/* * Copyright (C) 2012,2013 - ARM Ltd * Author: Marc Zyngier * * Derived from arch/arm/kvm/coproc.c: * Copyright (C) 2012 - Virtual Open Systems and Columbia University * Authors: Rusty Russell * Christoffer Dall * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, version 2, as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include "sys_regs.h" /* * All of this file is extremly similar to the ARM coproc.c, but the * types are different. My gut feeling is that it should be pretty * easy to merge, but that would be an ABI breakage -- again. VFP * would also need to be abstracted. * * For AArch32, we only take care of what is being trapped. Anything * that has to do with init and userspace access has to go via the * 64bit interface. */ /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */ static u32 cache_levels; /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */ #define CSSELR_MAX 12 /* Which cache CCSIDR represents depends on CSSELR value. */ static u32 get_ccsidr(u32 csselr) { u32 ccsidr; /* Make sure noone else changes CSSELR during this! */ local_irq_disable(); /* Put value into CSSELR */ asm volatile("msr csselr_el1, %x0" : : "r" (csselr)); isb(); /* Read result out of CCSIDR */ asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr)); local_irq_enable(); return ccsidr; } static void do_dc_cisw(u32 val) { asm volatile("dc cisw, %x0" : : "r" (val)); dsb(); } static void do_dc_csw(u32 val) { asm volatile("dc csw, %x0" : : "r" (val)); dsb(); } /* See note at ARM ARM B1.14.4 */ static bool access_dcsw(struct kvm_vcpu *vcpu, const struct sys_reg_params *p, const struct sys_reg_desc *r) { unsigned long val; int cpu; if (!p->is_write) return read_from_write_only(vcpu, p); cpu = get_cpu(); cpumask_setall(&vcpu->arch.require_dcache_flush); cpumask_clear_cpu(cpu, &vcpu->arch.require_dcache_flush); /* If we were already preempted, take the long way around */ if (cpu != vcpu->arch.last_pcpu) { flush_cache_all(); goto done; } val = *vcpu_reg(vcpu, p->Rt); switch (p->CRm) { case 6: /* Upgrade DCISW to DCCISW, as per HCR.SWIO */ case 14: /* DCCISW */ do_dc_cisw(val); break; case 10: /* DCCSW */ do_dc_csw(val); break; } done: put_cpu(); return true; } /* * We could trap ID_DFR0 and tell the guest we don't support performance * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was * NAKed, so it will read the PMCR anyway. * * Therefore we tell the guest we have 0 counters. Unfortunately, we * must always support PMCCNTR (the cycle counter): we just RAZ/WI for * all PM registers, which doesn't crash the guest kernel at least. */ static bool pm_fake(struct kvm_vcpu *vcpu, const struct sys_reg_params *p, const struct sys_reg_desc *r) { if (p->is_write) return ignore_write(vcpu, p); else return read_zero(vcpu, p); } static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) { u64 amair; asm volatile("mrs %0, amair_el1\n" : "=r" (amair)); vcpu_sys_reg(vcpu, AMAIR_EL1) = amair; } static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) { /* * Simply map the vcpu_id into the Aff0 field of the MPIDR. */ vcpu_sys_reg(vcpu, MPIDR_EL1) = (1UL << 31) | (vcpu->vcpu_id & 0xff); } /* * Architected system registers. * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2 */ static const struct sys_reg_desc sys_reg_descs[] = { /* DC ISW */ { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010), access_dcsw }, /* DC CSW */ { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010), access_dcsw }, /* DC CISW */ { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010), access_dcsw }, /* TEECR32_EL1 */ { Op0(0b10), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000), NULL, reset_val, TEECR32_EL1, 0 }, /* TEEHBR32_EL1 */ { Op0(0b10), Op1(0b010), CRn(0b0001), CRm(0b0000), Op2(0b000), NULL, reset_val, TEEHBR32_EL1, 0 }, /* DBGVCR32_EL2 */ { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000), NULL, reset_val, DBGVCR32_EL2, 0 }, /* MPIDR_EL1 */ { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101), NULL, reset_mpidr, MPIDR_EL1 }, /* SCTLR_EL1 */ { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000), NULL, reset_val, SCTLR_EL1, 0x00C50078 }, /* CPACR_EL1 */ { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010), NULL, reset_val, CPACR_EL1, 0 }, /* TTBR0_EL1 */ { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000), NULL, reset_unknown, TTBR0_EL1 }, /* TTBR1_EL1 */ { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001), NULL, reset_unknown, TTBR1_EL1 }, /* TCR_EL1 */ { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010), NULL, reset_val, TCR_EL1, 0 }, /* AFSR0_EL1 */ { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000), NULL, reset_unknown, AFSR0_EL1 }, /* AFSR1_EL1 */ { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001), NULL, reset_unknown, AFSR1_EL1 }, /* ESR_EL1 */ { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000), NULL, reset_unknown, ESR_EL1 }, /* FAR_EL1 */ { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000), NULL, reset_unknown, FAR_EL1 }, /* PAR_EL1 */ { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000), NULL, reset_unknown, PAR_EL1 }, /* PMINTENSET_EL1 */ { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001), pm_fake }, /* PMINTENCLR_EL1 */ { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010), pm_fake }, /* MAIR_EL1 */ { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000), NULL, reset_unknown, MAIR_EL1 }, /* AMAIR_EL1 */ { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000), NULL, reset_amair_el1, AMAIR_EL1 }, /* VBAR_EL1 */ { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000), NULL, reset_val, VBAR_EL1, 0 }, /* CONTEXTIDR_EL1 */ { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001), NULL, reset_val, CONTEXTIDR_EL1, 0 }, /* TPIDR_EL1 */ { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100), NULL, reset_unknown, TPIDR_EL1 }, /* CNTKCTL_EL1 */ { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000), NULL, reset_val, CNTKCTL_EL1, 0}, /* CSSELR_EL1 */ { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000), NULL, reset_unknown, CSSELR_EL1 }, /* PMCR_EL0 */ { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000), pm_fake }, /* PMCNTENSET_EL0 */ { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001), pm_fake }, /* PMCNTENCLR_EL0 */ { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010), pm_fake }, /* PMOVSCLR_EL0 */ { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011), pm_fake }, /* PMSWINC_EL0 */ { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100), pm_fake }, /* PMSELR_EL0 */ { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101), pm_fake }, /* PMCEID0_EL0 */ { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110), pm_fake }, /* PMCEID1_EL0 */ { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111), pm_fake }, /* PMCCNTR_EL0 */ { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000), pm_fake }, /* PMXEVTYPER_EL0 */ { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001), pm_fake }, /* PMXEVCNTR_EL0 */ { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010), pm_fake }, /* PMUSERENR_EL0 */ { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000), pm_fake }, /* PMOVSSET_EL0 */ { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011), pm_fake }, /* TPIDR_EL0 */ { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010), NULL, reset_unknown, TPIDR_EL0 }, /* TPIDRRO_EL0 */ { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011), NULL, reset_unknown, TPIDRRO_EL0 }, /* DACR32_EL2 */ { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000), NULL, reset_unknown, DACR32_EL2 }, /* IFSR32_EL2 */ { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001), NULL, reset_unknown, IFSR32_EL2 }, /* FPEXC32_EL2 */ { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000), NULL, reset_val, FPEXC32_EL2, 0x70 }, }; /* Trapped cp15 registers */ static const struct sys_reg_desc cp15_regs[] = { /* * DC{C,I,CI}SW operations: */ { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw }, { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw }, { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw }, { Op1( 0), CRn( 9), CRm(12), Op2( 0), pm_fake }, { Op1( 0), CRn( 9), CRm(12), Op2( 1), pm_fake }, { Op1( 0), CRn( 9), CRm(12), Op2( 2), pm_fake }, { Op1( 0), CRn( 9), CRm(12), Op2( 3), pm_fake }, { Op1( 0), CRn( 9), CRm(12), Op2( 5), pm_fake }, { Op1( 0), CRn( 9), CRm(12), Op2( 6), pm_fake }, { Op1( 0), CRn( 9), CRm(12), Op2( 7), pm_fake }, { Op1( 0), CRn( 9), CRm(13), Op2( 0), pm_fake }, { Op1( 0), CRn( 9), CRm(13), Op2( 1), pm_fake }, { Op1( 0), CRn( 9), CRm(13), Op2( 2), pm_fake }, { Op1( 0), CRn( 9), CRm(14), Op2( 0), pm_fake }, { Op1( 0), CRn( 9), CRm(14), Op2( 1), pm_fake }, { Op1( 0), CRn( 9), CRm(14), Op2( 2), pm_fake }, }; /* Target specific emulation tables */ static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS]; void kvm_register_target_sys_reg_table(unsigned int target, struct kvm_sys_reg_target_table *table) { target_tables[target] = table; } /* Get specific register table for this target. */ static const struct sys_reg_desc *get_target_table(unsigned target, bool mode_is_64, size_t *num) { struct kvm_sys_reg_target_table *table; table = target_tables[target]; if (mode_is_64) { *num = table->table64.num; return table->table64.table; } else { *num = table->table32.num; return table->table32.table; } } static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params, const struct sys_reg_desc table[], unsigned int num) { unsigned int i; for (i = 0; i < num; i++) { const struct sys_reg_desc *r = &table[i]; if (params->Op0 != r->Op0) continue; if (params->Op1 != r->Op1) continue; if (params->CRn != r->CRn) continue; if (params->CRm != r->CRm) continue; if (params->Op2 != r->Op2) continue; return r; } return NULL; } int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run) { kvm_inject_undefined(vcpu); return 1; } int kvm_handle_cp14_access(struct kvm_vcpu *vcpu, struct kvm_run *run) { kvm_inject_undefined(vcpu); return 1; } static void emulate_cp15(struct kvm_vcpu *vcpu, const struct sys_reg_params *params) { size_t num; const struct sys_reg_desc *table, *r; table = get_target_table(vcpu->arch.target, false, &num); /* Search target-specific then generic table. */ r = find_reg(params, table, num); if (!r) r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs)); if (likely(r)) { /* * Not having an accessor means that we have * configured a trap that we don't know how to * handle. This certainly qualifies as a gross bug * that should be fixed right away. */ BUG_ON(!r->access); if (likely(r->access(vcpu, params, r))) { /* Skip instruction, since it was emulated */ kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu)); return; } /* If access function fails, it should complain. */ } kvm_err("Unsupported guest CP15 access at: %08lx\n", *vcpu_pc(vcpu)); print_sys_reg_instr(params); kvm_inject_undefined(vcpu); } /** * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access * @vcpu: The VCPU pointer * @run: The kvm_run struct */ int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run) { struct sys_reg_params params; u32 hsr = kvm_vcpu_get_hsr(vcpu); int Rt2 = (hsr >> 10) & 0xf; params.is_aarch32 = true; params.is_32bit = false; params.CRm = (hsr >> 1) & 0xf; params.Rt = (hsr >> 5) & 0xf; params.is_write = ((hsr & 1) == 0); params.Op0 = 0; params.Op1 = (hsr >> 16) & 0xf; params.Op2 = 0; params.CRn = 0; /* * Massive hack here. Store Rt2 in the top 32bits so we only * have one register to deal with. As we use the same trap * backends between AArch32 and AArch64, we get away with it. */ if (params.is_write) { u64 val = *vcpu_reg(vcpu, params.Rt); val &= 0xffffffff; val |= *vcpu_reg(vcpu, Rt2) << 32; *vcpu_reg(vcpu, params.Rt) = val; } emulate_cp15(vcpu, ¶ms); /* Do the opposite hack for the read side */ if (!params.is_write) { u64 val = *vcpu_reg(vcpu, params.Rt); val >>= 32; *vcpu_reg(vcpu, Rt2) = val; } return 1; } /** * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access * @vcpu: The VCPU pointer * @run: The kvm_run struct */ int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run) { struct sys_reg_params params; u32 hsr = kvm_vcpu_get_hsr(vcpu); params.is_aarch32 = true; params.is_32bit = true; params.CRm = (hsr >> 1) & 0xf; params.Rt = (hsr >> 5) & 0xf; params.is_write = ((hsr & 1) == 0); params.CRn = (hsr >> 10) & 0xf; params.Op0 = 0; params.Op1 = (hsr >> 14) & 0x7; params.Op2 = (hsr >> 17) & 0x7; emulate_cp15(vcpu, ¶ms); return 1; } static int emulate_sys_reg(struct kvm_vcpu *vcpu, const struct sys_reg_params *params) { size_t num; const struct sys_reg_desc *table, *r; table = get_target_table(vcpu->arch.target, true, &num); /* Search target-specific then generic table. */ r = find_reg(params, table, num); if (!r) r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); if (likely(r)) { /* * Not having an accessor means that we have * configured a trap that we don't know how to * handle. This certainly qualifies as a gross bug * that should be fixed right away. */ BUG_ON(!r->access); if (likely(r->access(vcpu, params, r))) { /* Skip instruction, since it was emulated */ kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu)); return 1; } /* If access function fails, it should complain. */ } else { kvm_err("Unsupported guest sys_reg access at: %lx\n", *vcpu_pc(vcpu)); print_sys_reg_instr(params); } kvm_inject_undefined(vcpu); return 1; } static void reset_sys_reg_descs(struct kvm_vcpu *vcpu, const struct sys_reg_desc *table, size_t num) { unsigned long i; for (i = 0; i < num; i++) if (table[i].reset) table[i].reset(vcpu, &table[i]); } /** * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access * @vcpu: The VCPU pointer * @run: The kvm_run struct */ int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run) { struct sys_reg_params params; unsigned long esr = kvm_vcpu_get_hsr(vcpu); params.is_aarch32 = false; params.is_32bit = false; params.Op0 = (esr >> 20) & 3; params.Op1 = (esr >> 14) & 0x7; params.CRn = (esr >> 10) & 0xf; params.CRm = (esr >> 1) & 0xf; params.Op2 = (esr >> 17) & 0x7; params.Rt = (esr >> 5) & 0x1f; params.is_write = !(esr & 1); return emulate_sys_reg(vcpu, ¶ms); } /****************************************************************************** * Userspace API *****************************************************************************/ static bool index_to_params(u64 id, struct sys_reg_params *params) { switch (id & KVM_REG_SIZE_MASK) { case KVM_REG_SIZE_U64: /* Any unused index bits means it's not valid. */ if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_COPROC_MASK | KVM_REG_ARM64_SYSREG_OP0_MASK | KVM_REG_ARM64_SYSREG_OP1_MASK | KVM_REG_ARM64_SYSREG_CRN_MASK | KVM_REG_ARM64_SYSREG_CRM_MASK | KVM_REG_ARM64_SYSREG_OP2_MASK)) return false; params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK) >> KVM_REG_ARM64_SYSREG_OP0_SHIFT); params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK) >> KVM_REG_ARM64_SYSREG_OP1_SHIFT); params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK) >> KVM_REG_ARM64_SYSREG_CRN_SHIFT); params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK) >> KVM_REG_ARM64_SYSREG_CRM_SHIFT); params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK) >> KVM_REG_ARM64_SYSREG_OP2_SHIFT); return true; default: return false; } } /* Decode an index value, and find the sys_reg_desc entry. */ static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id) { size_t num; const struct sys_reg_desc *table, *r; struct sys_reg_params params; /* We only do sys_reg for now. */ if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG) return NULL; if (!index_to_params(id, ¶ms)) return NULL; table = get_target_table(vcpu->arch.target, true, &num); r = find_reg(¶ms, table, num); if (!r) r = find_reg(¶ms, sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); /* Not saved in the sys_reg array? */ if (r && !r->reg) r = NULL; return r; } /* * These are the invariant sys_reg registers: we let the guest see the * host versions of these, so they're part of the guest state. * * A future CPU may provide a mechanism to present different values to * the guest, or a future kvm may trap them. */ #define FUNCTION_INVARIANT(reg) \ static void get_##reg(struct kvm_vcpu *v, \ const struct sys_reg_desc *r) \ { \ u64 val; \ \ asm volatile("mrs %0, " __stringify(reg) "\n" \ : "=r" (val)); \ ((struct sys_reg_desc *)r)->val = val; \ } FUNCTION_INVARIANT(midr_el1) FUNCTION_INVARIANT(ctr_el0) FUNCTION_INVARIANT(revidr_el1) FUNCTION_INVARIANT(id_pfr0_el1) FUNCTION_INVARIANT(id_pfr1_el1) FUNCTION_INVARIANT(id_dfr0_el1) FUNCTION_INVARIANT(id_afr0_el1) FUNCTION_INVARIANT(id_mmfr0_el1) FUNCTION_INVARIANT(id_mmfr1_el1) FUNCTION_INVARIANT(id_mmfr2_el1) FUNCTION_INVARIANT(id_mmfr3_el1) FUNCTION_INVARIANT(id_isar0_el1) FUNCTION_INVARIANT(id_isar1_el1) FUNCTION_INVARIANT(id_isar2_el1) FUNCTION_INVARIANT(id_isar3_el1) FUNCTION_INVARIANT(id_isar4_el1) FUNCTION_INVARIANT(id_isar5_el1) FUNCTION_INVARIANT(clidr_el1) FUNCTION_INVARIANT(aidr_el1) /* ->val is filled in by kvm_sys_reg_table_init() */ static struct sys_reg_desc invariant_sys_regs[] = { { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000), NULL, get_midr_el1 }, { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110), NULL, get_revidr_el1 }, { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000), NULL, get_id_pfr0_el1 }, { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001), NULL, get_id_pfr1_el1 }, { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010), NULL, get_id_dfr0_el1 }, { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011), NULL, get_id_afr0_el1 }, { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100), NULL, get_id_mmfr0_el1 }, { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101), NULL, get_id_mmfr1_el1 }, { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110), NULL, get_id_mmfr2_el1 }, { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111), NULL, get_id_mmfr3_el1 }, { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000), NULL, get_id_isar0_el1 }, { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001), NULL, get_id_isar1_el1 }, { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010), NULL, get_id_isar2_el1 }, { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011), NULL, get_id_isar3_el1 }, { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100), NULL, get_id_isar4_el1 }, { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101), NULL, get_id_isar5_el1 }, { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001), NULL, get_clidr_el1 }, { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111), NULL, get_aidr_el1 }, { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001), NULL, get_ctr_el0 }, }; static int reg_from_user(void *val, const void __user *uaddr, u64 id) { /* This Just Works because we are little endian. */ if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0) return -EFAULT; return 0; } static int reg_to_user(void __user *uaddr, const void *val, u64 id) { /* This Just Works because we are little endian. */ if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0) return -EFAULT; return 0; } static int get_invariant_sys_reg(u64 id, void __user *uaddr) { struct sys_reg_params params; const struct sys_reg_desc *r; if (!index_to_params(id, ¶ms)) return -ENOENT; r = find_reg(¶ms, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)); if (!r) return -ENOENT; return reg_to_user(uaddr, &r->val, id); } static int set_invariant_sys_reg(u64 id, void __user *uaddr) { struct sys_reg_params params; const struct sys_reg_desc *r; int err; u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */ if (!index_to_params(id, ¶ms)) return -ENOENT; r = find_reg(¶ms, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)); if (!r) return -ENOENT; err = reg_from_user(&val, uaddr, id); if (err) return err; /* This is what we mean by invariant: you can't change it. */ if (r->val != val) return -EINVAL; return 0; } static bool is_valid_cache(u32 val) { u32 level, ctype; if (val >= CSSELR_MAX) return -ENOENT; /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */ level = (val >> 1); ctype = (cache_levels >> (level * 3)) & 7; switch (ctype) { case 0: /* No cache */ return false; case 1: /* Instruction cache only */ return (val & 1); case 2: /* Data cache only */ case 4: /* Unified cache */ return !(val & 1); case 3: /* Separate instruction and data caches */ return true; default: /* Reserved: we can't know instruction or data. */ return false; } } static int demux_c15_get(u64 id, void __user *uaddr) { u32 val; u32 __user *uval = uaddr; /* Fail if we have unknown bits set. */ if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) return -ENOENT; switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { case KVM_REG_ARM_DEMUX_ID_CCSIDR: if (KVM_REG_SIZE(id) != 4) return -ENOENT; val = (id & KVM_REG_ARM_DEMUX_VAL_MASK) >> KVM_REG_ARM_DEMUX_VAL_SHIFT; if (!is_valid_cache(val)) return -ENOENT; return put_user(get_ccsidr(val), uval); default: return -ENOENT; } } static int demux_c15_set(u64 id, void __user *uaddr) { u32 val, newval; u32 __user *uval = uaddr; /* Fail if we have unknown bits set. */ if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) return -ENOENT; switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { case KVM_REG_ARM_DEMUX_ID_CCSIDR: if (KVM_REG_SIZE(id) != 4) return -ENOENT; val = (id & KVM_REG_ARM_DEMUX_VAL_MASK) >> KVM_REG_ARM_DEMUX_VAL_SHIFT; if (!is_valid_cache(val)) return -ENOENT; if (get_user(newval, uval)) return -EFAULT; /* This is also invariant: you can't change it. */ if (newval != get_ccsidr(val)) return -EINVAL; return 0; default: return -ENOENT; } } int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { const struct sys_reg_desc *r; void __user *uaddr = (void __user *)(unsigned long)reg->addr; if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) return demux_c15_get(reg->id, uaddr); if (KVM_REG_SIZE(reg->id) != sizeof(__u64)) return -ENOENT; r = index_to_sys_reg_desc(vcpu, reg->id); if (!r) return get_invariant_sys_reg(reg->id, uaddr); return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id); } int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { const struct sys_reg_desc *r; void __user *uaddr = (void __user *)(unsigned long)reg->addr; if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) return demux_c15_set(reg->id, uaddr); if (KVM_REG_SIZE(reg->id) != sizeof(__u64)) return -ENOENT; r = index_to_sys_reg_desc(vcpu, reg->id); if (!r) return set_invariant_sys_reg(reg->id, uaddr); return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id); } static unsigned int num_demux_regs(void) { unsigned int i, count = 0; for (i = 0; i < CSSELR_MAX; i++) if (is_valid_cache(i)) count++; return count; } static int write_demux_regids(u64 __user *uindices) { u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX; unsigned int i; val |= KVM_REG_ARM_DEMUX_ID_CCSIDR; for (i = 0; i < CSSELR_MAX; i++) { if (!is_valid_cache(i)) continue; if (put_user(val | i, uindices)) return -EFAULT; uindices++; } return 0; } static u64 sys_reg_to_index(const struct sys_reg_desc *reg) { return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM64_SYSREG | (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) | (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) | (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) | (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) | (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT)); } static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind) { if (!*uind) return true; if (put_user(sys_reg_to_index(reg), *uind)) return false; (*uind)++; return true; } /* Assumed ordered tables, see kvm_sys_reg_table_init. */ static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind) { const struct sys_reg_desc *i1, *i2, *end1, *end2; unsigned int total = 0; size_t num; /* We check for duplicates here, to allow arch-specific overrides. */ i1 = get_target_table(vcpu->arch.target, true, &num); end1 = i1 + num; i2 = sys_reg_descs; end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs); BUG_ON(i1 == end1 || i2 == end2); /* Walk carefully, as both tables may refer to the same register. */ while (i1 || i2) { int cmp = cmp_sys_reg(i1, i2); /* target-specific overrides generic entry. */ if (cmp <= 0) { /* Ignore registers we trap but don't save. */ if (i1->reg) { if (!copy_reg_to_user(i1, &uind)) return -EFAULT; total++; } } else { /* Ignore registers we trap but don't save. */ if (i2->reg) { if (!copy_reg_to_user(i2, &uind)) return -EFAULT; total++; } } if (cmp <= 0 && ++i1 == end1) i1 = NULL; if (cmp >= 0 && ++i2 == end2) i2 = NULL; } return total; } unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu) { return ARRAY_SIZE(invariant_sys_regs) + num_demux_regs() + walk_sys_regs(vcpu, (u64 __user *)NULL); } int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) { unsigned int i; int err; /* Then give them all the invariant registers' indices. */ for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) { if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices)) return -EFAULT; uindices++; } err = walk_sys_regs(vcpu, uindices); if (err < 0) return err; uindices += err; return write_demux_regids(uindices); } void kvm_sys_reg_table_init(void) { unsigned int i; struct sys_reg_desc clidr; /* Make sure tables are unique and in order. */ for (i = 1; i < ARRAY_SIZE(sys_reg_descs); i++) BUG_ON(cmp_sys_reg(&sys_reg_descs[i-1], &sys_reg_descs[i]) >= 0); /* We abuse the reset function to overwrite the table itself. */ for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]); /* * CLIDR format is awkward, so clean it up. See ARM B4.1.20: * * If software reads the Cache Type fields from Ctype1 * upwards, once it has seen a value of 0b000, no caches * exist at further-out levels of the hierarchy. So, for * example, if Ctype3 is the first Cache Type field with a * value of 0b000, the values of Ctype4 to Ctype7 must be * ignored. */ get_clidr_el1(NULL, &clidr); /* Ugly... */ cache_levels = clidr.val; for (i = 0; i < 7; i++) if (((cache_levels >> (i*3)) & 7) == 0) break; /* Clear all higher bits. */ cache_levels &= (1 << (i*3))-1; } /** * kvm_reset_sys_regs - sets system registers to reset value * @vcpu: The VCPU pointer * * This function finds the right table above and sets the registers on the * virtual CPU struct to their architecturally defined reset values. */ void kvm_reset_sys_regs(struct kvm_vcpu *vcpu) { size_t num; const struct sys_reg_desc *table; /* Catch someone adding a register without putting in reset entry. */ memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs)); /* Generic chip reset first (so target could override). */ reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); table = get_target_table(vcpu->arch.target, true, &num); reset_sys_reg_descs(vcpu, table, num); for (num = 1; num < NR_SYS_REGS; num++) if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242) panic("Didn't reset vcpu_sys_reg(%zi)", num); }