; } int btrfs_remove_qgroup(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, u64 qgroupid) { struct btrfs_root *quota_root; struct btrfs_qgroup *qgroup; struct btrfs_qgroup_list *list; int ret = 0; mutex_lock(&fs_info->qgroup_ioctl_lock); quota_root = fs_info->quota_root; if (!quota_root) { ret = -EINVAL; goto out; } qgroup = find_qgroup_rb(fs_info, qgroupid); if (!qgroup) { ret = -ENOENT; goto out; } else { /* check if there are no children of this qgroup */ if (!list_empty(&qgroup->members)) { ret = -EBUSY; goto out; } } ret = del_qgroup_item(trans, quota_root, qgroupid); while (!list_empty(&qgroup->groups)) { list = list_first_entry(&qgroup->groups, struct btrfs_qgroup_list, next_group); ret = __del_qgroup_relation(trans, fs_info, qgroupid, list->group->qgroupid); if (ret) goto out; } spin_lock(&fs_info->qgroup_lock); del_qgroup_rb(quota_root->fs_info, qgroupid); spin_unlock(&fs_info->qgroup_lock); out: mutex_unlock(&fs_info->qgroup_ioctl_lock); return ret; } int btrfs_limit_qgroup(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, u64 qgroupid, struct btrfs_qgroup_limit *limit) { struct btrfs_root *quota_root; struct btrfs_qgroup *qgroup; int ret = 0; mutex_lock(&fs_info->qgroup_ioctl_lock); quota_root = fs_info->quota_root; if (!quota_root) { ret = -EINVAL; goto out; } qgroup = find_qgroup_rb(fs_info, qgroupid); if (!qgroup) { ret = -ENOENT; goto out; } spin_lock(&fs_info->qgroup_lock); if (limit->flags & BTRFS_QGROUP_LIMIT_MAX_RFER) qgroup->max_rfer = limit->max_rfer; if (limit->flags & BTRFS_QGROUP_LIMIT_MAX_EXCL) qgroup->max_excl = limit->max_excl; if (limit->flags & BTRFS_QGROUP_LIMIT_RSV_RFER) qgroup->rsv_rfer = limit->rsv_rfer; if (limit->flags & BTRFS_QGROUP_LIMIT_RSV_EXCL) qgroup->rsv_excl = limit->rsv_excl; qgroup->lim_flags |= limit->flags; spin_unlock(&fs_info->qgroup_lock); ret = update_qgroup_limit_item(trans, quota_root, qgroup); if (ret) { fs_info->qgroup_flags |= BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT; btrfs_info(fs_info, "unable to update quota limit for %llu", qgroupid); } out: mutex_unlock(&fs_info->qgroup_ioctl_lock); return ret; } static int comp_oper_exist(struct btrfs_qgroup_operation *oper1, struct btrfs_qgroup_operation *oper2) { /* * Ignore seq and type here, we're looking for any operation * at all related to this extent on that root. */ if (oper1->bytenr < oper2->bytenr) return -1; if (oper1->bytenr > oper2->bytenr) return 1; if (oper1->ref_root < oper2->ref_root) return -1; if (oper1->ref_root > oper2->ref_root) return 1; return 0; } static int qgroup_oper_exists(struct btrfs_fs_info *fs_info, struct btrfs_qgroup_operation *oper) { struct rb_node *n; struct btrfs_qgroup_operation *cur; int cmp; spin_lock(&fs_info->qgroup_op_lock); n = fs_info->qgroup_op_tree.rb_node; while (n) { cur = rb_entry(n, struct btrfs_qgroup_operation, n); cmp = comp_oper_exist(cur, oper); if (cmp < 0) { n = n->rb_right; } else if (cmp) { n = n->rb_left; } else { spin_unlock(&fs_info->qgroup_op_lock); return -EEXIST; } } spin_unlock(&fs_info->qgroup_op_lock); return 0; } static int comp_oper(struct btrfs_qgroup_operation *oper1, struct btrfs_qgroup_operation *oper2) { if (oper1->bytenr < oper2->bytenr) return -1; if (oper1->bytenr > oper2->bytenr) return 1; if (oper1->ref_root < oper2->ref_root) return -1; if (oper1->ref_root > oper2->ref_root) return 1; if (oper1->seq < oper2->seq) return -1; if (oper1->seq > oper2->seq) return 1; if (oper1->type < oper2->type) return -1; if (oper1->type > oper2->type) return 1; return 0; } static int insert_qgroup_oper(struct btrfs_fs_info *fs_info, struct btrfs_qgroup_operation *oper) { struct rb_node **p; struct rb_node *parent = NULL; struct btrfs_qgroup_operation *cur; int cmp; spin_lock(&fs_info->qgroup_op_lock); p = &fs_info->qgroup_op_tree.rb_node; while (*p) { parent = *p; cur = rb_entry(parent, struct btrfs_qgroup_operation, n); cmp = comp_oper(cur, oper); if (cmp < 0) { p = &(*p)->rb_right; } else if (cmp) { p = &(*p)->rb_left; } else { spin_unlock(&fs_info->qgroup_op_lock); return -EEXIST; } } rb_link_node(&oper->n, parent, p); rb_insert_color(&oper->n, &fs_info->qgroup_op_tree); spin_unlock(&fs_info->qgroup_op_lock); return 0; } /* * Record a quota operation for processing later on. * @trans: the transaction we are adding the delayed op to. * @fs_info: the fs_info for this fs. * @ref_root: the root of the reference we are acting on, * @bytenr: the bytenr we are acting on. * @num_bytes: the number of bytes in the reference. * @type: the type of operation this is. * @mod_seq: do we need to get a sequence number for looking up roots. * * We just add it to our trans qgroup_ref_list and carry on and process these * operations in order at some later point. If the reference root isn't a fs * root then we don't bother with doing anything. * * MUST BE HOLDING THE REF LOCK. */ int btrfs_qgroup_record_ref(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, u64 ref_root, u64 bytenr, u64 num_bytes, enum btrfs_qgroup_operation_type type, int mod_seq) { struct btrfs_qgroup_operation *oper; int ret; if (!is_fstree(ref_root) || !fs_info->quota_enabled) return 0; oper = kmalloc(sizeof(*oper), GFP_NOFS); if (!oper) return -ENOMEM; oper->ref_root = ref_root; oper->bytenr = bytenr; oper->num_bytes = num_bytes; oper->type = type; oper->seq = atomic_inc_return(&fs_info->qgroup_op_seq); INIT_LIST_HEAD(&oper->elem.list); oper->elem.seq = 0; trace_btrfs_qgroup_record_ref(oper); if (type == BTRFS_QGROUP_OPER_SUB_SUBTREE) { /* * If any operation for this bytenr/ref_root combo * exists, then we know it's not exclusively owned and * shouldn't be queued up. * * This also catches the case where we have a cloned * extent that gets queued up multiple times during * drop snapshot. */ if (qgroup_oper_exists(fs_info, oper)) { kfree(oper); return 0; } } ret = insert_qgroup_oper(fs_info, oper); if (ret) { /* Shouldn't happen so have an assert for developers */ ASSERT(0); kfree(oper); return ret; } list_add_tail(&oper->list, &trans->qgroup_ref_list); if (mod_seq) btrfs_get_tree_mod_seq(fs_info, &oper->elem); return 0; } int btrfs_qgroup_prepare_account_extents(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info) { struct btrfs_qgroup_extent_record *record; struct btrfs_delayed_ref_root *delayed_refs; struct rb_node *node; int ret = 0; delayed_refs = &trans->transaction->delayed_refs; /* * No need to do lock, since this function will only be called in * btrfs_commmit_transaction(). */ node = rb_first(&delayed_refs->dirty_extent_root); while (node) { record = rb_entry(node, struct btrfs_qgroup_extent_record, node); ret = btrfs_find_all_roots(NULL, fs_info, record->bytenr, 0, &record->old_roots); if (ret < 0) break; node = rb_next(node); } return ret; } struct btrfs_qgroup_extent_record *btrfs_qgroup_insert_dirty_extent(struct btrfs_delayed_ref_root *delayed_refs, struct btrfs_qgroup_extent_record *record) { struct rb_node **p = &delayed_refs->dirty_extent_root.rb_node; struct rb_node *parent_node = NULL; struct btrfs_qgroup_extent_record *entry; u64 bytenr = record->bytenr; while (*p) { parent_node = *p; entry = rb_entry(parent_node, struct btrfs_qgroup_extent_record, node); if (bytenr < entry->bytenr) p = &(*p)->rb_left; else if (bytenr > entry->bytenr) p = &(*p)->rb_right; else return entry; } rb_link_node(&record->node, parent_node, p); rb_insert_color(&record->node, &delayed_refs->dirty_extent_root); return NULL; } /* * The easy accounting, if we are adding/removing the only ref for an extent * then this qgroup and all of the parent qgroups get their refrence and * exclusive counts adjusted. */ static int qgroup_excl_accounting(struct btrfs_fs_info *fs_info, struct btrfs_qgroup_operation *oper) { struct ulist *tmp; int sign = 0; int ret = 0; tmp = ulist_alloc(GFP_NOFS); if (!tmp) return -ENOMEM; spin_lock(&fs_info->qgroup_lock); if (!fs_info->quota_root) goto out; switch (oper->type) { case BTRFS_QGROUP_OPER_ADD_EXCL: sign = 1; break; case BTRFS_QGROUP_OPER_SUB_EXCL: sign = -1; break; default: ASSERT(0); } ret = __qgroup_excl_accounting(fs_info, tmp, oper->ref_root, oper->num_bytes, sign); out: spin_unlock(&fs_info->qgroup_lock); ulist_free(tmp); return ret; } /* * Walk all of the roots that pointed to our bytenr and adjust their refcnts as * properly. */ static int qgroup_calc_old_refcnt(struct btrfs_fs_info *fs_info, u64 root_to_skip, struct ulist *tmp, struct ulist *roots, struct ulist *qgroups, u64 seq, int *old_roots, int rescan) { struct ulist_node *unode; struct ulist_iterator uiter; struct ulist_node *tmp_unode; struct ulist_iterator tmp_uiter; struct btrfs_qgroup *qg; int ret; ULIST_ITER_INIT(&uiter); while ((unode = ulist_next(roots, &uiter))) { /* We don't count our current root here */ if (unode->val == root_to_skip) continue; qg = find_qgroup_rb(fs_info, unode->val); if (!qg) continue; /* * We could have a pending removal of this same ref so we may * not have actually found our ref root when doing * btrfs_find_all_roots, so we need to keep track of how many * old roots we find in case we removed ours and added a * different one at the same time. I don't think this could * happen in practice but that sort of thinking leads to pain * and suffering and to the dark side. */ (*old_roots)++; ulist_reinit(tmp); ret = ulist_add(qgroups, qg->qgroupid, ptr_to_u64(qg), GFP_ATOMIC); if (ret < 0) return ret; ret = ulist_add(tmp, qg->qgroupid, ptr_to_u64(qg), GFP_ATOMIC); if (ret < 0) return ret; ULIST_ITER_INIT(&tmp_uiter); while ((tmp_unode = ulist_next(tmp, &tmp_uiter))) { struct btrfs_qgroup_list *glist; int mod; qg = u64_to_ptr(tmp_unode->aux); /* * We use this sequence number to keep from having to * run the whole list and 0 out the refcnt every time. * We basically use sequnce as the known 0 count and * then add 1 everytime we see a qgroup. This is how we * get how many of the roots actually point up to the * upper level qgroups in order to determine exclusive * counts. * * For rescan none of the extent is recorded before so * we just don't add old_refcnt. */ if (rescan) mod = 0; else mod = 1; btrfs_qgroup_update_old_refcnt(qg, seq, mod); btrfs_qgroup_update_new_refcnt(qg, seq, 1); list_for_each_entry(glist, &qg->groups, next_group) { ret = ulist_add(qgroups, glist->group->qgroupid, ptr_to_u64(glist->group), GFP_ATOMIC); if (ret < 0) return ret; ret = ulist_add(tmp, glist->group->qgroupid, ptr_to_u64(glist->group), GFP_ATOMIC); if (ret < 0) return ret; } } } return 0; } /* * We need to walk forward in our operation tree and account for any roots that * were deleted after we made this operation. */ static int qgroup_account_deleted_refs(struct btrfs_fs_info *fs_info, struct btrfs_qgroup_operation *oper, struct ulist *tmp, struct ulist *qgroups, u64 seq, int *old_roots) { struct ulist_node *unode; struct ulist_iterator uiter; struct btrfs_qgroup *qg; struct btrfs_qgroup_operation *tmp_oper; struct rb_node *n; int ret; ulist_reinit(tmp); /* * We only walk forward in the tree since we're only interested in * removals that happened _after_ our operation. */ spin_lock(&fs_info->qgroup_op_lock); n = rb_next(&oper->n); spin_unlock(&fs_info->qgroup_op_lock); if (!n) return 0; tmp_oper = rb_entry(n, struct btrfs_qgroup_operation, n); while (tmp_oper->bytenr == oper->bytenr) { /* * If it's not a removal we don't care, additions work out * properly with our refcnt tracking. */ if (tmp_oper->type != BTRFS_QGROUP_OPER_SUB_SHARED && tmp_oper->type != BTRFS_QGROUP_OPER_SUB_EXCL) goto next; qg = find_qgroup_rb(fs_info, tmp_oper->ref_root); if (!qg) goto next; ret = ulist_add(qgroups, qg->qgroupid, ptr_to_u64(qg), GFP_ATOMIC); if (ret) { if (ret < 0) return ret; /* * We only want to increase old_roots if this qgroup is * not already in the list of qgroups. If it is already * there then that means it must have been re-added or * the delete will be discarded because we had an * existing ref that we haven't looked up yet. In this * case we don't want to increase old_roots. So if ret * == 1 then we know that this is the first time we've * seen this qgroup and we can bump the old_roots. */ (*old_roots)++; ret = ulist_add(tmp, qg->qgroupid, ptr_to_u64(qg), GFP_ATOMIC); if (ret < 0) return ret; } next: spin_lock(&fs_info->qgroup_op_lock); n = rb_next(&tmp_oper->n); spin_unlock(&fs_info->qgroup_op_lock); if (!n) break; tmp_oper = rb_entry(n, struct btrfs_qgroup_operation, n); } /* Ok now process the qgroups we found */ ULIST_ITER_INIT(&uiter); while ((unode = ulist_next(tmp, &uiter))) { struct btrfs_qgroup_list *glist; qg = u64_to_ptr(unode->aux); btrfs_qgroup_update_old_refcnt(qg, seq, 1); btrfs_qgroup_update_new_refcnt(qg, seq, 1); list_for_each_entry(glist, &qg->groups, next_group) { ret = ulist_add(qgroups, glist->group->qgroupid, ptr_to_u64(glist->group), GFP_ATOMIC); if (ret < 0) return ret; ret = ulist_add(tmp, glist->group->qgroupid, ptr_to_u64(glist->group), GFP_ATOMIC); if (ret < 0) return ret; } } return 0; } /* Add refcnt for the newly added reference. */ static int qgroup_calc_new_refcnt(struct btrfs_fs_info *fs_info, struct btrfs_qgroup_operation *oper, struct btrfs_qgroup *qgroup, struct ulist *tmp, struct ulist *qgroups, u64 seq) { struct ulist_node *unode; struct ulist_iterator uiter; struct btrfs_qgroup *qg; int ret; ulist_reinit(tmp); ret = ulist_add(qgroups, qgroup->qgroupid, ptr_to_u64(qgroup), GFP_ATOMIC); if (ret < 0) return ret; ret = ulist_add(tmp, qgroup->qgroupid, ptr_to_u64(qgroup), GFP_ATOMIC); if (ret < 0) return ret; ULIST_ITER_INIT(&uiter); while ((unode = ulist_next(tmp, &uiter))) { struct btrfs_qgroup_list *glist; qg = u64_to_ptr(unode->aux); if (oper->type == BTRFS_QGROUP_OPER_ADD_SHARED) btrfs_qgroup_update_new_refcnt(qg, seq, 1); else btrfs_qgroup_update_old_refcnt(qg, seq, 1); list_for_each_entry(glist, &qg->groups, next_group) { ret = ulist_add(tmp, glist->group->qgroupid, ptr_to_u64(glist->group), GFP_ATOMIC); if (ret < 0) return ret; ret = ulist_add(qgroups, glist->group->qgroupid, ptr_to_u64(glist->group), GFP_ATOMIC); if (ret < 0) return ret; } } return 0; } #define UPDATE_NEW 0 #define UPDATE_OLD 1 /* * Walk all of the roots that points to the bytenr and adjust their refcnts. */ static int qgroup_update_refcnt(struct btrfs_fs_info *fs_info, struct ulist *roots, struct ulist *tmp, struct ulist *qgroups, u64 seq, int update_old) { struct ulist_node *unode; struct ulist_iterator uiter; struct ulist_node *tmp_unode; struct ulist_iterator tmp_uiter; struct btrfs_qgroup *qg; int ret = 0; if (!roots) return 0; ULIST_ITER_INIT(&uiter); while ((unode = ulist_next(roots, &uiter))) { qg = find_qgroup_rb(fs_info, unode->val); if (!qg) continue; ulist_reinit(tmp); ret = ulist_add(qgroups, qg->qgroupid, ptr_to_u64(qg), GFP_ATOMIC); if (ret < 0) return ret; ret = ulist_add(tmp, qg->qgroupid, ptr_to_u64(qg), GFP_ATOMIC); if (ret < 0) return ret; ULIST_ITER_INIT(&tmp_uiter); while ((tmp_unode = ulist_next(tmp, &tmp_uiter))) { struct btrfs_qgroup_list *glist; qg = u64_to_ptr(tmp_unode->aux); if (update_old) btrfs_qgroup_update_old_refcnt(qg, seq, 1); else btrfs_qgroup_update_new_refcnt(qg, seq, 1); list_for_each_entry(glist, &qg->groups, next_group) { ret = ulist_add(qgroups, glist->group->qgroupid, ptr_to_u64(glist->group), GFP_ATOMIC); if (ret < 0) return ret; ret = ulist_add(tmp, glist->group->qgroupid, ptr_to_u64(glist->group), GFP_ATOMIC); if (ret < 0) return ret; } } } return 0; } /* * Update qgroup rfer/excl counters. * Rfer update is easy, codes can explain themselves. * Excl update is tricky, the update is split into 2 part. * Part 1: Possible exclusive <-> sharing detect: * | A | !A | * ------------------------------------- * B | * | - | * ------------------------------------- * !B | + | ** | * ------------------------------------- * * Conditions: * A: cur_old_roots < nr_old_roots (not exclusive before) * !A: cur_old_roots == nr_old_roots (possible exclusive before) * B: cur_new_roots < nr_new_roots (not exclusive now) * !B: cur_new_roots == nr_new_roots (possible exclsuive now) * * Results: * +: Possible sharing -> exclusive -: Possible exclusive -> sharing * *: Definitely not changed. **: Possible unchanged. * * For !A and !B condition, the exception is cur_old/new_roots == 0 case. * * To make the logic clear, we first use condition A and B to split * combination into 4 results. * * Then, for result "+" and "-", check old/new_roots == 0 case, as in them * only on variant maybe 0. * * Lastly, check result **, since there are 2 variants maybe 0, split them * again(2x2). * But this time we don't need to consider other things, the codes and logic * is easy to understand now. */ static int qgroup_update_counters(struct btrfs_fs_info *fs_info, struct ulist *qgroups, u64 nr_old_roots, u64 nr_new_roots, u64 num_bytes, u64 seq) { struct ulist_node *unode; struct ulist_iterator uiter; struct btrfs_qgroup *qg; u64 cur_new_count, cur_old_count; ULIST_ITER_INIT(&uiter); while ((unode = ulist_next(qgroups, &uiter))) { bool dirty = false; qg = u64_to_ptr(unode->aux); cur_old_count = btrfs_qgroup_get_old_refcnt(qg, seq); cur_new_count = btrfs_qgroup_get_new_refcnt(qg, seq); /* Rfer update part */ if (cur_old_count == 0 && cur_new_count > 0) { qg->rfer += num_bytes; qg->rfer_cmpr += num_bytes; dirty = true; } if (cur_old_count > 0 && cur_new_count == 0) { qg->rfer -= num_bytes; qg->rfer_cmpr -= num_bytes; dirty = true; } /* Excl update part */ /* Exclusive/none -> shared case */ if (cur_old_count == nr_old_roots && cur_new_count < nr_new_roots) { /* Exclusive -> shared */ if (cur_old_count != 0) { qg->excl -= num_bytes; qg->excl_cmpr -= num_bytes; dirty = true; } } /* Shared -> exclusive/none case */ if (cur_old_count < nr_old_roots && cur_new_count == nr_new_roots) { /* Shared->exclusive */ if (cur_new_count != 0) { qg->excl += num_bytes; qg->excl_cmpr += num_bytes; dirty = true; } } /* Exclusive/none -> exclusive/none case */ if (cur_old_count == nr_old_roots && cur_new_count == nr_new_roots) { if (cur_old_count == 0) { /* None -> exclusive/none */ if (cur_new_count != 0) { /* None -> exclusive */ qg->excl += num_bytes; qg->excl_cmpr += num_bytes; dirty = true; } /* None -> none, nothing changed */ } else { /* Exclusive -> exclusive/none */ if (cur_new_count == 0) { /* Exclusive -> none */ qg->excl -= num_bytes; qg->excl_cmpr -= num_bytes; dirty = true; } /* Exclusive -> exclusive, nothing changed */ } } if (dirty) qgroup_dirty(fs_info, qg); } return 0; } /* * This adjusts the counters for all referenced qgroups if need be. */ static int qgroup_adjust_counters(struct btrfs_fs_info *fs_info, u64 root_to_skip, u64 num_bytes, struct ulist *qgroups, u64 seq, int old_roots, int new_roots, int rescan) { struct ulist_node *unode; struct ulist_iterator uiter; struct btrfs_qgroup *qg; u64 cur_new_count, cur_old_count; ULIST_ITER_INIT(&uiter); while ((unode = ulist_next(qgroups, &uiter))) { bool dirty = false; qg = u64_to_ptr(unode->aux); cur_old_count = btrfs_qgroup_get_old_refcnt(qg, seq); cur_new_count = btrfs_qgroup_get_new_refcnt(qg, seq); /* * Wasn't referenced before but is now, add to the reference * counters. */ if (cur_old_count == 0 && cur_new_count > 0) { qg->rfer += num_bytes; qg->rfer_cmpr += num_bytes; dirty = true; } /* * Was referenced before but isn't now, subtract from the * reference counters. */ if (cur_old_count > 0 && cur_new_count == 0) { qg->rfer -= num_bytes; qg->rfer_cmpr -= num_bytes; dirty = true; } /* * If our refcount was the same as the roots previously but our * new count isn't the same as the number of roots now then we * went from having a exclusive reference on this range to not. */ if (old_roots && cur_old_count == old_roots && (cur_new_count != new_roots || new_roots == 0)) { WARN_ON(cur_new_count != new_roots && new_roots == 0); qg->excl -= num_bytes; qg->excl_cmpr -= num_bytes; dirty = true; } /* * If we didn't reference all the roots before but now we do we * have an exclusive reference to this range. */ if ((!old_roots || (old_roots && cur_old_count != old_roots)) && cur_new_count == new_roots) { qg->excl += num_bytes; qg->excl_cmpr += num_bytes; dirty = true; } if (dirty) qgroup_dirty(fs_info, qg); } return 0; } /* * If we removed a data extent and there were other references for that bytenr * then we need to lookup all referenced roots to make sure we still don't * reference this bytenr. If we do then we can just discard this operation. */ static int check_existing_refs(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, struct btrfs_qgroup_operation *oper) { struct ulist *roots = NULL; struct ulist_node *unode; struct ulist_iterator uiter; int ret = 0; ret = btrfs_find_all_roots(trans, fs_info, oper->bytenr, oper->elem.seq, &roots); if (ret < 0) return ret; ret = 0; ULIST_ITER_INIT(&uiter); while ((unode = ulist_next(roots, &uiter))) { if (unode->val == oper->ref_root) { ret = 1; break; } } ulist_free(roots); btrfs_put_tree_mod_seq(fs_info, &oper->elem); return ret; } /* * If we share a reference across multiple roots then we may need to adjust * various qgroups referenced and exclusive counters. The basic premise is this * * 1) We have seq to represent a 0 count. Instead of looping through all of the * qgroups and resetting their refcount to 0 we just constantly bump this * sequence number to act as the base reference count. This means that if * anybody is equal to or below this sequence they were never referenced. We * jack this sequence up by the number of roots we found each time in order to * make sure we don't have any overlap. * * 2) We first search all the roots that reference the area _except_ the root * we're acting on currently. This makes up the old_refcnt of all the qgroups * before. * * 3) We walk all of the qgroups referenced by the root we are currently acting * on, and will either adjust old_refcnt in the case of a removal or the * new_refcnt in the case of an addition. * * 4) Finally we walk all the qgroups that are referenced by this range * including the root we are acting on currently. We will adjust the counters * based on the number of roots we had and will have after this operation. * * Take this example as an illustration * * [qgroup 1/0] * / | \ * [qg 0/0] [qg 0/1] [qg 0/2] * \ | / * [ extent ] * * Say we are adding a reference that is covered by qg 0/0. The first step * would give a refcnt of 1 to qg 0/1 and 0/2 and a refcnt of 2 to qg 1/0 with * old_roots being 2. Because it is adding new_roots will be 1. We then go * through qg 0/0 which will get the new_refcnt set to 1 and add 1 to qg 1/0's * new_refcnt, bringing it to 3. We then walk through all of the qgroups, we * notice that the old refcnt for qg 0/0 < the new refcnt, so we added a * reference and thus must add the size to the referenced bytes. Everything * else is the same so nothing else changes. */ static int qgroup_shared_accounting(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, struct btrfs_qgroup_operation *oper) { struct ulist *roots = NULL; struct ulist *qgroups, *tmp; struct btrfs_qgroup *qgroup; struct seq_list elem = SEQ_LIST_INIT(elem); u64 seq; int old_roots = 0; int new_roots = 0; int ret = 0; if (oper->elem.seq) { ret = check_existing_refs(trans, fs_info, oper); if (ret < 0) return ret; if (ret) return 0; } qgroups = ulist_alloc(GFP_NOFS); if (!qgroups) return -ENOMEM; tmp = ulist_alloc(GFP_NOFS); if (!tmp) { ulist_free(qgroups); return -ENOMEM; } btrfs_get_tree_mod_seq(fs_info, &elem); ret = btrfs_find_all_roots(trans, fs_info, oper->bytenr, elem.seq, &roots); btrfs_put_tree_mod_seq(fs_info, &elem); if (ret < 0) { ulist_free(qgroups); ulist_free(tmp); return ret; } spin_lock(&fs_info->qgroup_lock); qgroup = find_qgroup_rb(fs_info, oper->ref_root); if (!qgroup) goto out; seq = fs_info->qgroup_seq; /* * So roots is the list of all the roots currently pointing at the * bytenr, including the ref we are adding if we are adding, or not if * we are removing a ref. So we pass in the ref_root to skip that root * in our calculations. We set old_refnct and new_refcnt cause who the * hell knows what everything looked like before, and it doesn't matter * except... */ ret = qgroup_calc_old_refcnt(fs_info, oper->ref_root, tmp, roots, qgroups, seq, &old_roots, 0); if (ret < 0) goto out; /* * Now adjust the refcounts of the qgroups that care about this * reference, either the old_count in the case of removal or new_count * in the case of an addition. */ ret = qgroup_calc_new_refcnt(fs_info, oper, qgroup, tmp, qgroups, seq); if (ret < 0) goto out; /* * ...in the case of removals. If we had a removal before we got around * to processing this operation then we need to find that guy and count * his references as if they really existed so we don't end up screwing * up the exclusive counts. Then whenever we go to process the delete * everything will be grand and we can account for whatever exclusive * changes need to be made there. We also have to pass in old_roots so * we have an accurate count of the roots as it pertains to this * operations view of the world. */ ret = qgroup_account_deleted_refs(fs_info, oper, tmp, qgroups, seq, &old_roots); if (ret < 0) goto out; /* * We are adding our root, need to adjust up the number of roots, * otherwise old_roots is the number of roots we want. */ if (oper->type == BTRFS_QGROUP_OPER_ADD_SHARED) { new_roots = old_roots + 1; } else { new_roots = old_roots; old_roots++; } /* * Bump qgroup_seq to avoid seq overlap * XXX: This makes qgroup_seq mismatch with oper->seq. */ fs_info->qgroup_seq += old_roots + 1; /* * And now the magic happens, bless Arne for having a pretty elegant * solution for this. */ qgroup_adjust_counters(fs_info, oper->ref_root, oper->num_bytes, qgroups, seq, old_roots, new_roots, 0); out: spin_unlock(&fs_info->qgroup_lock); ulist_free(qgroups); ulist_free(roots); ulist_free(tmp); return ret; } /* * Process a reference to a shared subtree. This type of operation is * queued during snapshot removal when we encounter extents which are * shared between more than one root. */ static int qgroup_subtree_accounting(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, struct btrfs_qgroup_operation *oper) { struct ulist *roots = NULL; struct ulist_node *unode; struct ulist_iterator uiter; struct btrfs_qgroup_list *glist; struct ulist *parents; int ret = 0; int err; struct btrfs_qgroup *qg; u64 root_obj = 0; struct seq_list elem = SEQ_LIST_INIT(elem); parents = ulist_alloc(GFP_NOFS); if (!parents) return -ENOMEM; btrfs_get_tree_mod_seq(fs_info, &elem); ret = btrfs_find_all_roots(trans, fs_info, oper->bytenr, elem.seq, &roots); btrfs_put_tree_mod_seq(fs_info, &elem); if (ret < 0) goto out; if (roots->nnodes != 1) goto out; ULIST_ITER_INIT(&uiter); unode = ulist_next(roots, &uiter); /* Only want 1 so no need to loop */ /* * If we find our ref root then that means all refs * this extent has to the root have not yet been * deleted. In that case, we do nothing and let the * last ref for this bytenr drive our update. * * This can happen for example if an extent is * referenced multiple times in a snapshot (clone, * etc). If we are in the middle of snapshot removal, * queued updates for such an extent will find the * root if we have not yet finished removing the * snapshot. */ if (unode->val == oper->ref_root) goto out; root_obj = unode->val; BUG_ON(!root_obj); spin_lock(&fs_info->qgroup_lock); qg = find_qgroup_rb(fs_info, root_obj); if (!qg) goto out_unlock; qg->excl += oper->num_bytes; qg->excl_cmpr += oper->num_bytes; qgroup_dirty(fs_info, qg); /* * Adjust counts for parent groups. First we find all * parents, then in the 2nd loop we do the adjustment * while adding parents of the parents to our ulist. */ list_for_each_entry(glist, &qg->groups, next_group) { err = ulist_add(parents, glist->group->qgroupid, ptr_to_u64(glist->group), GFP_ATOMIC); if (err < 0) { ret = err; goto out_unlock; } } ULIST_ITER_INIT(&uiter); while ((unode = ulist_next(parents, &uiter))) { qg = u64_to_ptr(unode->aux); qg->excl += oper->num_bytes; qg->excl_cmpr += oper->num_bytes; qgroup_dirty(fs_info, qg); /* Add any parents of the parents */ list_for_each_entry(glist, &qg->groups, next_group) { err = ulist_add(parents, glist->group->qgroupid, ptr_to_u64(glist->group), GFP_ATOMIC); if (err < 0) { ret = err; goto out_unlock; } } } out_unlock: spin_unlock(&fs_info->qgroup_lock); out: ulist_free(roots); ulist_free(parents); return ret; } /* * btrfs_qgroup_account_ref is called for every ref that is added to or deleted * from the fs. First, all roots referencing the extent are searched, and * then the space is accounted accordingly to the different roots. The * accounting algorithm works in 3 steps documented inline. */ static int btrfs_qgroup_account(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, struct btrfs_qgroup_operation *oper) { int ret = 0; if (!fs_info->quota_enabled) return 0; BUG_ON(!fs_info->quota_root); mutex_lock(&fs_info->qgroup_rescan_lock); if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { if (fs_info->qgroup_rescan_progress.objectid <= oper->bytenr) { mutex_unlock(&fs_info->qgroup_rescan_lock); return 0; } } mutex_unlock(&fs_info->qgroup_rescan_lock); ASSERT(is_fstree(oper->ref_root)); trace_btrfs_qgroup_account(oper); switch (oper->type) { case BTRFS_QGROUP_OPER_ADD_EXCL: case BTRFS_QGROUP_OPER_SUB_EXCL: ret = qgroup_excl_accounting(fs_info, oper); break; case BTRFS_QGROUP_OPER_ADD_SHARED: case BTRFS_QGROUP_OPER_SUB_SHARED: ret = qgroup_shared_accounting(trans, fs_info, oper); break; case BTRFS_QGROUP_OPER_SUB_SUBTREE: ret = qgroup_subtree_accounting(trans, fs_info, oper); break; default: ASSERT(0); } return ret; } /* * Needs to be called everytime we run delayed refs, even if there is an error * in order to cleanup outstanding operations. */ int btrfs_delayed_qgroup_accounting(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info) { struct btrfs_qgroup_operation *oper; int ret = 0; while (!list_empty(&trans->qgroup_ref_list)) { oper = list_first_entry(&trans->qgroup_ref_list, struct btrfs_qgroup_operation, list); list_del_init(&oper->list); if (!ret || !trans->aborted) ret = btrfs_qgroup_account(trans, fs_info, oper); spin_lock(&fs_info->qgroup_op_lock); rb_erase(&oper->n, &fs_info->qgroup_op_tree); spin_unlock(&fs_info->qgroup_op_lock); btrfs_put_tree_mod_seq(fs_info, &oper->elem); kfree(oper); } return ret; } /* * called from commit_transaction. Writes all changed qgroups to disk. */ int btrfs_run_qgroups(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info) { struct btrfs_root *quota_root = fs_info->quota_root; int ret = 0; int start_rescan_worker = 0; if (!quota_root) goto out; if (!fs_info->quota_enabled && fs_info->pending_quota_state) start_rescan_worker = 1; fs_info->quota_enabled = fs_info->pending_quota_state; spin_lock(&fs_info->qgroup_lock); while (!list_empty(&fs_info->dirty_qgroups)) { struct btrfs_qgroup *qgroup; qgroup = list_first_entry(&fs_info->dirty_qgroups, struct btrfs_qgroup, dirty); list_del_init(&qgroup->dirty); spin_unlock(&fs_info->qgroup_lock); ret = update_qgroup_info_item(trans, quota_root, qgroup); if (ret) fs_info->qgroup_flags |= BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT; ret = update_qgroup_limit_item(trans, quota_root, qgroup); if (ret) fs_info->qgroup_flags |= BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT; spin_lock(&fs_info->qgroup_lock); } if (fs_info->quota_enabled) fs_info->qgroup_flags |= BTRFS_QGROUP_STATUS_FLAG_ON; else fs_info->qgroup_flags &= ~BTRFS_QGROUP_STATUS_FLAG_ON; spin_unlock(&fs_info->qgroup_lock); ret = update_qgroup_status_item(trans, fs_info, quota_root); if (ret) fs_info->qgroup_flags |= BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT; if (!ret && start_rescan_worker) { ret = qgroup_rescan_init(fs_info, 0, 1); if (!ret) { qgroup_rescan_zero_tracking(fs_info); btrfs_queue_work(fs_info->qgroup_rescan_workers, &fs_info->qgroup_rescan_work); } ret = 0; } out: return ret; } /* * copy the acounting information between qgroups. This is necessary when a * snapshot or a subvolume is created */ int btrfs_qgroup_inherit(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, u64 srcid, u64 objectid, struct btrfs_qgroup_inherit *inherit) { int ret = 0; int i; u64 *i_qgroups; struct btrfs_root *quota_root = fs_info->quota_root; struct btrfs_qgroup *srcgroup; struct btrfs_qgroup *dstgroup; u32 level_size = 0; u64 nums; mutex_lock(&fs_info->qgroup_ioctl_lock); if (!fs_info->quota_enabled) goto out; if (!quota_root) { ret = -EINVAL; goto out; } if (inherit) { i_qgroups = (u64 *)(inherit + 1); nums = inherit->num_qgroups + 2 * inherit->num_ref_copies + 2 * inherit->num_excl_copies; for (i = 0; i < nums; ++i) { srcgroup = find_qgroup_rb(fs_info, *i_qgroups); if (!srcgroup) { ret = -EINVAL; goto out; } if ((srcgroup->qgroupid >> 48) <= (objectid >> 48)) { ret = -EINVAL; goto out; } ++i_qgroups; } } /* * create a tracking group for the subvol itself */ ret = add_qgroup_item(trans, quota_root, objectid); if (ret) goto out; if (srcid) { struct btrfs_root *srcroot; struct btrfs_key srckey; srckey.objectid = srcid; srckey.type = BTRFS_ROOT_ITEM_KEY; srckey.offset = (u64)-1; srcroot = btrfs_read_fs_root_no_name(fs_info, &srckey); if (IS_ERR(srcroot)) { ret = PTR_ERR(srcroot); goto out; } rcu_read_lock(); level_size = srcroot->nodesize; rcu_read_unlock(); } /* * add qgroup to all inherited groups */ if (inherit) { i_qgroups = (u64 *)(inherit + 1); for (i = 0; i < inherit->num_qgroups; ++i) { ret = add_qgroup_relation_item(trans, quota_root, objectid, *i_qgroups); if (ret) goto out; ret = add_qgroup_relation_item(trans, quota_root, *i_qgroups, objectid); if (ret) goto out; ++i_qgroups; } } spin_lock(&fs_info->qgroup_lock); dstgroup = add_qgroup_rb(fs_info, objectid); if (IS_ERR(dstgroup)) { ret = PTR_ERR(dstgroup); goto unlock; } if (inherit && inherit->flags & BTRFS_QGROUP_INHERIT_SET_LIMITS) { dstgroup->lim_flags = inherit->lim.flags; dstgroup->max_rfer = inherit->lim.max_rfer; dstgroup->max_excl = inherit->lim.max_excl; dstgroup->rsv_rfer = inherit->lim.rsv_rfer; dstgroup->rsv_excl = inherit->lim.rsv_excl; ret = update_qgroup_limit_item(trans, quota_root, dstgroup); if (ret) { fs_info->qgroup_flags |= BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT; btrfs_info(fs_info, "unable to update quota limit for %llu", dstgroup->qgroupid); goto unlock; } } if (srcid) { srcgroup = find_qgroup_rb(fs_info, srcid); if (!srcgroup) goto unlock; /* * We call inherit after we clone the root in order to make sure * our counts don't go crazy, so at this point the only * difference between the two roots should be the root node. */ dstgroup->rfer = srcgroup->rfer; dstgroup->rfer_cmpr = srcgroup->rfer_cmpr; dstgroup->excl = level_size; dstgroup->excl_cmpr = level_size; srcgroup->excl = level_size; srcgroup->excl_cmpr = level_size; /* inherit the limit info */ dstgroup->lim_flags = srcgroup->lim_flags; dstgroup->max_rfer = srcgroup->max_rfer; dstgroup->max_excl = srcgroup->max_excl; dstgroup->rsv_rfer = srcgroup->rsv_rfer; dstgroup->rsv_excl = srcgroup->rsv_excl; qgroup_dirty(fs_info, dstgroup); qgroup_dirty(fs_info, srcgroup); } if (!inherit) goto unlock; i_qgroups = (u64 *)(inherit + 1); for (i = 0; i < inherit->num_qgroups; ++i) { ret = add_relation_rb(quota_root->fs_info, objectid, *i_qgroups); if (ret) goto unlock; ++i_qgroups; } for (i = 0; i < inherit->num_ref_copies; ++i) { struct btrfs_qgroup *src; struct btrfs_qgroup *dst; src = find_qgroup_rb(fs_info, i_qgroups[0]); dst = find_qgroup_rb(fs_info, i_qgroups[1]); if (!src || !dst) { ret = -EINVAL; goto unlock; } dst->rfer = src->rfer - level_size; dst->rfer_cmpr = src->rfer_cmpr - level_size; i_qgroups += 2; } for (i = 0; i < inherit->num_excl_copies; ++i) { struct btrfs_qgroup *src; struct btrfs_qgroup *dst; src = find_qgroup_rb(fs_info, i_qgroups[0]); dst = find_qgroup_rb(fs_info, i_qgroups[1]); if (!src || !dst) { ret = -EINVAL; goto unlock; } dst->excl = src->excl + level_size; dst->excl_cmpr = src->excl_cmpr + level_size; i_qgroups += 2; } unlock: spin_unlock(&fs_info->qgroup_lock); out: mutex_unlock(&fs_info->qgroup_ioctl_lock); return ret; } int btrfs_qgroup_reserve(struct btrfs_root *root, u64 num_bytes) { struct btrfs_root *quota_root; struct btrfs_qgroup *qgroup; struct btrfs_fs_info *fs_info = root->fs_info; u64 ref_root = root->root_key.objectid; int ret = 0; struct ulist_node *unode; struct ulist_iterator uiter; if (!is_fstree(ref_root)) return 0; if (num_bytes == 0) return 0; spin_lock(&fs_info->qgroup_lock); quota_root = fs_info->quota_root; if (!quota_root) goto out; qgroup = find_qgroup_rb(fs_info, ref_root); if (!qgroup) goto out; /* * in a first step, we check all affected qgroups if any limits would * be exceeded */ ulist_reinit(fs_info->qgroup_ulist); ret = ulist_add(fs_info->qgroup_ulist, qgroup->qgroupid, (uintptr_t)qgroup, GFP_ATOMIC); if (ret < 0) goto out; ULIST_ITER_INIT(&uiter); while ((unode = ulist_next(fs_info->qgroup_ulist, &uiter))) { struct btrfs_qgroup *qg; struct btrfs_qgroup_list *glist; qg = u64_to_ptr(unode->aux); if ((qg->lim_flags & BTRFS_QGROUP_LIMIT_MAX_RFER) && qg->reserved + (s64)qg->rfer + num_bytes > qg->max_rfer) { ret = -EDQUOT; goto out; } if ((qg->lim_flags & BTRFS_QGROUP_LIMIT_MAX_EXCL) && qg->reserved + (s64)qg->excl + num_bytes > qg->max_excl) { ret = -EDQUOT; goto out; } list_for_each_entry(glist, &qg->groups, next_group) { ret = ulist_add(fs_info->qgroup_ulist, glist->group->qgroupid, (uintptr_t)glist->group, GFP_ATOMIC); if (ret < 0) goto out; } } ret = 0; /* * no limits exceeded, now record the reservation into all qgroups */ ULIST_ITER_INIT(&uiter); while ((unode = ulist_next(fs_info->qgroup_ulist, &uiter))) { struct btrfs_qgroup *qg; qg = u64_to_ptr(unode->aux); qg->reserved += num_bytes; } out: spin_unlock(&fs_info->qgroup_lock); return ret; } void btrfs_qgroup_free(struct btrfs_root *root, u64 num_bytes) { struct btrfs_root *quota_root; struct btrfs_qgroup *qgroup; struct btrfs_fs_info *fs_info = root->fs_info; struct ulist_node *unode; struct ulist_iterator uiter; u64 ref_root = root->root_key.objectid; int ret = 0; if (!is_fstree(ref_root)) return; if (num_bytes == 0) return; spin_lock(&fs_info->qgroup_lock); quota_root = fs_info->quota_root; if (!quota_root) goto out; qgroup = find_qgroup_rb(fs_info, ref_root); if (!qgroup) goto out; ulist_reinit(fs_info->qgroup_ulist); ret = ulist_add(fs_info->qgroup_ulist, qgroup->qgroupid, (uintptr_t)qgroup, GFP_ATOMIC); if (ret < 0) goto out; ULIST_ITER_INIT(&uiter); while ((unode = ulist_next(fs_info->qgroup_ulist, &uiter))) { struct btrfs_qgroup *qg; struct btrfs_qgroup_list *glist; qg = u64_to_ptr(unode->aux); qg->reserved -= num_bytes; list_for_each_entry(glist, &qg->groups, next_group) { ret = ulist_add(fs_info->qgroup_ulist, glist->group->qgroupid, (uintptr_t)glist->group, GFP_ATOMIC); if (ret < 0) goto out; } } out: spin_unlock(&fs_info->qgroup_lock); } void assert_qgroups_uptodate(struct btrfs_trans_handle *trans) { if (list_empty(&trans->qgroup_ref_list) && !trans->delayed_ref_elem.seq) return; btrfs_err(trans->root->fs_info, "qgroups not uptodate in trans handle %p: list is%s empty, " "seq is %#x.%x", trans, list_empty(&trans->qgroup_ref_list) ? "" : " not", (u32)(trans->delayed_ref_elem.seq >> 32), (u32)trans->delayed_ref_elem.seq); BUG(); } /* * returns < 0 on error, 0 when more leafs are to be scanned. * returns 1 when done. */ static int qgroup_rescan_leaf(struct btrfs_fs_info *fs_info, struct btrfs_path *path, struct btrfs_trans_handle *trans, struct ulist *qgroups, struct ulist *tmp, struct extent_buffer *scratch_leaf) { struct btrfs_key found; struct ulist *roots = NULL; struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem); u64 num_bytes; u64 seq; int new_roots; int slot; int ret; path->leave_spinning = 1; mutex_lock(&fs_info->qgroup_rescan_lock); ret = btrfs_search_slot_for_read(fs_info->extent_root, &fs_info->qgroup_rescan_progress, path, 1, 0); pr_debug("current progress key (%llu %u %llu), search_slot ret %d\n", fs_info->qgroup_rescan_progress.objectid, fs_info->qgroup_rescan_progress.type, fs_info->qgroup_rescan_progress.offset, ret); if (ret) { /* * The rescan is about to end, we will not be scanning any * further blocks. We cannot unset the RESCAN flag here, because * we want to commit the transaction if everything went well. * To make the live accounting work in this phase, we set our * scan progress pointer such that every real extent objectid * will be smaller. */ fs_info->qgroup_rescan_progress.objectid = (u64)-1; btrfs_release_path(path); mutex_unlock(&fs_info->qgroup_rescan_lock); return ret; } btrfs_item_key_to_cpu(path->nodes[0], &found, btrfs_header_nritems(path->nodes[0]) - 1); fs_info->qgroup_rescan_progress.objectid = found.objectid + 1; btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem); memcpy(scratch_leaf, path->nodes[0], sizeof(*scratch_leaf)); slot = path->slots[0]; btrfs_release_path(path); mutex_unlock(&fs_info->qgroup_rescan_lock); for (; slot < btrfs_header_nritems(scratch_leaf); ++slot) { btrfs_item_key_to_cpu(scratch_leaf, &found, slot); if (found.type != BTRFS_EXTENT_ITEM_KEY && found.type != BTRFS_METADATA_ITEM_KEY) continue; if (found.type == BTRFS_METADATA_ITEM_KEY) num_bytes = fs_info->extent_root->nodesize; else num_bytes = found.offset; ulist_reinit(qgroups); ret = btrfs_find_all_roots(NULL, fs_info, found.objectid, 0, &roots); if (ret < 0) goto out; spin_lock(&fs_info->qgroup_lock); seq = fs_info->qgroup_seq; fs_info->qgroup_seq += roots->nnodes + 1; /* max refcnt */ new_roots = 0; ret = qgroup_calc_old_refcnt(fs_info, 0, tmp, roots, qgroups, seq, &new_roots, 1); if (ret < 0) { spin_unlock(&fs_info->qgroup_lock); ulist_free(roots); goto out; } ret = qgroup_adjust_counters(fs_info, 0, num_bytes, qgroups, seq, 0, new_roots, 1); if (ret < 0) { spin_unlock(&fs_info->qgroup_lock); ulist_free(roots); goto out; } spin_unlock(&fs_info->qgroup_lock); ulist_free(roots); } out: btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem); return ret; } static void btrfs_qgroup_rescan_worker(struct btrfs_work *work) { struct btrfs_fs_info *fs_info = container_of(work, struct btrfs_fs_info, qgroup_rescan_work); struct btrfs_path *path; struct btrfs_trans_handle *trans = NULL; struct ulist *tmp = NULL, *qgroups = NULL; struct extent_buffer *scratch_leaf = NULL; int err = -ENOMEM; int ret = 0; path = btrfs_alloc_path(); if (!path) goto out; qgroups = ulist_alloc(GFP_NOFS); if (!qgroups) goto out; tmp = ulist_alloc(GFP_NOFS); if (!tmp) goto out; scratch_leaf = kmalloc(sizeof(*scratch_leaf), GFP_NOFS); if (!scratch_leaf) goto out; err = 0; while (!err) { trans = btrfs_start_transaction(fs_info->fs_root, 0); if (IS_ERR(trans)) { err = PTR_ERR(trans); break; } if (!fs_info->quota_enabled) { err = -EINTR; } else { err = qgroup_rescan_leaf(fs_info, path, trans, qgroups, tmp, scratch_leaf); } if (err > 0) btrfs_commit_transaction(trans, fs_info->fs_root); else btrfs_end_transaction(trans, fs_info->fs_root); } out: kfree(scratch_leaf); ulist_free(qgroups); ulist_free(tmp); btrfs_free_path(path); mutex_lock(&fs_info->qgroup_rescan_lock); fs_info->qgroup_flags &= ~BTRFS_QGROUP_STATUS_FLAG_RESCAN; if (err > 0 && fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT) { fs_info->qgroup_flags &= ~BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT; } else if (err < 0) { fs_info->qgroup_flags |= BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT; } mutex_unlock(&fs_info->qgroup_rescan_lock); /* * only update status, since the previous part has alreay updated the * qgroup info. */ trans = btrfs_start_transaction(fs_info->quota_root, 1); if (IS_ERR(trans)) { err = PTR_ERR(trans); btrfs_err(fs_info, "fail to start transaction for status update: %d\n", err); goto done; } ret = update_qgroup_status_item(trans, fs_info, fs_info->quota_root); if (ret < 0) { err = ret; btrfs_err(fs_info, "fail to update qgroup status: %d\n", err); } btrfs_end_transaction(trans, fs_info->quota_root); if (err >= 0) { btrfs_info(fs_info, "qgroup scan completed%s", err > 0 ? " (inconsistency flag cleared)" : ""); } else { btrfs_err(fs_info, "qgroup scan failed with %d", err); } done: complete_all(&fs_info->qgroup_rescan_completion); } /* * Checks that (a) no rescan is running and (b) quota is enabled. Allocates all * memory required for the rescan context. */ static int qgroup_rescan_init(struct btrfs_fs_info *fs_info, u64 progress_objectid, int init_flags) { int ret = 0; if (!init_flags && (!(fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) || !(fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_ON))) { ret = -EINVAL; goto err; } mutex_lock(&fs_info->qgroup_rescan_lock); spin_lock(&fs_info->qgroup_lock); if (init_flags) { if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) ret = -EINPROGRESS; else if (!(fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_ON)) ret = -EINVAL; if (ret) { spin_unlock(&fs_info->qgroup_lock); mutex_unlock(&fs_info->qgroup_rescan_lock); goto err; } fs_info->qgroup_flags |= BTRFS_QGROUP_STATUS_FLAG_RESCAN; } memset(&fs_info->qgroup_rescan_progress, 0, sizeof(fs_info->qgroup_rescan_progress)); fs_info->qgroup_rescan_progress.objectid = progress_objectid; spin_unlock(&fs_info->qgroup_lock); mutex_unlock(&fs_info->qgroup_rescan_lock); init_completion(&fs_info->qgroup_rescan_completion); memset(&fs_info->qgroup_rescan_work, 0, sizeof(fs_info->qgroup_rescan_work)); btrfs_init_work(&fs_info->qgroup_rescan_work, btrfs_qgroup_rescan_helper, btrfs_qgroup_rescan_worker, NULL, NULL); if (ret) { err: btrfs_info(fs_info, "qgroup_rescan_init failed with %d", ret); return ret; } return 0; } static void qgroup_rescan_zero_tracking(struct btrfs_fs_info *fs_info) { struct rb_node *n; struct btrfs_qgroup *qgroup; spin_lock(&fs_info->qgroup_lock); /* clear all current qgroup tracking information */ for (n = rb_first(&fs_info->qgroup_tree); n; n = rb_next(n)) { qgroup = rb_entry(n, struct btrfs_qgroup, node); qgroup->rfer = 0; qgroup->rfer_cmpr = 0; qgroup->excl = 0; qgroup->excl_cmpr = 0; } spin_unlock(&fs_info->qgroup_lock); } int btrfs_qgroup_rescan(struct btrfs_fs_info *fs_info) { int ret = 0; struct btrfs_trans_handle *trans; ret = qgroup_rescan_init(fs_info, 0, 1); if (ret) return ret; /* * We have set the rescan_progress to 0, which means no more * delayed refs will be accounted by btrfs_qgroup_account_ref. * However, btrfs_qgroup_account_ref may be right after its call * to btrfs_find_all_roots, in which case it would still do the * accounting. * To solve this, we're committing the transaction, which will * ensure we run all delayed refs and only after that, we are * going to clear all tracking information for a clean start. */ trans = btrfs_join_transaction(fs_info->fs_root); if (IS_ERR(trans)) { fs_info->qgroup_flags &= ~BTRFS_QGROUP_STATUS_FLAG_RESCAN; return PTR_ERR(trans); } ret = btrfs_commit_transaction(trans, fs_info->fs_root); if (ret) { fs_info->qgroup_flags &= ~BTRFS_QGROUP_STATUS_FLAG_RESCAN; return ret; } qgroup_rescan_zero_tracking(fs_info); btrfs_queue_work(fs_info->qgroup_rescan_workers, &fs_info->qgroup_rescan_work); return 0; } int btrfs_qgroup_wait_for_completion(struct btrfs_fs_info *fs_info) { int running; int ret = 0; mutex_lock(&fs_info->qgroup_rescan_lock); spin_lock(&fs_info->qgroup_lock); running = fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN; spin_unlock(&fs_info->qgroup_lock); mutex_unlock(&fs_info->qgroup_rescan_lock); if (running) ret = wait_for_completion_interruptible( &fs_info->qgroup_rescan_completion); return ret; } /* * this is only called from open_ctree where we're still single threaded, thus * locking is omitted here. */ void btrfs_qgroup_rescan_resume(struct btrfs_fs_info *fs_info) { if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) btrfs_queue_work(fs_info->qgroup_rescan_workers, &fs_info->qgroup_rescan_work); }