/* * * Linux MegaRAID driver for SAS based RAID controllers * * Copyright (c) 2003-2005 LSI Corporation. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * FILE : megaraid_sas.c * Version : v00.00.04.17.1-rc1 * * Authors: * (email-id : megaraidlinux@lsi.com) * Sreenivas Bagalkote * Sumant Patro * Bo Yang * * List of supported controllers * * OEM Product Name VID DID SSVID SSID * --- ------------ --- --- ---- ---- */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "megaraid_sas.h" /* * poll_mode_io:1- schedule complete completion from q cmd */ static unsigned int poll_mode_io; module_param_named(poll_mode_io, poll_mode_io, int, 0); MODULE_PARM_DESC(poll_mode_io, "Complete cmds from IO path, (default=0)"); /* * Number of sectors per IO command * Will be set in megasas_init_mfi if user does not provide */ static unsigned int max_sectors; module_param_named(max_sectors, max_sectors, int, 0); MODULE_PARM_DESC(max_sectors, "Maximum number of sectors per IO command"); MODULE_LICENSE("GPL"); MODULE_VERSION(MEGASAS_VERSION); MODULE_AUTHOR("megaraidlinux@lsi.com"); MODULE_DESCRIPTION("LSI MegaRAID SAS Driver"); static int megasas_transition_to_ready(struct megasas_instance *instance); static int megasas_get_pd_list(struct megasas_instance *instance); static int megasas_issue_init_mfi(struct megasas_instance *instance); static int megasas_register_aen(struct megasas_instance *instance, u32 seq_num, u32 class_locale_word); /* * PCI ID table for all supported controllers */ static struct pci_device_id megasas_pci_table[] = { {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1064R)}, /* xscale IOP */ {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078R)}, /* ppc IOP */ {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078DE)}, /* ppc IOP */ {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078GEN2)}, /* gen2*/ {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS0079GEN2)}, /* gen2*/ {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS0073SKINNY)}, /* skinny*/ {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS0071SKINNY)}, /* skinny*/ {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_VERDE_ZCR)}, /* xscale IOP, vega */ {PCI_DEVICE(PCI_VENDOR_ID_DELL, PCI_DEVICE_ID_DELL_PERC5)}, /* xscale IOP */ {} }; MODULE_DEVICE_TABLE(pci, megasas_pci_table); static int megasas_mgmt_majorno; static struct megasas_mgmt_info megasas_mgmt_info; static struct fasync_struct *megasas_async_queue; static DEFINE_MUTEX(megasas_async_queue_mutex); static int megasas_poll_wait_aen; static DECLARE_WAIT_QUEUE_HEAD(megasas_poll_wait); static u32 support_poll_for_event; static u32 megasas_dbg_lvl; static u32 support_device_change; /* define lock for aen poll */ spinlock_t poll_aen_lock; static void megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd, u8 alt_status); /** * megasas_get_cmd - Get a command from the free pool * @instance: Adapter soft state * * Returns a free command from the pool */ static struct megasas_cmd *megasas_get_cmd(struct megasas_instance *instance) { unsigned long flags; struct megasas_cmd *cmd = NULL; spin_lock_irqsave(&instance->cmd_pool_lock, flags); if (!list_empty(&instance->cmd_pool)) { cmd = list_entry((&instance->cmd_pool)->next, struct megasas_cmd, list); list_del_init(&cmd->list); } else { printk(KERN_ERR "megasas: Command pool empty!\n"); } spin_unlock_irqrestore(&instance->cmd_pool_lock, flags); return cmd; } /** * megasas_return_cmd - Return a cmd to free command pool * @instance: Adapter soft state * @cmd: Command packet to be returned to free command pool */ static inline void megasas_return_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd) { unsigned long flags; spin_lock_irqsave(&instance->cmd_pool_lock, flags); cmd->scmd = NULL; list_add_tail(&cmd->list, &instance->cmd_pool); spin_unlock_irqrestore(&instance->cmd_pool_lock, flags); } /** * The following functions are defined for xscale * (deviceid : 1064R, PERC5) controllers */ /** * megasas_enable_intr_xscale - Enables interrupts * @regs: MFI register set */ static inline void megasas_enable_intr_xscale(struct megasas_register_set __iomem * regs) { writel(0, &(regs)->outbound_intr_mask); /* Dummy readl to force pci flush */ readl(®s->outbound_intr_mask); } /** * megasas_disable_intr_xscale -Disables interrupt * @regs: MFI register set */ static inline void megasas_disable_intr_xscale(struct megasas_register_set __iomem * regs) { u32 mask = 0x1f; writel(mask, ®s->outbound_intr_mask); /* Dummy readl to force pci flush */ readl(®s->outbound_intr_mask); } /** * megasas_read_fw_status_reg_xscale - returns the current FW status value * @regs: MFI register set */ static u32 megasas_read_fw_status_reg_xscale(struct megasas_register_set __iomem * regs) { return readl(&(regs)->outbound_msg_0); } /** * megasas_clear_interrupt_xscale - Check & clear interrupt * @regs: MFI register set */ static int megasas_clear_intr_xscale(struct megasas_register_set __iomem * regs) { u32 status; u32 mfiStatus = 0; /* * Check if it is our interrupt */ status = readl(®s->outbound_intr_status); if (status & MFI_OB_INTR_STATUS_MASK) mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE; if (status & MFI_XSCALE_OMR0_CHANGE_INTERRUPT) mfiStatus |= MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE; /* * Clear the interrupt by writing back the same value */ if (mfiStatus) writel(status, ®s->outbound_intr_status); /* Dummy readl to force pci flush */ readl(®s->outbound_intr_status); return mfiStatus; } /** * megasas_fire_cmd_xscale - Sends command to the FW * @frame_phys_addr : Physical address of cmd * @frame_count : Number of frames for the command * @regs : MFI register set */ static inline void megasas_fire_cmd_xscale(struct megasas_instance *instance, dma_addr_t frame_phys_addr, u32 frame_count, struct megasas_register_set __iomem *regs) { unsigned long flags; spin_lock_irqsave(&instance->hba_lock, flags); writel((frame_phys_addr >> 3)|(frame_count), &(regs)->inbound_queue_port); spin_unlock_irqrestore(&instance->hba_lock, flags); } /** * megasas_adp_reset_xscale - For controller reset * @regs: MFI register set */ static int megasas_adp_reset_xscale(struct megasas_instance *instance, struct megasas_register_set __iomem *regs) { u32 i; u32 pcidata; writel(MFI_ADP_RESET, ®s->inbound_doorbell); for (i = 0; i < 3; i++) msleep(1000); /* sleep for 3 secs */ pcidata = 0; pci_read_config_dword(instance->pdev, MFI_1068_PCSR_OFFSET, &pcidata); printk(KERN_NOTICE "pcidata = %x\n", pcidata); if (pcidata & 0x2) { printk(KERN_NOTICE "mfi 1068 offset read=%x\n", pcidata); pcidata &= ~0x2; pci_write_config_dword(instance->pdev, MFI_1068_PCSR_OFFSET, pcidata); for (i = 0; i < 2; i++) msleep(1000); /* need to wait 2 secs again */ pcidata = 0; pci_read_config_dword(instance->pdev, MFI_1068_FW_HANDSHAKE_OFFSET, &pcidata); printk(KERN_NOTICE "1068 offset handshake read=%x\n", pcidata); if ((pcidata & 0xffff0000) == MFI_1068_FW_READY) { printk(KERN_NOTICE "1068 offset pcidt=%x\n", pcidata); pcidata = 0; pci_write_config_dword(instance->pdev, MFI_1068_FW_HANDSHAKE_OFFSET, pcidata); } } return 0; } /** * megasas_check_reset_xscale - For controller reset check * @regs: MFI register set */ static int megasas_check_reset_xscale(struct megasas_instance *instance, struct megasas_register_set __iomem *regs) { u32 consumer; consumer = *instance->consumer; if ((instance->adprecovery != MEGASAS_HBA_OPERATIONAL) && (*instance->consumer == MEGASAS_ADPRESET_INPROG_SIGN)) { return 1; } return 0; } static struct megasas_instance_template megasas_instance_template_xscale = { .fire_cmd = megasas_fire_cmd_xscale, .enable_intr = megasas_enable_intr_xscale, .disable_intr = megasas_disable_intr_xscale, .clear_intr = megasas_clear_intr_xscale, .read_fw_status_reg = megasas_read_fw_status_reg_xscale, .adp_reset = megasas_adp_reset_xscale, .check_reset = megasas_check_reset_xscale, }; /** * This is the end of set of functions & definitions specific * to xscale (deviceid : 1064R, PERC5) controllers */ /** * The following functions are defined for ppc (deviceid : 0x60) * controllers */ /** * megasas_enable_intr_ppc - Enables interrupts * @regs: MFI register set */ static inline void megasas_enable_intr_ppc(struct megasas_register_set __iomem * regs) { writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear); writel(~0x80000000, &(regs)->outbound_intr_mask); /* Dummy readl to force pci flush */ readl(®s->outbound_intr_mask); } /** * megasas_disable_intr_ppc - Disable interrupt * @regs: MFI register set */ static inline void megasas_disable_intr_ppc(struct megasas_register_set __iomem * regs) { u32 mask = 0xFFFFFFFF; writel(mask, ®s->outbound_intr_mask); /* Dummy readl to force pci flush */ readl(®s->outbound_intr_mask); } /** * megasas_read_fw_status_reg_ppc - returns the current FW status value * @regs: MFI register set */ static u32 megasas_read_fw_status_reg_ppc(struct megasas_register_set __iomem * regs) { return readl(&(regs)->outbound_scratch_pad); } /** * megasas_clear_interrupt_ppc - Check & clear interrupt * @regs: MFI register set */ static int megasas_clear_intr_ppc(struct megasas_register_set __iomem * regs) { u32 status; /* * Check if it is our interrupt */ status = readl(®s->outbound_intr_status); if (!(status & MFI_REPLY_1078_MESSAGE_INTERRUPT)) { return 0; } /* * Clear the interrupt by writing back the same value */ writel(status, ®s->outbound_doorbell_clear); /* Dummy readl to force pci flush */ readl(®s->outbound_doorbell_clear); return 1; } /** * megasas_fire_cmd_ppc - Sends command to the FW * @frame_phys_addr : Physical address of cmd * @frame_count : Number of frames for the command * @regs : MFI register set */ static inline void megasas_fire_cmd_ppc(struct megasas_instance *instance, dma_addr_t frame_phys_addr, u32 frame_count, struct megasas_register_set __iomem *regs) { unsigned long flags; spin_lock_irqsave(&instance->hba_lock, flags); writel((frame_phys_addr | (frame_count<<1))|1, &(regs)->inbound_queue_port); spin_unlock_irqrestore(&instance->hba_lock, flags); } /** * megasas_adp_reset_ppc - For controller reset * @regs: MFI register set */ static int megasas_adp_reset_ppc(struct megasas_instance *instance, struct megasas_register_set __iomem *regs) { return 0; } /** * megasas_check_reset_ppc - For controller reset check * @regs: MFI register set */ static int megasas_check_reset_ppc(struct megasas_instance *instance, struct megasas_register_set __iomem *regs) { return 0; } static struct megasas_instance_template megasas_instance_template_ppc = { .fire_cmd = megasas_fire_cmd_ppc, .enable_intr = megasas_enable_intr_ppc, .disable_intr = megasas_disable_intr_ppc, .clear_intr = megasas_clear_intr_ppc, .read_fw_status_reg = megasas_read_fw_status_reg_ppc, .adp_reset = megasas_adp_reset_ppc, .check_reset = megasas_check_reset_ppc, }; /** * megasas_enable_intr_skinny - Enables interrupts * @regs: MFI register set */ static inline void megasas_enable_intr_skinny(struct megasas_register_set __iomem *regs) { writel(0xFFFFFFFF, &(regs)->outbound_intr_mask); writel(~MFI_SKINNY_ENABLE_INTERRUPT_MASK, &(regs)->outbound_intr_mask); /* Dummy readl to force pci flush */ readl(®s->outbound_intr_mask); } /** * megasas_disable_intr_skinny - Disables interrupt * @regs: MFI register set */ static inline void megasas_disable_intr_skinny(struct megasas_register_set __iomem *regs) { u32 mask = 0xFFFFFFFF; writel(mask, ®s->outbound_intr_mask); /* Dummy readl to force pci flush */ readl(®s->outbound_intr_mask); } /** * megasas_read_fw_status_reg_skinny - returns the current FW status value * @regs: MFI register set */ static u32 megasas_read_fw_status_reg_skinny(struct megasas_register_set __iomem *regs) { return readl(&(regs)->outbound_scratch_pad); } /** * megasas_clear_interrupt_skinny - Check & clear interrupt * @regs: MFI register set */ static int megasas_clear_intr_skinny(struct megasas_register_set __iomem *regs) { u32 status; /* * Check if it is our interrupt */ status = readl(®s->outbound_intr_status); if (!(status & MFI_SKINNY_ENABLE_INTERRUPT_MASK)) { return 0; } /* * Clear the interrupt by writing back the same value */ writel(status, ®s->outbound_intr_status); /* * dummy read to flush PCI */ readl(®s->outbound_intr_status); return 1; } /** * megasas_fire_cmd_skinny - Sends command to the FW * @frame_phys_addr : Physical address of cmd * @frame_count : Number of frames for the command * @regs : MFI register set */ static inline void megasas_fire_cmd_skinny(struct megasas_instance *instance, dma_addr_t frame_phys_addr, u32 frame_count, struct megasas_register_set __iomem *regs) { unsigned long flags; spin_lock_irqsave(&instance->hba_lock, flags); writel(0, &(regs)->inbound_high_queue_port); writel((frame_phys_addr | (frame_count<<1))|1, &(regs)->inbound_low_queue_port); spin_unlock_irqrestore(&instance->hba_lock, flags); } /** * megasas_adp_reset_skinny - For controller reset * @regs: MFI register set */ static int megasas_adp_reset_skinny(struct megasas_instance *instance, struct megasas_register_set __iomem *regs) { return 0; } /** * megasas_check_reset_skinny - For controller reset check * @regs: MFI register set */ static int megasas_check_reset_skinny(struct megasas_instance *instance, struct megasas_register_set __iomem *regs) { return 0; } static struct megasas_instance_template megasas_instance_template_skinny = { .fire_cmd = megasas_fire_cmd_skinny, .enable_intr = megasas_enable_intr_skinny, .disable_intr = megasas_disable_intr_skinny, .clear_intr = megasas_clear_intr_skinny, .read_fw_status_reg = megasas_read_fw_status_reg_skinny, .adp_reset = megasas_adp_reset_skinny, .check_reset = megasas_check_reset_skinny, }; /** * The following functions are defined for gen2 (deviceid : 0x78 0x79) * controllers */ /** * megasas_enable_intr_gen2 - Enables interrupts * @regs: MFI register set */ static inline void megasas_enable_intr_gen2(struct megasas_register_set __iomem *regs) { writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear); /* write ~0x00000005 (4 & 1) to the intr mask*/ writel(~MFI_GEN2_ENABLE_INTERRUPT_MASK, &(regs)->outbound_intr_mask); /* Dummy readl to force pci flush */ readl(®s->outbound_intr_mask); } /** * megasas_disable_intr_gen2 - Disables interrupt * @regs: MFI register set */ static inline void megasas_disable_intr_gen2(struct megasas_register_set __iomem *regs) { u32 mask = 0xFFFFFFFF; writel(mask, ®s->outbound_intr_mask); /* Dummy readl to force pci flush */ readl(®s->outbound_intr_mask); } /** * megasas_read_fw_status_reg_gen2 - returns the current FW status value * @regs: MFI register set */ static u32 megasas_read_fw_status_reg_gen2(struct megasas_register_set __iomem *regs) { return readl(&(regs)->outbound_scratch_pad); } /** * megasas_clear_interrupt_gen2 - Check & clear interrupt * @regs: MFI register set */ static int megasas_clear_intr_gen2(struct megasas_register_set __iomem *regs) { u32 status; u32 mfiStatus = 0; /* * Check if it is our interrupt */ status = readl(®s->outbound_intr_status); if (status & MFI_GEN2_ENABLE_INTERRUPT_MASK) { mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE; } if (status & MFI_G2_OUTBOUND_DOORBELL_CHANGE_INTERRUPT) { mfiStatus |= MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE; } /* * Clear the interrupt by writing back the same value */ if (mfiStatus) writel(status, ®s->outbound_doorbell_clear); /* Dummy readl to force pci flush */ readl(®s->outbound_intr_status); return mfiStatus; } /** * megasas_fire_cmd_gen2 - Sends command to the FW * @frame_phys_addr : Physical address of cmd * @frame_count : Number of frames for the command * @regs : MFI register set */ static inline void megasas_fire_cmd_gen2(struct megasas_instance *instance, dma_addr_t frame_phys_addr, u32 frame_count, struct megasas_register_set __iomem *regs) { unsigned long flags; spin_lock_irqsave(&instance->hba_lock, flags); writel((frame_phys_addr | (frame_count<<1))|1, &(regs)->inbound_queue_port); spin_unlock_irqrestore(&instance->hba_lock, flags); } /** * megasas_adp_reset_gen2 - For controller reset * @regs: MFI register set */ static int megasas_adp_reset_gen2(struct megasas_instance *instance, struct megasas_register_set __iomem *reg_set) { u32 retry = 0 ; u32 HostDiag; writel(0, ®_set->seq_offset); writel(4, ®_set->seq_offset); writel(0xb, ®_set->seq_offset); writel(2, ®_set->seq_offset); writel(7, ®_set->seq_offset); writel(0xd, ®_set->seq_offset); msleep(1000); HostDiag = (u32)readl(®_set->host_diag); while ( !( HostDiag & DIAG_WRITE_ENABLE) ) { msleep(100); HostDiag = (u32)readl(®_set->host_diag); printk(KERN_NOTICE "RESETGEN2: retry=%x, hostdiag=%x\n", retry, HostDiag); if (retry++ >= 100) return 1; } printk(KERN_NOTICE "ADP_RESET_GEN2: HostDiag=%x\n", HostDiag); writel((HostDiag | DIAG_RESET_ADAPTER), ®_set->host_diag); ssleep(10); HostDiag = (u32)readl(®_set->host_diag); while ( ( HostDiag & DIAG_RESET_ADAPTER) ) { msleep(100); HostDiag = (u32)readl(®_set->host_diag); printk(KERN_NOTICE "RESET_GEN2: retry=%x, hostdiag=%x\n", retry, HostDiag); if (retry++ >= 1000) return 1; } return 0; } /** * megasas_check_reset_gen2 - For controller reset check * @regs: MFI register set */ static int megasas_check_reset_gen2(struct megasas_instance *instance, struct megasas_register_set __iomem *regs) { return 0; } static struct megasas_instance_template megasas_instance_template_gen2 = { .fire_cmd = megasas_fire_cmd_gen2, .enable_intr = megasas_enable_intr_gen2, .disable_intr = megasas_disable_intr_gen2, .clear_intr = megasas_clear_intr_gen2, .read_fw_status_reg = megasas_read_fw_status_reg_gen2, .adp_reset = megasas_adp_reset_gen2, .check_reset = megasas_check_reset_gen2, }; /** * This is the end of set of functions & definitions * specific to gen2 (deviceid : 0x78, 0x79) controllers */ /** * megasas_issue_polled - Issues a polling command * @instance: Adapter soft state * @cmd: Command packet to be issued * * For polling, MFI requires the cmd_status to be set to 0xFF before posting. */ static int megasas_issue_polled(struct megasas_instance *instance, struct megasas_cmd *cmd) { int i; u32 msecs = MFI_POLL_TIMEOUT_SECS * 1000; struct megasas_header *frame_hdr = &cmd->frame->hdr; frame_hdr->cmd_status = 0xFF; frame_hdr->flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE; /* * Issue the frame using inbound queue port */ instance->instancet->fire_cmd(instance, cmd->frame_phys_addr, 0, instance->reg_set); /* * Wait for cmd_status to change */ for (i = 0; (i < msecs) && (frame_hdr->cmd_status == 0xff); i++) { rmb(); msleep(1); } if (frame_hdr->cmd_status == 0xff) return -ETIME; return 0; } /** * megasas_issue_blocked_cmd - Synchronous wrapper around regular FW cmds * @instance: Adapter soft state * @cmd: Command to be issued * * This function waits on an event for the command to be returned from ISR. * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs * Used to issue ioctl commands. */ static int megasas_issue_blocked_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd) { cmd->cmd_status = ENODATA; instance->instancet->fire_cmd(instance, cmd->frame_phys_addr, 0, instance->reg_set); wait_event(instance->int_cmd_wait_q, cmd->cmd_status != ENODATA); return 0; } /** * megasas_issue_blocked_abort_cmd - Aborts previously issued cmd * @instance: Adapter soft state * @cmd_to_abort: Previously issued cmd to be aborted * * MFI firmware can abort previously issued AEN comamnd (automatic event * notification). The megasas_issue_blocked_abort_cmd() issues such abort * cmd and waits for return status. * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs */ static int megasas_issue_blocked_abort_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd_to_abort) { struct megasas_cmd *cmd; struct megasas_abort_frame *abort_fr; cmd = megasas_get_cmd(instance); if (!cmd) return -1; abort_fr = &cmd->frame->abort; /* * Prepare and issue the abort frame */ abort_fr->cmd = MFI_CMD_ABORT; abort_fr->cmd_status = 0xFF; abort_fr->flags = 0; abort_fr->abort_context = cmd_to_abort->index; abort_fr->abort_mfi_phys_addr_lo = cmd_to_abort->frame_phys_addr; abort_fr->abort_mfi_phys_addr_hi = 0; cmd->sync_cmd = 1; cmd->cmd_status = 0xFF; instance->instancet->fire_cmd(instance, cmd->frame_phys_addr, 0, instance->reg_set); /* * Wait for this cmd to complete */ wait_event(instance->abort_cmd_wait_q, cmd->cmd_status != 0xFF); cmd->sync_cmd = 0; megasas_return_cmd(instance, cmd); return 0; } /** * megasas_make_sgl32 - Prepares 32-bit SGL * @instance: Adapter soft state * @scp: SCSI command from the mid-layer * @mfi_sgl: SGL to be filled in * * If successful, this function returns the number of SG elements. Otherwise, * it returnes -1. */ static int megasas_make_sgl32(struct megasas_instance *instance, struct scsi_cmnd *scp, union megasas_sgl *mfi_sgl) { int i; int sge_count; struct scatterlist *os_sgl; sge_count = scsi_dma_map(scp); BUG_ON(sge_count < 0); if (sge_count) { scsi_for_each_sg(scp, os_sgl, sge_count, i) { mfi_sgl->sge32[i].length = sg_dma_len(os_sgl); mfi_sgl->sge32[i].phys_addr = sg_dma_address(os_sgl); } } return sge_count; } /** * megasas_make_sgl64 - Prepares 64-bit SGL * @instance: Adapter soft state * @scp: SCSI command from the mid-layer * @mfi_sgl: SGL to be filled in * * If successful, this function returns the number of SG elements. Otherwise, * it returnes -1. */ static int megasas_make_sgl64(struct megasas_instance *instance, struct scsi_cmnd *scp, union megasas_sgl *mfi_sgl) { int i; int sge_count; struct scatterlist *os_sgl; sge_count = scsi_dma_map(scp); BUG_ON(sge_count < 0); if (sge_count) { scsi_for_each_sg(scp, os_sgl, sge_count, i) { mfi_sgl->sge64[i].length = sg_dma_len(os_sgl); mfi_sgl->sge64[i].phys_addr = sg_dma_address(os_sgl); } } return sge_count; } /** * megasas_make_sgl_skinny - Prepares IEEE SGL * @instance: Adapter soft state * @scp: SCSI command from the mid-layer * @mfi_sgl: SGL to be filled in * * If successful, this function returns the number of SG elements. Otherwise, * it returnes -1. */ static int megasas_make_sgl_skinny(struct megasas_instance *instance, struct scsi_cmnd *scp, union megasas_sgl *mfi_sgl) { int i; int sge_count; struct scatterlist *os_sgl; sge_count = scsi_dma_map(scp); if (sge_count) { scsi_for_each_sg(scp, os_sgl, sge_count, i) { mfi_sgl->sge_skinny[i].length = sg_dma_len(os_sgl); mfi_sgl->sge_skinny[i].phys_addr = sg_dma_address(os_sgl); } } return sge_count; } /** * megasas_get_frame_count - Computes the number of frames * @frame_type : type of frame- io or pthru frame * @sge_count : number of sg elements * * Returns the number of frames required for numnber of sge's (sge_count) */ static u32 megasas_get_frame_count(struct megasas_instance *instance, u8 sge_count, u8 frame_type) { int num_cnt; int sge_bytes; u32 sge_sz; u32 frame_count=0; sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) : sizeof(struct megasas_sge32); if (instance->flag_ieee) { sge_sz = sizeof(struct megasas_sge_skinny); } /* * Main frame can contain 2 SGEs for 64-bit SGLs and * 3 SGEs for 32-bit SGLs for ldio & * 1 SGEs for 64-bit SGLs and * 2 SGEs for 32-bit SGLs for pthru frame */ if (unlikely(frame_type == PTHRU_FRAME)) { if (instance->flag_ieee == 1) { num_cnt = sge_count - 1; } else if (IS_DMA64) num_cnt = sge_count - 1; else num_cnt = sge_count - 2; } else { if (instance->flag_ieee == 1) { num_cnt = sge_count - 1; } else if (IS_DMA64) num_cnt = sge_count - 2; else num_cnt = sge_count - 3; } if(num_cnt>0){ sge_bytes = sge_sz * num_cnt; frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) + ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) ; } /* Main frame */ frame_count +=1; if (frame_count > 7) frame_count = 8; return frame_count; } /** * megasas_build_dcdb - Prepares a direct cdb (DCDB) command * @instance: Adapter soft state * @scp: SCSI command * @cmd: Command to be prepared in * * This function prepares CDB commands. These are typcially pass-through * commands to the devices. */ static int megasas_build_dcdb(struct megasas_instance *instance, struct scsi_cmnd *scp, struct megasas_cmd *cmd) { u32 is_logical; u32 device_id; u16 flags = 0; struct megasas_pthru_frame *pthru; is_logical = MEGASAS_IS_LOGICAL(scp); device_id = MEGASAS_DEV_INDEX(instance, scp); pthru = (struct megasas_pthru_frame *)cmd->frame; if (scp->sc_data_direction == PCI_DMA_TODEVICE) flags = MFI_FRAME_DIR_WRITE; else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE) flags = MFI_FRAME_DIR_READ; else if (scp->sc_data_direction == PCI_DMA_NONE) flags = MFI_FRAME_DIR_NONE; if (instance->flag_ieee == 1) { flags |= MFI_FRAME_IEEE; } /* * Prepare the DCDB frame */ pthru->cmd = (is_logical) ? MFI_CMD_LD_SCSI_IO : MFI_CMD_PD_SCSI_IO; pthru->cmd_status = 0x0; pthru->scsi_status = 0x0; pthru->target_id = device_id; pthru->lun = scp->device->lun; pthru->cdb_len = scp->cmd_len; pthru->timeout = 0; pthru->pad_0 = 0; pthru->flags = flags; pthru->data_xfer_len = scsi_bufflen(scp); memcpy(pthru->cdb, scp->cmnd, scp->cmd_len); /* * If the command is for the tape device, set the * pthru timeout to the os layer timeout value. */ if (scp->device->type == TYPE_TAPE) { if ((scp->request->timeout / HZ) > 0xFFFF) pthru->timeout = 0xFFFF; else pthru->timeout = scp->request->timeout / HZ; } /* * Construct SGL */ if (instance->flag_ieee == 1) { pthru->flags |= MFI_FRAME_SGL64; pthru->sge_count = megasas_make_sgl_skinny(instance, scp, &pthru->sgl); } else if (IS_DMA64) { pthru->flags |= MFI_FRAME_SGL64; pthru->sge_count = megasas_make_sgl64(instance, scp, &pthru->sgl); } else pthru->sge_count = megasas_make_sgl32(instance, scp, &pthru->sgl); if (pthru->sge_count > instance->max_num_sge) { printk(KERN_ERR "megasas: DCDB two many SGE NUM=%x\n", pthru->sge_count); return 0; } /* * Sense info specific */ pthru->sense_len = SCSI_SENSE_BUFFERSIZE; pthru->sense_buf_phys_addr_hi = 0; pthru->sense_buf_phys_addr_lo = cmd->sense_phys_addr; /* * Compute the total number of frames this command consumes. FW uses * this number to pull sufficient number of frames from host memory. */ cmd->frame_count = megasas_get_frame_count(instance, pthru->sge_count, PTHRU_FRAME); return cmd->frame_count; } /** * megasas_build_ldio - Prepares IOs to logical devices * @instance: Adapter soft state * @scp: SCSI command * @cmd: Command to be prepared * * Frames (and accompanying SGLs) for regular SCSI IOs use this function. */ static int megasas_build_ldio(struct megasas_instance *instance, struct scsi_cmnd *scp, struct megasas_cmd *cmd) { u32 device_id; u8 sc = scp->cmnd[0]; u16 flags = 0; struct megasas_io_frame *ldio; device_id = MEGASAS_DEV_INDEX(instance, scp); ldio = (struct megasas_io_frame *)cmd->frame; if (scp->sc_data_direction == PCI_DMA_TODEVICE) flags = MFI_FRAME_DIR_WRITE; else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE) flags = MFI_FRAME_DIR_READ; if (instance->flag_ieee == 1) { flags |= MFI_FRAME_IEEE; } /* * Prepare the Logical IO frame: 2nd bit is zero for all read cmds */ ldio->cmd = (sc & 0x02) ? MFI_CMD_LD_WRITE : MFI_CMD_LD_READ; ldio->cmd_status = 0x0; ldio->scsi_status = 0x0; ldio->target_id = device_id; ldio->timeout = 0; ldio->reserved_0 = 0; ldio->pad_0 = 0; ldio->flags = flags; ldio->start_lba_hi = 0; ldio->access_byte = (scp->cmd_len != 6) ? scp->cmnd[1] : 0; /* * 6-byte READ(0x08) or WRITE(0x0A) cdb */ if (scp->cmd_len == 6) { ldio->lba_count = (u32) scp->cmnd[4]; ldio->start_lba_lo = ((u32) scp->cmnd[1] << 16) | ((u32) scp->cmnd[2] << 8) | (u32) scp->cmnd[3]; ldio->start_lba_lo &= 0x1FFFFF; } /* * 10-byte READ(0x28) or WRITE(0x2A) cdb */ else if (scp->cmd_len == 10) { ldio->lba_count = (u32) scp->cmnd[8] | ((u32) scp->cmnd[7] << 8); ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) | ((u32) scp->cmnd[3] << 16) | ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5]; } /* * 12-byte READ(0xA8) or WRITE(0xAA) cdb */ else if (scp->cmd_len == 12) { ldio->lba_count = ((u32) scp->cmnd[6] << 24) | ((u32) scp->cmnd[7] << 16) | ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9]; ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) | ((u32) scp->cmnd[3] << 16) | ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5]; } /* * 16-byte READ(0x88) or WRITE(0x8A) cdb */ else if (scp->cmd_len == 16) { ldio->lba_count = ((u32) scp->cmnd[10] << 24) | ((u32) scp->cmnd[11] << 16) | ((u32) scp->cmnd[12] << 8) | (u32) scp->cmnd[13]; ldio->start_lba_lo = ((u32) scp->cmnd[6] << 24) | ((u32) scp->cmnd[7] << 16) | ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9]; ldio->start_lba_hi = ((u32) scp->cmnd[2] << 24) | ((u32) scp->cmnd[3] << 16) | ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5]; } /* * Construct SGL */ if (instance->flag_ieee) { ldio->flags |= MFI_FRAME_SGL64; ldio->sge_count = megasas_make_sgl_skinny(instance, scp, &ldio->sgl); } else if (IS_DMA64) { ldio->flags |= MFI_FRAME_SGL64; ldio->sge_count = megasas_make_sgl64(instance, scp, &ldio->sgl); } else ldio->sge_count = megasas_make_sgl32(instance, scp, &ldio->sgl); if (ldio->sge_count > instance->max_num_sge) { printk(KERN_ERR "megasas: build_ld_io: sge_count = %x\n", ldio->sge_count); return 0; } /* * Sense info specific */ ldio->sense_len = SCSI_SENSE_BUFFERSIZE; ldio->sense_buf_phys_addr_hi = 0; ldio->sense_buf_phys_addr_lo = cmd->sense_phys_addr; /* * Compute the total number of frames this command consumes. FW uses * this number to pull sufficient number of frames from host memory. */ cmd->frame_count = megasas_get_frame_count(instance, ldio->sge_count, IO_FRAME); return cmd->frame_count; } /** * megasas_is_ldio - Checks if the cmd is for logical drive * @scmd: SCSI command * * Called by megasas_queue_command to find out if the command to be queued * is a logical drive command */ static inline int megasas_is_ldio(struct scsi_cmnd *cmd) { if (!MEGASAS_IS_LOGICAL(cmd)) return 0; switch (cmd->cmnd[0]) { case READ_10: case WRITE_10: case READ_12: case WRITE_12: case READ_6: case WRITE_6: case READ_16: case WRITE_16: return 1; default: return 0; } } /** * megasas_dump_pending_frames - Dumps the frame address of all pending cmds * in FW * @instance: Adapter soft state */ static inline void megasas_dump_pending_frames(struct megasas_instance *instance) { struct megasas_cmd *cmd; int i,n; union megasas_sgl *mfi_sgl; struct megasas_io_frame *ldio; struct megasas_pthru_frame *pthru; u32 sgcount; u32 max_cmd = instance->max_fw_cmds; printk(KERN_ERR "\nmegasas[%d]: Dumping Frame Phys Address of all pending cmds in FW\n",instance->host->host_no); printk(KERN_ERR "megasas[%d]: Total OS Pending cmds : %d\n",instance->host->host_no,atomic_read(&instance->fw_outstanding)); if (IS_DMA64) printk(KERN_ERR "\nmegasas[%d]: 64 bit SGLs were sent to FW\n",instance->host->host_no); else printk(KERN_ERR "\nmegasas[%d]: 32 bit SGLs were sent to FW\n",instance->host->host_no); printk(KERN_ERR "megasas[%d]: Pending OS cmds in FW : \n",instance->host->host_no); for (i = 0; i < max_cmd; i++) { cmd = instance->cmd_list[i]; if(!cmd->scmd) continue; printk(KERN_ERR "megasas[%d]: Frame addr :0x%08lx : ",instance->host->host_no,(unsigned long)cmd->frame_phys_addr); if (megasas_is_ldio(cmd->scmd)){ ldio = (struct megasas_io_frame *)cmd->frame; mfi_sgl = &ldio->sgl; sgcount = ldio->sge_count; printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x, lba lo : 0x%x, lba_hi : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n",instance->host->host_no, cmd->frame_count,ldio->cmd,ldio->target_id, ldio->start_lba_lo,ldio->start_lba_hi,ldio->sense_buf_phys_addr_lo,sgcount); } else { pthru = (struct megasas_pthru_frame *) cmd->frame; mfi_sgl = &pthru->sgl; sgcount = pthru->sge_count; printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x, lun : 0x%x, cdb_len : 0x%x, data xfer len : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n",instance->host->host_no,cmd->frame_count,pthru->cmd,pthru->target_id,pthru->lun,pthru->cdb_len , pthru->data_xfer_len,pthru->sense_buf_phys_addr_lo,sgcount); } if(megasas_dbg_lvl & MEGASAS_DBG_LVL){ for (n = 0; n < sgcount; n++){ if (IS_DMA64) printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%08lx ",mfi_sgl->sge64[n].length , (unsigned long)mfi_sgl->sge64[n].phys_addr) ; else printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%x ",mfi_sgl->sge32[n].length , mfi_sgl->sge32[n].phys_addr) ; } } printk(KERN_ERR "\n"); } /*for max_cmd*/ printk(KERN_ERR "\nmegasas[%d]: Pending Internal cmds in FW : \n",instance->host->host_no); for (i = 0; i < max_cmd; i++) { cmd = instance->cmd_list[i]; if(cmd->sync_cmd == 1){ printk(KERN_ERR "0x%08lx : ", (unsigned long)cmd->frame_phys_addr); } } printk(KERN_ERR "megasas[%d]: Dumping Done.\n\n",instance->host->host_no); } /** * megasas_queue_command - Queue entry point * @scmd: SCSI command to be queued * @done: Callback entry point */ static int megasas_queue_command(struct scsi_cmnd *scmd, void (*done) (struct scsi_cmnd *)) { u32 frame_count; struct megasas_cmd *cmd; struct megasas_instance *instance; unsigned long flags; instance = (struct megasas_instance *) scmd->device->host->hostdata; if (instance->issuepend_done == 0) return SCSI_MLQUEUE_HOST_BUSY; spin_lock_irqsave(&instance->hba_lock, flags); if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) { spin_unlock_irqrestore(&instance->hba_lock, flags); return SCSI_MLQUEUE_HOST_BUSY; } spin_unlock_irqrestore(&instance->hba_lock, flags); scmd->scsi_done = done; scmd->result = 0; if (MEGASAS_IS_LOGICAL(scmd) && (scmd->device->id >= MEGASAS_MAX_LD || scmd->device->lun)) { scmd->result = DID_BAD_TARGET << 16; goto out_done; } switch (scmd->cmnd[0]) { case SYNCHRONIZE_CACHE: /* * FW takes care of flush cache on its own * No need to send it down */ scmd->result = DID_OK << 16; goto out_done; default: break; } cmd = megasas_get_cmd(instance); if (!cmd) return SCSI_MLQUEUE_HOST_BUSY; /* * Logical drive command */ if (megasas_is_ldio(scmd)) frame_count = megasas_build_ldio(instance, scmd, cmd); else frame_count = megasas_build_dcdb(instance, scmd, cmd); if (!frame_count) goto out_return_cmd; cmd->scmd = scmd; scmd->SCp.ptr = (char *)cmd; /* * Issue the command to the FW */ atomic_inc(&instance->fw_outstanding); instance->instancet->fire_cmd(instance, cmd->frame_phys_addr, cmd->frame_count-1, instance->reg_set); /* * Check if we have pend cmds to be completed */ if (poll_mode_io && atomic_read(&instance->fw_outstanding)) tasklet_schedule(&instance->isr_tasklet); return 0; out_return_cmd: megasas_return_cmd(instance, cmd); out_done: done(scmd); return 0; } static struct megasas_instance *megasas_lookup_instance(u16 host_no) { int i; for (i = 0; i < megasas_mgmt_info.max_index; i++) { if ((megasas_mgmt_info.instance[i]) && (megasas_mgmt_info.instance[i]->host->host_no == host_no)) return megasas_mgmt_info.instance[i]; } return NULL; } static int megasas_slave_configure(struct scsi_device *sdev) { u16 pd_index = 0; struct megasas_instance *instance ; instance = megasas_lookup_instance(sdev->host->host_no); /* * Don't export physical disk devices to the disk driver. * * FIXME: Currently we don't export them to the midlayer at all. * That will be fixed once LSI engineers have audited the * firmware for possible issues. */ if (sdev->channel < MEGASAS_MAX_PD_CHANNELS && sdev->type == TYPE_DISK) { pd_index = (sdev->channel * MEGASAS_MAX_DEV_PER_CHANNEL) + sdev->id; if (instance->pd_list[pd_index].driveState == MR_PD_STATE_SYSTEM) { blk_queue_rq_timeout(sdev->request_queue, MEGASAS_DEFAULT_CMD_TIMEOUT * HZ); return 0; } return -ENXIO; } /* * The RAID firmware may require extended timeouts. */ blk_queue_rq_timeout(sdev->request_queue, MEGASAS_DEFAULT_CMD_TIMEOUT * HZ); return 0; } static int megasas_slave_alloc(struct scsi_device *sdev) { u16 pd_index = 0; struct megasas_instance *instance ; instance = megasas_lookup_instance(sdev->host->host_no); if ((sdev->channel < MEGASAS_MAX_PD_CHANNELS) && (sdev->type == TYPE_DISK)) { /* * Open the OS scan to the SYSTEM PD */ pd_index = (sdev->channel * MEGASAS_MAX_DEV_PER_CHANNEL) + sdev->id; if ((instance->pd_list[pd_index].driveState == MR_PD_STATE_SYSTEM) && (instance->pd_list[pd_index].driveType == TYPE_DISK)) { return 0; } return -ENXIO; } return 0; } static void megaraid_sas_kill_hba(struct megasas_instance *instance) { if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0073SKINNY) || (instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0071SKINNY)) { writel(MFI_STOP_ADP, &instance->reg_set->reserved_0[0]); } else { writel(MFI_STOP_ADP, &instance->reg_set->inbound_doorbell); } } /** * megasas_complete_cmd_dpc - Returns FW's controller structure * @instance_addr: Address of adapter soft state * * Tasklet to complete cmds */ static void megasas_complete_cmd_dpc(unsigned long instance_addr) { u32 producer; u32 consumer; u32 context; struct megasas_cmd *cmd; struct megasas_instance *instance = (struct megasas_instance *)instance_addr; unsigned long flags; /* If we have already declared adapter dead, donot complete cmds */ if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR ) return; spin_lock_irqsave(&instance->completion_lock, flags); producer = *instance->producer; consumer = *instance->consumer; while (consumer != producer) { context = instance->reply_queue[consumer]; if (context >= instance->max_fw_cmds) { printk(KERN_ERR "Unexpected context value %x\n", context); BUG(); } cmd = instance->cmd_list[context]; megasas_complete_cmd(instance, cmd, DID_OK); consumer++; if (consumer == (instance->max_fw_cmds + 1)) { consumer = 0; } } *instance->consumer = producer; spin_unlock_irqrestore(&instance->completion_lock, flags); /* * Check if we can restore can_queue */ if (instance->flag & MEGASAS_FW_BUSY && time_after(jiffies, instance->last_time + 5 * HZ) && atomic_read(&instance->fw_outstanding) < 17) { spin_lock_irqsave(instance->host->host_lock, flags); instance->flag &= ~MEGASAS_FW_BUSY; if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0073SKINNY) || (instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0071SKINNY)) { instance->host->can_queue = instance->max_fw_cmds - MEGASAS_SKINNY_INT_CMDS; } else instance->host->can_queue = instance->max_fw_cmds - MEGASAS_INT_CMDS; spin_unlock_irqrestore(instance->host->host_lock, flags); } } /** * megasas_wait_for_outstanding - Wait for all outstanding cmds * @instance: Adapter soft state * * This function waits for upto MEGASAS_RESET_WAIT_TIME seconds for FW to * complete all its outstanding commands. Returns error if one or more IOs * are pending after this time period. It also marks the controller dead. */ static int megasas_wait_for_outstanding(struct megasas_instance *instance) { int i; u32 reset_index; u32 wait_time = MEGASAS_RESET_WAIT_TIME; u8 adprecovery; unsigned long flags; struct list_head clist_local; struct megasas_cmd *reset_cmd; spin_lock_irqsave(&instance->hba_lock, flags); adprecovery = instance->adprecovery; spin_unlock_irqrestore(&instance->hba_lock, flags); if (adprecovery != MEGASAS_HBA_OPERATIONAL) { INIT_LIST_HEAD(&clist_local); spin_lock_irqsave(&instance->hba_lock, flags); list_splice_init(&instance->internal_reset_pending_q, &clist_local); spin_unlock_irqrestore(&instance->hba_lock, flags); printk(KERN_NOTICE "megasas: HBA reset wait ...\n"); for (i = 0; i < wait_time; i++) { msleep(1000); spin_lock_irqsave(&instance->hba_lock, flags); adprecovery = instance->adprecovery; spin_unlock_irqrestore(&instance->hba_lock, flags); if (adprecovery == MEGASAS_HBA_OPERATIONAL) break; } if (adprecovery != MEGASAS_HBA_OPERATIONAL) { printk(KERN_NOTICE "megasas: reset: Stopping HBA.\n"); spin_lock_irqsave(&instance->hba_lock, flags); instance->adprecovery = MEGASAS_HW_CRITICAL_ERROR; spin_unlock_irqrestore(&instance->hba_lock, flags); return FAILED; } reset_index = 0; while (!list_empty(&clist_local)) { reset_cmd = list_entry((&clist_local)->next, struct megasas_cmd, list); list_del_init(&reset_cmd->list); if (reset_cmd->scmd) { reset_cmd->scmd->result = DID_RESET << 16; printk(KERN_NOTICE "%d:%p reset [%02x], %#lx\n", reset_index, reset_cmd, reset_cmd->scmd->cmnd[0], reset_cmd->scmd->serial_number); reset_cmd->scmd->scsi_done(reset_cmd->scmd); megasas_return_cmd(instance, reset_cmd); } else if (reset_cmd->sync_cmd) { printk(KERN_NOTICE "megasas:%p synch cmds" "reset queue\n", reset_cmd); reset_cmd->cmd_status = ENODATA; instance->instancet->fire_cmd(instance, reset_cmd->frame_phys_addr, 0, instance->reg_set); } else { printk(KERN_NOTICE "megasas: %p unexpected" "cmds lst\n", reset_cmd); } reset_index++; } return SUCCESS; } for (i = 0; i < wait_time; i++) { int outstanding = atomic_read(&instance->fw_outstanding); if (!outstanding) break; if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) { printk(KERN_NOTICE "megasas: [%2d]waiting for %d " "commands to complete\n",i,outstanding); /* * Call cmd completion routine. Cmd to be * be completed directly without depending on isr. */ megasas_complete_cmd_dpc((unsigned long)instance); } msleep(1000); } if (atomic_read(&instance->fw_outstanding)) { printk(KERN_NOTICE "megaraid_sas: pending cmds after reset\n"); /* * Send signal to FW to stop processing any pending cmds. * The controller will be taken offline by the OS now. */ if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0073SKINNY) || (instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0071SKINNY)) { writel(MFI_STOP_ADP, &instance->reg_set->reserved_0[0]); } else { writel(MFI_STOP_ADP, &instance->reg_set->inbound_doorbell); } megasas_dump_pending_frames(instance); spin_lock_irqsave(&instance->hba_lock, flags); instance->adprecovery = MEGASAS_HW_CRITICAL_ERROR; spin_unlock_irqrestore(&instance->hba_lock, flags); return FAILED; } printk(KERN_NOTICE "megaraid_sas: no pending cmds after reset\n"); return SUCCESS; } /** * megasas_generic_reset - Generic reset routine * @scmd: Mid-layer SCSI command * * This routine implements a generic reset handler for device, bus and host * reset requests. Device, bus and host specific reset handlers can use this * function after they do their specific tasks. */ static int megasas_generic_reset(struct scsi_cmnd *scmd) { int ret_val; struct megasas_instance *instance; instance = (struct megasas_instance *)scmd->device->host->hostdata; scmd_printk(KERN_NOTICE, scmd, "megasas: RESET -%ld cmd=%x retries=%x\n", scmd->serial_number, scmd->cmnd[0], scmd->retries); if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) { printk(KERN_ERR "megasas: cannot recover from previous reset " "failures\n"); return FAILED; } ret_val = megasas_wait_for_outstanding(instance); if (ret_val == SUCCESS) printk(KERN_NOTICE "megasas: reset successful \n"); else printk(KERN_ERR "megasas: failed to do reset\n"); return ret_val; } /** * megasas_reset_timer - quiesce the adapter if required * @scmd: scsi cmnd * * Sets the FW busy flag and reduces the host->can_queue if the * cmd has not been completed within the timeout period. */ static enum blk_eh_timer_return megasas_reset_timer(struct scsi_cmnd *scmd) { struct megasas_cmd *cmd = (struct megasas_cmd *)scmd->SCp.ptr; struct megasas_instance *instance; unsigned long flags; if (time_after(jiffies, scmd->jiffies_at_alloc + (MEGASAS_DEFAULT_CMD_TIMEOUT * 2) * HZ)) { return BLK_EH_NOT_HANDLED; } instance = cmd->instance; if (!(instance->flag & MEGASAS_FW_BUSY)) { /* FW is busy, throttle IO */ spin_lock_irqsave(instance->host->host_lock, flags); instance->host->can_queue = 16; instance->last_time = jiffies; instance->flag |= MEGASAS_FW_BUSY; spin_unlock_irqrestore(instance->host->host_lock, flags); } return BLK_EH_RESET_TIMER; } /** * megasas_reset_device - Device reset handler entry point */ static int megasas_reset_device(struct scsi_cmnd *scmd) { int ret; /* * First wait for all commands to complete */ ret = megasas_generic_reset(scmd); return ret; } /** * megasas_reset_bus_host - Bus & host reset handler entry point */ static int megasas_reset_bus_host(struct scsi_cmnd *scmd) { int ret; /* * First wait for all commands to complete */ ret = megasas_generic_reset(scmd); return ret; } /** * megasas_bios_param - Returns disk geometry for a disk * @sdev: device handle * @bdev: block device * @capacity: drive capacity * @geom: geometry parameters */ static int megasas_bios_param(struct scsi_device *sdev, struct block_device *bdev, sector_t capacity, int geom[]) { int heads; int sectors; sector_t cylinders; unsigned long tmp; /* Default heads (64) & sectors (32) */ heads = 64; sectors = 32; tmp = heads * sectors; cylinders = capacity; sector_div(cylinders, tmp); /* * Handle extended translation size for logical drives > 1Gb */ if (capacity >= 0x200000) { heads = 255; sectors = 63; tmp = heads*sectors; cylinders = capacity; sector_div(cylinders, tmp); } geom[0] = heads; geom[1] = sectors; geom[2] = cylinders; return 0; } static void megasas_aen_polling(struct work_struct *work); /** * megasas_service_aen - Processes an event notification * @instance: Adapter soft state * @cmd: AEN command completed by the ISR * * For AEN, driver sends a command down to FW that is held by the FW till an * event occurs. When an event of interest occurs, FW completes the command * that it was previously holding. * * This routines sends SIGIO signal to processes that have registered with the * driver for AEN. */ static void megasas_service_aen(struct megasas_instance *instance, struct megasas_cmd *cmd) { unsigned long flags; /* * Don't signal app if it is just an aborted previously registered aen */ if ((!cmd->abort_aen) && (instance->unload == 0)) { spin_lock_irqsave(&poll_aen_lock, flags); megasas_poll_wait_aen = 1; spin_unlock_irqrestore(&poll_aen_lock, flags); wake_up(&megasas_poll_wait); kill_fasync(&megasas_async_queue, SIGIO, POLL_IN); } else cmd->abort_aen = 0; instance->aen_cmd = NULL; megasas_return_cmd(instance, cmd); if ((instance->unload == 0) && ((instance->issuepend_done == 1))) { struct megasas_aen_event *ev; ev = kzalloc(sizeof(*ev), GFP_ATOMIC); if (!ev) { printk(KERN_ERR "megasas_service_aen: out of memory\n"); } else { ev->instance = instance; instance->ev = ev; INIT_WORK(&ev->hotplug_work, megasas_aen_polling); schedule_delayed_work( (struct delayed_work *)&ev->hotplug_work, 0); } } } /* * Scsi host template for megaraid_sas driver */ static struct scsi_host_template megasas_template = { .module = THIS_MODULE, .name = "LSI SAS based MegaRAID driver", .proc_name = "megaraid_sas", .slave_configure = megasas_slave_configure, .slave_alloc = megasas_slave_alloc, .queuecommand = megasas_queue_command, .eh_device_reset_handler = megasas_reset_device, .eh_bus_reset_handler = megasas_reset_bus_host, .eh_host_reset_handler = megasas_reset_bus_host, .eh_timed_out = megasas_reset_timer, .bios_param = megasas_bios_param, .use_clustering = ENABLE_CLUSTERING, }; /** * megasas_complete_int_cmd - Completes an internal command * @instance: Adapter soft state * @cmd: Command to be completed * * The megasas_issue_blocked_cmd() function waits for a command to complete * after it issues a command. This function wakes up that waiting routine by * calling wake_up() on the wait queue. */ static void megasas_complete_int_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd) { cmd->cmd_status = cmd->frame->io.cmd_status; if (cmd->cmd_status == ENODATA) { cmd->cmd_status = 0; } wake_up(&instance->int_cmd_wait_q); } /** * megasas_complete_abort - Completes aborting a command * @instance: Adapter soft state * @cmd: Cmd that was issued to abort another cmd * * The megasas_issue_blocked_abort_cmd() function waits on abort_cmd_wait_q * after it issues an abort on a previously issued command. This function * wakes up all functions waiting on the same wait queue. */ static void megasas_complete_abort(struct megasas_instance *instance, struct megasas_cmd *cmd) { if (cmd->sync_cmd) { cmd->sync_cmd = 0; cmd->cmd_status = 0; wake_up(&instance->abort_cmd_wait_q); } return; } /** * megasas_complete_cmd - Completes a command * @instance: Adapter soft state * @cmd: Command to be completed * @alt_status: If non-zero, use this value as status to * SCSI mid-layer instead of the value returned * by the FW. This should be used if caller wants * an alternate status (as in the case of aborted * commands) */ static void megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd, u8 alt_status) { int exception = 0; struct megasas_header *hdr = &cmd->frame->hdr; unsigned long flags; /* flag for the retry reset */ cmd->retry_for_fw_reset = 0; if (cmd->scmd) cmd->scmd->SCp.ptr = NULL; switch (hdr->cmd) { case MFI_CMD_PD_SCSI_IO: case MFI_CMD_LD_SCSI_IO: /* * MFI_CMD_PD_SCSI_IO and MFI_CMD_LD_SCSI_IO could have been * issued either through an IO path or an IOCTL path. If it * was via IOCTL, we will send it to internal completion. */ if (cmd->sync_cmd) { cmd->sync_cmd = 0; megasas_complete_int_cmd(instance, cmd); break; } case MFI_CMD_LD_READ: case MFI_CMD_LD_WRITE: if (alt_status) { cmd->scmd->result = alt_status << 16; exception = 1; } if (exception) { atomic_dec(&instance->fw_outstanding); scsi_dma_unmap(cmd->scmd); cmd->scmd->scsi_done(cmd->scmd); megasas_return_cmd(instance, cmd); break; } switch (hdr->cmd_status) { case MFI_STAT_OK: cmd->scmd->result = DID_OK << 16; break; case MFI_STAT_SCSI_IO_FAILED: case MFI_STAT_LD_INIT_IN_PROGRESS: cmd->scmd->result = (DID_ERROR << 16) | hdr->scsi_status; break; case MFI_STAT_SCSI_DONE_WITH_ERROR: cmd->scmd->result = (DID_OK << 16) | hdr->scsi_status; if (hdr->scsi_status == SAM_STAT_CHECK_CONDITION) { memset(cmd->scmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); memcpy(cmd->scmd->sense_buffer, cmd->sense, hdr->sense_len); cmd->scmd->result |= DRIVER_SENSE << 24; } break; case MFI_STAT_LD_OFFLINE: case MFI_STAT_DEVICE_NOT_FOUND: cmd->scmd->result = DID_BAD_TARGET << 16; break; default: printk(KERN_DEBUG "megasas: MFI FW status %#x\n", hdr->cmd_status); cmd->scmd->result = DID_ERROR << 16; break; } atomic_dec(&instance->fw_outstanding); scsi_dma_unmap(cmd->scmd); cmd->scmd->scsi_done(cmd->scmd); megasas_return_cmd(instance, cmd); break; case MFI_CMD_SMP: case MFI_CMD_STP: case MFI_CMD_DCMD: if (cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_GET_INFO || cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_GET) { spin_lock_irqsave(&poll_aen_lock, flags); megasas_poll_wait_aen = 0; spin_unlock_irqrestore(&poll_aen_lock, flags); } /* * See if got an event notification */ if (cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_WAIT) megasas_service_aen(instance, cmd); else megasas_complete_int_cmd(instance, cmd); break; case MFI_CMD_ABORT: /* * Cmd issued to abort another cmd returned */ megasas_complete_abort(instance, cmd); break; default: printk("megasas: Unknown command completed! [0x%X]\n", hdr->cmd); break; } } /** * megasas_issue_pending_cmds_again - issue all pending cmds * in FW again because of the fw reset * @instance: Adapter soft state */ static inline void megasas_issue_pending_cmds_again(struct megasas_instance *instance) { struct megasas_cmd *cmd; struct list_head clist_local; union megasas_evt_class_locale class_locale; unsigned long flags; u32 seq_num; INIT_LIST_HEAD(&clist_local); spin_lock_irqsave(&instance->hba_lock, flags); list_splice_init(&instance->internal_reset_pending_q, &clist_local); spin_unlock_irqrestore(&instance->hba_lock, flags); while (!list_empty(&clist_local)) { cmd = list_entry((&clist_local)->next, struct megasas_cmd, list); list_del_init(&cmd->list); if (cmd->sync_cmd || cmd->scmd) { printk(KERN_NOTICE "megaraid_sas: command %p, %p:%d" "detected to be pending while HBA reset.\n", cmd, cmd->scmd, cmd->sync_cmd); cmd->retry_for_fw_reset++; if (cmd->retry_for_fw_reset == 3) { printk(KERN_NOTICE "megaraid_sas: cmd %p, %p:%d" "was tried multiple times during reset." "Shutting down the HBA\n", cmd, cmd->scmd, cmd->sync_cmd); megaraid_sas_kill_hba(instance); instance->adprecovery = MEGASAS_HW_CRITICAL_ERROR; return; } } if (cmd->sync_cmd == 1) { if (cmd->scmd) { printk(KERN_NOTICE "megaraid_sas: unexpected" "cmd attached to internal command!\n"); } printk(KERN_NOTICE "megasas: %p synchronous cmd" "on the internal reset queue," "issue it again.\n", cmd); cmd->cmd_status = ENODATA; instance->instancet->fire_cmd(instance, cmd->frame_phys_addr , 0, instance->reg_set); } else if (cmd->scmd) { printk(KERN_NOTICE "megasas: %p scsi cmd [%02x],%#lx" "detected on the internal queue, issue again.\n", cmd, cmd->scmd->cmnd[0], cmd->scmd->serial_number); atomic_inc(&instance->fw_outstanding); instance->instancet->fire_cmd(instance, cmd->frame_phys_addr, cmd->frame_count-1, instance->reg_set); } else { printk(KERN_NOTICE "megasas: %p unexpected cmd on the" "internal reset defer list while re-issue!!\n", cmd); } } if (instance->aen_cmd) { printk(KERN_NOTICE "megaraid_sas: aen_cmd in def process\n"); megasas_return_cmd(instance, instance->aen_cmd); instance->aen_cmd = NULL; } /* * Initiate AEN (Asynchronous Event Notification) */ seq_num = instance->last_seq_num; class_locale.members.reserved = 0; class_locale.members.locale = MR_EVT_LOCALE_ALL; class_locale.members.class = MR_EVT_CLASS_DEBUG; megasas_register_aen(instance, seq_num, class_locale.word); } /** * Move the internal reset pending commands to a deferred queue. * * We move the commands pending at internal reset time to a * pending queue. This queue would be flushed after successful * completion of the internal reset sequence. if the internal reset * did not complete in time, the kernel reset handler would flush * these commands. **/ static void megasas_internal_reset_defer_cmds(struct megasas_instance *instance) { struct megasas_cmd *cmd; int i; u32 max_cmd = instance->max_fw_cmds; u32 defer_index; unsigned long flags; defer_index = 0; spin_lock_irqsave(&instance->cmd_pool_lock, flags); for (i = 0; i < max_cmd; i++) { cmd = instance->cmd_list[i]; if (cmd->sync_cmd == 1 || cmd->scmd) { printk(KERN_NOTICE "megasas: moving cmd[%d]:%p:%d:%p" "on the defer queue as internal\n", defer_index, cmd, cmd->sync_cmd, cmd->scmd); if (!list_empty(&cmd->list)) { printk(KERN_NOTICE "megaraid_sas: ERROR while" " moving this cmd:%p, %d %p, it was" "discovered on some list?\n", cmd, cmd->sync_cmd, cmd->scmd); list_del_init(&cmd->list); } defer_index++; list_add_tail(&cmd->list, &instance->internal_reset_pending_q); } } spin_unlock_irqrestore(&instance->cmd_pool_lock, flags); } static void process_fw_state_change_wq(struct work_struct *work) { struct megasas_instance *instance = container_of(work, struct megasas_instance, work_init); u32 wait; unsigned long flags; if (instance->adprecovery != MEGASAS_ADPRESET_SM_INFAULT) { printk(KERN_NOTICE "megaraid_sas: error, recovery st %x \n", instance->adprecovery); return ; } if (instance->adprecovery == MEGASAS_ADPRESET_SM_INFAULT) { printk(KERN_NOTICE "megaraid_sas: FW detected to be in fault" "state, restarting it...\n"); instance->instancet->disable_intr(instance->reg_set); atomic_set(&instance->fw_outstanding, 0); atomic_set(&instance->fw_reset_no_pci_access, 1); instance->instancet->adp_reset(instance, instance->reg_set); atomic_set(&instance->fw_reset_no_pci_access, 0 ); printk(KERN_NOTICE "megaraid_sas: FW restarted successfully," "initiating next stage...\n"); printk(KERN_NOTICE "megaraid_sas: HBA recovery state machine," "state 2 starting...\n"); /*waitting for about 20 second before start the second init*/ for (wait = 0; wait < 30; wait++) { msleep(1000); } if (megasas_transition_to_ready(instance)) { printk(KERN_NOTICE "megaraid_sas:adapter not ready\n"); megaraid_sas_kill_hba(instance); instance->adprecovery = MEGASAS_HW_CRITICAL_ERROR; return ; } if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS1064R) || (instance->pdev->device == PCI_DEVICE_ID_DELL_PERC5) || (instance->pdev->device == PCI_DEVICE_ID_LSI_VERDE_ZCR) ) { *instance->consumer = *instance->producer; } else { *instance->consumer = 0; *instance->producer = 0; } megasas_issue_init_mfi(instance); spin_lock_irqsave(&instance->hba_lock, flags); instance->adprecovery = MEGASAS_HBA_OPERATIONAL; spin_unlock_irqrestore(&instance->hba_lock, flags); instance->instancet->enable_intr(instance->reg_set); megasas_issue_pending_cmds_again(instance); instance->issuepend_done = 1; } return ; } /** * megasas_deplete_reply_queue - Processes all completed commands * @instance: Adapter soft state * @alt_status: Alternate status to be returned to * SCSI mid-layer instead of the status * returned by the FW * Note: this must be called with hba lock held */ static int megasas_deplete_reply_queue(struct megasas_instance *instance, u8 alt_status) { u32 mfiStatus; u32 fw_state; if ((mfiStatus = instance->instancet->check_reset(instance, instance->reg_set)) == 1) { return IRQ_HANDLED; } if ((mfiStatus = instance->instancet->clear_intr( instance->reg_set) ) == 0) { return IRQ_NONE; } instance->mfiStatus = mfiStatus; if ((mfiStatus & MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE)) { fw_state = instance->instancet->read_fw_status_reg( instance->reg_set) & MFI_STATE_MASK; if (fw_state != MFI_STATE_FAULT) { printk(KERN_NOTICE "megaraid_sas: fw state:%x\n", fw_state); } if ((fw_state == MFI_STATE_FAULT) && (instance->disableOnlineCtrlReset == 0)) { printk(KERN_NOTICE "megaraid_sas: wait adp restart\n"); if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS1064R) || (instance->pdev->device == PCI_DEVICE_ID_DELL_PERC5) || (instance->pdev->device == PCI_DEVICE_ID_LSI_VERDE_ZCR)) { *instance->consumer = MEGASAS_ADPRESET_INPROG_SIGN; } instance->instancet->disable_intr(instance->reg_set); instance->adprecovery = MEGASAS_ADPRESET_SM_INFAULT; instance->issuepend_done = 0; atomic_set(&instance->fw_outstanding, 0); megasas_internal_reset_defer_cmds(instance); printk(KERN_NOTICE "megasas: fwState=%x, stage:%d\n", fw_state, instance->adprecovery); schedule_work(&instance->work_init); return IRQ_HANDLED; } else { printk(KERN_NOTICE "megasas: fwstate:%x, dis_OCR=%x\n", fw_state, instance->disableOnlineCtrlReset); } } tasklet_schedule(&instance->isr_tasklet); return IRQ_HANDLED; } /** * megasas_isr - isr entry point */ static irqreturn_t megasas_isr(int irq, void *devp) { struct megasas_instance *instance; unsigned long flags; irqreturn_t rc; if (atomic_read( &(((struct megasas_instance *)devp)->fw_reset_no_pci_access))) return IRQ_HANDLED; instance = (struct megasas_instance *)devp; spin_lock_irqsave(&instance->hba_lock, flags); rc = megasas_deplete_reply_queue(instance, DID_OK); spin_unlock_irqrestore(&instance->hba_lock, flags); return rc; } /** * megasas_transition_to_ready - Move the FW to READY state * @instance: Adapter soft state * * During the initialization, FW passes can potentially be in any one of * several possible states. If the FW in operational, waiting-for-handshake * states, driver must take steps to bring it to ready state. Otherwise, it * has to wait for the ready state. */ static int megasas_transition_to_ready(struct megasas_instance* instance) { int i; u8 max_wait; u32 fw_state; u32 cur_state; u32 abs_state, curr_abs_state; fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) & MFI_STATE_MASK; if (fw_state != MFI_STATE_READY) printk(KERN_INFO "megasas: Waiting for FW to come to ready" " state\n"); while (fw_state != MFI_STATE_READY) { abs_state = instance->instancet->read_fw_status_reg(instance->reg_set); switch (fw_state) { case MFI_STATE_FAULT: printk(KERN_DEBUG "megasas: FW in FAULT state!!\n"); return -ENODEV; case MFI_STATE_WAIT_HANDSHAKE: /* * Set the CLR bit in inbound doorbell */ if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0073SKINNY) || (instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0071SKINNY)) { writel( MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG, &instance->reg_set->reserved_0[0]); } else { writel( MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG, &instance->reg_set->inbound_doorbell); } max_wait = MEGASAS_RESET_WAIT_TIME; cur_state = MFI_STATE_WAIT_HANDSHAKE; break; case MFI_STATE_BOOT_MESSAGE_PENDING: if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0073SKINNY) || (instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0071SKINNY)) { writel(MFI_INIT_HOTPLUG, &instance->reg_set->reserved_0[0]); } else writel(MFI_INIT_HOTPLUG, &instance->reg_set->inbound_doorbell); max_wait = MEGASAS_RESET_WAIT_TIME; cur_state = MFI_STATE_BOOT_MESSAGE_PENDING; break; case MFI_STATE_OPERATIONAL: /* * Bring it to READY state; assuming max wait 10 secs */ instance->instancet->disable_intr(instance->reg_set); if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0073SKINNY) || (instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0071SKINNY)) { writel(MFI_RESET_FLAGS, &instance->reg_set->reserved_0[0]); } else writel(MFI_RESET_FLAGS, &instance->reg_set->inbound_doorbell); max_wait = MEGASAS_RESET_WAIT_TIME; cur_state = MFI_STATE_OPERATIONAL; break; case MFI_STATE_UNDEFINED: /* * This state should not last for more than 2 seconds */ max_wait = MEGASAS_RESET_WAIT_TIME; cur_state = MFI_STATE_UNDEFINED; break; case MFI_STATE_BB_INIT: max_wait = MEGASAS_RESET_WAIT_TIME; cur_state = MFI_STATE_BB_INIT; break; case MFI_STATE_FW_INIT: max_wait = MEGASAS_RESET_WAIT_TIME; cur_state = MFI_STATE_FW_INIT; break; case MFI_STATE_FW_INIT_2: max_wait = MEGASAS_RESET_WAIT_TIME; cur_state = MFI_STATE_FW_INIT_2; break; case MFI_STATE_DEVICE_SCAN: max_wait = MEGASAS_RESET_WAIT_TIME; cur_state = MFI_STATE_DEVICE_SCAN; break; case MFI_STATE_FLUSH_CACHE: max_wait = MEGASAS_RESET_WAIT_TIME; cur_state = MFI_STATE_FLUSH_CACHE; break; default: printk(KERN_DEBUG "megasas: Unknown state 0x%x\n", fw_state); return -ENODEV; } /* * The cur_state should not last for more than max_wait secs */ for (i = 0; i < (max_wait * 1000); i++) { fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) & MFI_STATE_MASK ; curr_abs_state = instance->instancet->read_fw_status_reg(instance->reg_set); if (abs_state == curr_abs_state) { msleep(1); } else break; } /* * Return error if fw_state hasn't changed after max_wait */ if (curr_abs_state == abs_state) { printk(KERN_DEBUG "FW state [%d] hasn't changed " "in %d secs\n", fw_state, max_wait); return -ENODEV; } } printk(KERN_INFO "megasas: FW now in Ready state\n"); return 0; } /** * megasas_teardown_frame_pool - Destroy the cmd frame DMA pool * @instance: Adapter soft state */ static void megasas_teardown_frame_pool(struct megasas_instance *instance) { int i; u32 max_cmd = instance->max_fw_cmds; struct megasas_cmd *cmd; if (!instance->frame_dma_pool) return; /* * Return all frames to pool */ for (i = 0; i < max_cmd; i++) { cmd = instance->cmd_list[i]; if (cmd->frame) pci_pool_free(instance->frame_dma_pool, cmd->frame, cmd->frame_phys_addr); if (cmd->sense) pci_pool_free(instance->sense_dma_pool, cmd->sense, cmd->sense_phys_addr); } /* * Now destroy the pool itself */ pci_pool_destroy(instance->frame_dma_pool); pci_pool_destroy(instance->sense_dma_pool); instance->frame_dma_pool = NULL; instance->sense_dma_pool = NULL; } /** * megasas_create_frame_pool - Creates DMA pool for cmd frames * @instance: Adapter soft state * * Each command packet has an embedded DMA memory buffer that is used for * filling MFI frame and the SG list that immediately follows the frame. This * function creates those DMA memory buffers for each command packet by using * PCI pool facility. */ static int megasas_create_frame_pool(struct megasas_instance *instance) { int i; u32 max_cmd; u32 sge_sz; u32 sgl_sz; u32 total_sz; u32 frame_count; struct megasas_cmd *cmd; max_cmd = instance->max_fw_cmds; /* * Size of our frame is 64 bytes for MFI frame, followed by max SG * elements and finally SCSI_SENSE_BUFFERSIZE bytes for sense buffer */ sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) : sizeof(struct megasas_sge32); if (instance->flag_ieee) { sge_sz = sizeof(struct megasas_sge_skinny); } /* * Calculated the number of 64byte frames required for SGL */ sgl_sz = sge_sz * instance->max_num_sge; frame_count = (sgl_sz + MEGAMFI_FRAME_SIZE - 1) / MEGAMFI_FRAME_SIZE; frame_count = 15; /* * We need one extra frame for the MFI command */ frame_count++; total_sz = MEGAMFI_FRAME_SIZE * frame_count; /* * Use DMA pool facility provided by PCI layer */ instance->frame_dma_pool = pci_pool_create("megasas frame pool", instance->pdev, total_sz, 64, 0); if (!instance->frame_dma_pool) { printk(KERN_DEBUG "megasas: failed to setup frame pool\n"); return -ENOMEM; } instance->sense_dma_pool = pci_pool_create("megasas sense pool", instance->pdev, 128, 4, 0); if (!instance->sense_dma_pool) { printk(KERN_DEBUG "megasas: failed to setup sense pool\n"); pci_pool_destroy(instance->frame_dma_pool); instance->frame_dma_pool = NULL; return -ENOMEM; } /* * Allocate and attach a frame to each of the commands in cmd_list. * By making cmd->index as the context instead of the &cmd, we can * always use 32bit context regardless of the architecture */ for (i = 0; i < max_cmd; i++) { cmd = instance->cmd_list[i]; cmd->frame = pci_pool_alloc(instance->frame_dma_pool, GFP_KERNEL, &cmd->frame_phys_addr); cmd->sense = pci_pool_alloc(instance->sense_dma_pool, GFP_KERNEL, &cmd->sense_phys_addr); /* * megasas_teardown_frame_pool() takes care of freeing * whatever has been allocated */ if (!cmd->frame || !cmd->sense) { printk(KERN_DEBUG "megasas: pci_pool_alloc failed \n"); megasas_teardown_frame_pool(instance); return -ENOMEM; } cmd->frame->io.context = cmd->index; cmd->frame->io.pad_0 = 0; } return 0; } /** * megasas_free_cmds - Free all the cmds in the free cmd pool * @instance: Adapter soft state */ static void megasas_free_cmds(struct megasas_instance *instance) { int i; /* First free the MFI frame pool */ megasas_teardown_frame_pool(instance); /* Free all the commands in the cmd_list */ for (i = 0; i < instance->max_fw_cmds; i++) kfree(instance->cmd_list[i]); /* Free the cmd_list buffer itself */ kfree(instance->cmd_list); instance->cmd_list = NULL; INIT_LIST_HEAD(&instance->cmd_pool); } /** * megasas_alloc_cmds - Allocates the command packets * @instance: Adapter soft state * * Each command that is issued to the FW, whether IO commands from the OS or * internal commands like IOCTLs, are wrapped in local data structure called * megasas_cmd. The frame embedded in this megasas_cmd is actually issued to * the FW. * * Each frame has a 32-bit field called context (tag). This context is used * to get back the megasas_cmd from the frame when a frame gets completed in * the ISR. Typically the address of the megasas_cmd itself would be used as * the context. But we wanted to keep the differences between 32 and 64 bit * systems to the mininum. We always use 32 bit integers for the context. In * this driver, the 32 bit values are the indices into an array cmd_list. * This array is used only to look up the megasas_cmd given the context. The * free commands themselves are maintained in a linked list called cmd_pool. */ static int megasas_alloc_cmds(struct megasas_instance *instance) { int i; int j; u32 max_cmd; struct megasas_cmd *cmd; max_cmd = instance->max_fw_cmds; /* * instance->cmd_list is an array of struct megasas_cmd pointers. * Allocate the dynamic array first and then allocate individual * commands. */ instance->cmd_list = kcalloc(max_cmd, sizeof(struct megasas_cmd*), GFP_KERNEL); if (!instance->cmd_list) { printk(KERN_DEBUG "megasas: out of memory\n"); return -ENOMEM; } for (i = 0; i < max_cmd; i++) { instance->cmd_list[i] = kmalloc(sizeof(struct megasas_cmd), GFP_KERNEL); if (!instance->cmd_list[i]) { for (j = 0; j < i; j++) kfree(instance->cmd_list[j]); kfree(instance->cmd_list); instance->cmd_list = NULL; return -ENOMEM; } } /* * Add all the commands to command pool (instance->cmd_pool) */ for (i = 0; i < max_cmd; i++) { cmd = instance->cmd_list[i]; memset(cmd, 0, sizeof(struct megasas_cmd)); cmd->index = i; cmd->scmd = NULL; cmd->instance = instance; list_add_tail(&cmd->list, &instance->cmd_pool); } /* * Create a frame pool and assign one frame to each cmd */ if (megasas_create_frame_pool(instance)) { printk(KERN_DEBUG "megasas: Error creating frame DMA pool\n"); megasas_free_cmds(instance); } return 0; } /* * megasas_get_pd_list_info - Returns FW's pd_list structure * @instance: Adapter soft state * @pd_list: pd_list structure * * Issues an internal command (DCMD) to get the FW's controller PD * list structure. This information is mainly used to find out SYSTEM * supported by the FW. */ static int megasas_get_pd_list(struct megasas_instance *instance) { int ret = 0, pd_index = 0; struct megasas_cmd *cmd; struct megasas_dcmd_frame *dcmd; struct MR_PD_LIST *ci; struct MR_PD_ADDRESS *pd_addr; dma_addr_t ci_h = 0; cmd = megasas_get_cmd(instance); if (!cmd) { printk(KERN_DEBUG "megasas (get_pd_list): Failed to get cmd\n"); return -ENOMEM; } dcmd = &cmd->frame->dcmd; ci = pci_alloc_consistent(instance->pdev, MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST), &ci_h); if (!ci) { printk(KERN_DEBUG "Failed to alloc mem for pd_list\n"); megasas_return_cmd(instance, cmd); return -ENOMEM; } memset(ci, 0, sizeof(*ci)); memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); dcmd->mbox.b[0] = MR_PD_QUERY_TYPE_EXPOSED_TO_HOST; dcmd->mbox.b[1] = 0; dcmd->cmd = MFI_CMD_DCMD; dcmd->cmd_status = 0xFF; dcmd->sge_count = 1; dcmd->flags = MFI_FRAME_DIR_READ; dcmd->timeout = 0; dcmd->pad_0 = 0; dcmd->data_xfer_len = MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST); dcmd->opcode = MR_DCMD_PD_LIST_QUERY; dcmd->sgl.sge32[0].phys_addr = ci_h; dcmd->sgl.sge32[0].length = MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST); if (!megasas_issue_polled(instance, cmd)) { ret = 0; } else { ret = -1; } /* * the following function will get the instance PD LIST. */ pd_addr = ci->addr; if ( ret == 0 && (ci->count < (MEGASAS_MAX_PD_CHANNELS * MEGASAS_MAX_DEV_PER_CHANNEL))) { memset(instance->pd_list, 0, MEGASAS_MAX_PD * sizeof(struct megasas_pd_list)); for (pd_index = 0; pd_index < ci->count; pd_index++) { instance->pd_list[pd_addr->deviceId].tid = pd_addr->deviceId; instance->pd_list[pd_addr->deviceId].driveType = pd_addr->scsiDevType; instance->pd_list[pd_addr->deviceId].driveState = MR_PD_STATE_SYSTEM; pd_addr++; } } pci_free_consistent(instance->pdev, MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST), ci, ci_h); megasas_return_cmd(instance, cmd); return ret; } /* * megasas_get_ld_list_info - Returns FW's ld_list structure * @instance: Adapter soft state * @ld_list: ld_list structure * * Issues an internal command (DCMD) to get the FW's controller PD * list structure. This information is mainly used to find out SYSTEM * supported by the FW. */ static int megasas_get_ld_list(struct megasas_instance *instance) { int ret = 0, ld_index = 0, ids = 0; struct megasas_cmd *cmd; struct megasas_dcmd_frame *dcmd; struct MR_LD_LIST *ci; dma_addr_t ci_h = 0; cmd = megasas_get_cmd(instance); if (!cmd) { printk(KERN_DEBUG "megasas_get_ld_list: Failed to get cmd\n"); return -ENOMEM; } dcmd = &cmd->frame->dcmd; ci = pci_alloc_consistent(instance->pdev, sizeof(struct MR_LD_LIST), &ci_h); if (!ci) { printk(KERN_DEBUG "Failed to alloc mem in get_ld_list\n"); megasas_return_cmd(instance, cmd); return -ENOMEM; } memset(ci, 0, sizeof(*ci)); memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); dcmd->cmd = MFI_CMD_DCMD; dcmd->cmd_status = 0xFF; dcmd->sge_count = 1; dcmd->flags = MFI_FRAME_DIR_READ; dcmd->timeout = 0; dcmd->data_xfer_len = sizeof(struct MR_LD_LIST); dcmd->opcode = MR_DCMD_LD_GET_LIST; dcmd->sgl.sge32[0].phys_addr = ci_h; dcmd->sgl.sge32[0].length = sizeof(struct MR_LD_LIST); dcmd->pad_0 = 0; if (!megasas_issue_polled(instance, cmd)) { ret = 0; } else { ret = -1; } /* the following function will get the instance PD LIST */ if ((ret == 0) && (ci->ldCount <= MAX_LOGICAL_DRIVES)) { memset(instance->ld_ids, 0xff, MEGASAS_MAX_LD_IDS); for (ld_index = 0; ld_index < ci->ldCount; ld_index++) { if (ci->ldList[ld_index].state != 0) { ids = ci->ldList[ld_index].ref.targetId; instance->ld_ids[ids] = ci->ldList[ld_index].ref.targetId; } } } pci_free_consistent(instance->pdev, sizeof(struct MR_LD_LIST), ci, ci_h); megasas_return_cmd(instance, cmd); return ret; } /** * megasas_get_controller_info - Returns FW's controller structure * @instance: Adapter soft state * @ctrl_info: Controller information structure * * Issues an internal command (DCMD) to get the FW's controller structure. * This information is mainly used to find out the maximum IO transfer per * command supported by the FW. */ static int megasas_get_ctrl_info(struct megasas_instance *instance, struct megasas_ctrl_info *ctrl_info) { int ret = 0; struct megasas_cmd *cmd; struct megasas_dcmd_frame *dcmd; struct megasas_ctrl_info *ci; dma_addr_t ci_h = 0; cmd = megasas_get_cmd(instance); if (!cmd) { printk(KERN_DEBUG "megasas: Failed to get a free cmd\n"); return -ENOMEM; } dcmd = &cmd->frame->dcmd; ci = pci_alloc_consistent(instance->pdev, sizeof(struct megasas_ctrl_info), &ci_h); if (!ci) { printk(KERN_DEBUG "Failed to alloc mem for ctrl info\n"); megasas_return_cmd(instance, cmd); return -ENOMEM; } memset(ci, 0, sizeof(*ci)); memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); dcmd->cmd = MFI_CMD_DCMD; dcmd->cmd_status = 0xFF; dcmd->sge_count = 1; dcmd->flags = MFI_FRAME_DIR_READ; dcmd->timeout = 0; dcmd->pad_0 = 0; dcmd->data_xfer_len = sizeof(struct megasas_ctrl_info); dcmd->opcode = MR_DCMD_CTRL_GET_INFO; dcmd->sgl.sge32[0].phys_addr = ci_h; dcmd->sgl.sge32[0].length = sizeof(struct megasas_ctrl_info); if (!megasas_issue_polled(instance, cmd)) { ret = 0; memcpy(ctrl_info, ci, sizeof(struct megasas_ctrl_info)); } else { ret = -1; } pci_free_consistent(instance->pdev, sizeof(struct megasas_ctrl_info), ci, ci_h); megasas_return_cmd(instance, cmd); return ret; } /** * megasas_issue_init_mfi - Initializes the FW * @instance: Adapter soft state * * Issues the INIT MFI cmd */ static int megasas_issue_init_mfi(struct megasas_instance *instance) { u32 context; struct megasas_cmd *cmd; struct megasas_init_frame *init_frame; struct megasas_init_queue_info *initq_info; dma_addr_t init_frame_h; dma_addr_t initq_info_h; /* * Prepare a init frame. Note the init frame points to queue info * structure. Each frame has SGL allocated after first 64 bytes. For * this frame - since we don't need any SGL - we use SGL's space as * queue info structure * * We will not get a NULL command below. We just created the pool. */ cmd = megasas_get_cmd(instance); init_frame = (struct megasas_init_frame *)cmd->frame; initq_info = (struct megasas_init_queue_info *) ((unsigned long)init_frame + 64); init_frame_h = cmd->frame_phys_addr; initq_info_h = init_frame_h + 64; context = init_frame->context; memset(init_frame, 0, MEGAMFI_FRAME_SIZE); memset(initq_info, 0, sizeof(struct megasas_init_queue_info)); init_frame->context = context; initq_info->reply_queue_entries = instance->max_fw_cmds + 1; initq_info->reply_queue_start_phys_addr_lo = instance->reply_queue_h; initq_info->producer_index_phys_addr_lo = instance->producer_h; initq_info->consumer_index_phys_addr_lo = instance->consumer_h; init_frame->cmd = MFI_CMD_INIT; init_frame->cmd_status = 0xFF; init_frame->queue_info_new_phys_addr_lo = initq_info_h; init_frame->data_xfer_len = sizeof(struct megasas_init_queue_info); /* * disable the intr before firing the init frame to FW */ instance->instancet->disable_intr(instance->reg_set); /* * Issue the init frame in polled mode */ if (megasas_issue_polled(instance, cmd)) { printk(KERN_ERR "megasas: Failed to init firmware\n"); megasas_return_cmd(instance, cmd); goto fail_fw_init; } megasas_return_cmd(instance, cmd); return 0; fail_fw_init: return -EINVAL; } /** * megasas_start_timer - Initializes a timer object * @instance: Adapter soft state * @timer: timer object to be initialized * @fn: timer function * @interval: time interval between timer function call */ static inline void megasas_start_timer(struct megasas_instance *instance, struct timer_list *timer, void *fn, unsigned long interval) { init_timer(timer); timer->expires = jiffies + interval; timer->data = (unsigned long)instance; timer->function = fn; add_timer(timer); } /** * megasas_io_completion_timer - Timer fn * @instance_addr: Address of adapter soft state * * Schedules tasklet for cmd completion * if poll_mode_io is set */ static void megasas_io_completion_timer(unsigned long instance_addr) { struct megasas_instance *instance = (struct megasas_instance *)instance_addr; if (atomic_read(&instance->fw_outstanding)) tasklet_schedule(&instance->isr_tasklet); /* Restart timer */ if (poll_mode_io) mod_timer(&instance->io_completion_timer, jiffies + MEGASAS_COMPLETION_TIMER_INTERVAL); } /** * megasas_init_mfi - Initializes the FW * @instance: Adapter soft state * * This is the main function for initializing MFI firmware. */ static int megasas_init_mfi(struct megasas_instance *instance) { u32 context_sz; u32 reply_q_sz; u32 max_sectors_1; u32 max_sectors_2; u32 tmp_sectors; struct megasas_register_set __iomem *reg_set; struct megasas_ctrl_info *ctrl_info; /* * Map the message registers */ if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS1078GEN2) || (instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0071SKINNY) || (instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0073SKINNY) || (instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0079GEN2)) { instance->base_addr = pci_resource_start(instance->pdev, 1); } else { instance->base_addr = pci_resource_start(instance->pdev, 0); } if (pci_request_selected_regions(instance->pdev, pci_select_bars(instance->pdev, IORESOURCE_MEM), "megasas: LSI")) { printk(KERN_DEBUG "megasas: IO memory region busy!\n"); return -EBUSY; } instance->reg_set = ioremap_nocache(instance->base_addr, 8192); if (!instance->reg_set) { printk(KERN_DEBUG "megasas: Failed to map IO mem\n"); goto fail_ioremap; } reg_set = instance->reg_set; switch(instance->pdev->device) { case PCI_DEVICE_ID_LSI_SAS1078R: case PCI_DEVICE_ID_LSI_SAS1078DE: instance->instancet = &megasas_instance_template_ppc; break; case PCI_DEVICE_ID_LSI_SAS1078GEN2: case PCI_DEVICE_ID_LSI_SAS0079GEN2: instance->instancet = &megasas_instance_template_gen2; break; case PCI_DEVICE_ID_LSI_SAS0073SKINNY: case PCI_DEVICE_ID_LSI_SAS0071SKINNY: instance->instancet = &megasas_instance_template_skinny; break; case PCI_DEVICE_ID_LSI_SAS1064R: case PCI_DEVICE_ID_DELL_PERC5: default: instance->instancet = &megasas_instance_template_xscale; break; } /* * We expect the FW state to be READY */ if (megasas_transition_to_ready(instance)) goto fail_ready_state; /* * Get various operational parameters from status register */ instance->max_fw_cmds = instance->instancet->read_fw_status_reg(reg_set) & 0x00FFFF; /* * Reduce the max supported cmds by 1. This is to ensure that the * reply_q_sz (1 more than the max cmd that driver may send) * does not exceed max cmds that the FW can support */ instance->max_fw_cmds = instance->max_fw_cmds-1; instance->max_num_sge = (instance->instancet->read_fw_status_reg(reg_set) & 0xFF0000) >> 0x10; /* * Create a pool of commands */ if (megasas_alloc_cmds(instance)) goto fail_alloc_cmds; /* * Allocate memory for reply queue. Length of reply queue should * be _one_ more than the maximum commands handled by the firmware. * * Note: When FW completes commands, it places corresponding contex * values in this circular reply queue. This circular queue is a fairly * typical producer-consumer queue. FW is the producer (of completed * commands) and the driver is the consumer. */ context_sz = sizeof(u32); reply_q_sz = context_sz * (instance->max_fw_cmds + 1); instance->reply_queue = pci_alloc_consistent(instance->pdev, reply_q_sz, &instance->reply_queue_h); if (!instance->reply_queue) { printk(KERN_DEBUG "megasas: Out of DMA mem for reply queue\n"); goto fail_reply_queue; } if (megasas_issue_init_mfi(instance)) goto fail_fw_init; instance->fw_support_ieee = 0; instance->fw_support_ieee = (instance->instancet->read_fw_status_reg(reg_set) & 0x04000000); printk(KERN_NOTICE "megasas_init_mfi: fw_support_ieee=%d", instance->fw_support_ieee); if (instance->fw_support_ieee) instance->flag_ieee = 1; /** for passthrough * the following function will get the PD LIST. */ memset(instance->pd_list, 0 , (MEGASAS_MAX_PD * sizeof(struct megasas_pd_list))); megasas_get_pd_list(instance); memset(instance->ld_ids, 0xff, MEGASAS_MAX_LD_IDS); megasas_get_ld_list(instance); ctrl_info = kmalloc(sizeof(struct megasas_ctrl_info), GFP_KERNEL); /* * Compute the max allowed sectors per IO: The controller info has two * limits on max sectors. Driver should use the minimum of these two. * * 1 << stripe_sz_ops.min = max sectors per strip * * Note that older firmwares ( < FW ver 30) didn't report information * to calculate max_sectors_1. So the number ended up as zero always. */ tmp_sectors = 0; if (ctrl_info && !megasas_get_ctrl_info(instance, ctrl_info)) { max_sectors_1 = (1 << ctrl_info->stripe_sz_ops.min) * ctrl_info->max_strips_per_io; max_sectors_2 = ctrl_info->max_request_size; tmp_sectors = min_t(u32, max_sectors_1 , max_sectors_2); instance->disableOnlineCtrlReset = ctrl_info->properties.OnOffProperties.disableOnlineCtrlReset; } instance->max_sectors_per_req = instance->max_num_sge * PAGE_SIZE / 512; if (tmp_sectors && (instance->max_sectors_per_req > tmp_sectors)) instance->max_sectors_per_req = tmp_sectors; kfree(ctrl_info); /* * Setup tasklet for cmd completion */ tasklet_init(&instance->isr_tasklet, megasas_complete_cmd_dpc, (unsigned long)instance); /* Initialize the cmd completion timer */ if (poll_mode_io) megasas_start_timer(instance, &instance->io_completion_timer, megasas_io_completion_timer, MEGASAS_COMPLETION_TIMER_INTERVAL); return 0; fail_fw_init: pci_free_consistent(instance->pdev, reply_q_sz, instance->reply_queue, instance->reply_queue_h); fail_reply_queue: megasas_free_cmds(instance); fail_alloc_cmds: fail_ready_state: iounmap(instance->reg_set); fail_ioremap: pci_release_selected_regions(instance->pdev, pci_select_bars(instance->pdev, IORESOURCE_MEM)); return -EINVAL; } /** * megasas_release_mfi - Reverses the FW initialization * @intance: Adapter soft state */ static void megasas_release_mfi(struct megasas_instance *instance) { u32 reply_q_sz = sizeof(u32) * (instance->max_fw_cmds + 1); pci_free_consistent(instance->pdev, reply_q_sz, instance->reply_queue, instance->reply_queue_h); megasas_free_cmds(instance); iounmap(instance->reg_set); pci_release_selected_regions(instance->pdev, pci_select_bars(instance->pdev, IORESOURCE_MEM)); } /** * megasas_get_seq_num - Gets latest event sequence numbers * @instance: Adapter soft state * @eli: FW event log sequence numbers information * * FW maintains a log of all events in a non-volatile area. Upper layers would * usually find out the latest sequence number of the events, the seq number at * the boot etc. They would "read" all the events below the latest seq number * by issuing a direct fw cmd (DCMD). For the future events (beyond latest seq * number), they would subsribe to AEN (asynchronous event notification) and * wait for the events to happen. */ static int megasas_get_seq_num(struct megasas_instance *instance, struct megasas_evt_log_info *eli) { struct megasas_cmd *cmd; struct megasas_dcmd_frame *dcmd; struct megasas_evt_log_info *el_info; dma_addr_t el_info_h = 0; cmd = megasas_get_cmd(instance); if (!cmd) { return -ENOMEM; } dcmd = &cmd->frame->dcmd; el_info = pci_alloc_consistent(instance->pdev, sizeof(struct megasas_evt_log_info), &el_info_h); if (!el_info) { megasas_return_cmd(instance, cmd); return -ENOMEM; } memset(el_info, 0, sizeof(*el_info)); memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); dcmd->cmd = MFI_CMD_DCMD; dcmd->cmd_status = 0x0; dcmd->sge_count = 1; dcmd->flags = MFI_FRAME_DIR_READ; dcmd->timeout = 0; dcmd->pad_0 = 0; dcmd->data_xfer_len = sizeof(struct megasas_evt_log_info); dcmd->opcode = MR_DCMD_CTRL_EVENT_GET_INFO; dcmd->sgl.sge32[0].phys_addr = el_info_h; dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_log_info); megasas_issue_blocked_cmd(instance, cmd); /* * Copy the data back into callers buffer */ memcpy(eli, el_info, sizeof(struct megasas_evt_log_info)); pci_free_consistent(instance->pdev, sizeof(struct megasas_evt_log_info), el_info, el_info_h); megasas_return_cmd(instance, cmd); return 0; } /** * megasas_register_aen - Registers for asynchronous event notification * @instance: Adapter soft state * @seq_num: The starting sequence number * @class_locale: Class of the event * * This function subscribes for AEN for events beyond the @seq_num. It requests * to be notified if and only if the event is of type @class_locale */ static int megasas_register_aen(struct megasas_instance *instance, u32 seq_num, u32 class_locale_word) { int ret_val; struct megasas_cmd *cmd; struct megasas_dcmd_frame *dcmd; union megasas_evt_class_locale curr_aen; union megasas_evt_class_locale prev_aen; /* * If there an AEN pending already (aen_cmd), check if the * class_locale of that pending AEN is inclusive of the new * AEN request we currently have. If it is, then we don't have * to do anything. In other words, whichever events the current * AEN request is subscribing to, have already been subscribed * to. * * If the old_cmd is _not_ inclusive, then we have to abort * that command, form a class_locale that is superset of both * old and current and re-issue to the FW */ curr_aen.word = class_locale_word; if (instance->aen_cmd) { prev_aen.word = instance->aen_cmd->frame->dcmd.mbox.w[1]; /* * A class whose enum value is smaller is inclusive of all * higher values. If a PROGRESS (= -1) was previously * registered, then a new registration requests for higher * classes need not be sent to FW. They are automatically * included. * * Locale numbers don't have such hierarchy. They are bitmap * values */ if ((prev_aen.members.class <= curr_aen.members.class) && !((prev_aen.members.locale & curr_aen.members.locale) ^ curr_aen.members.locale)) { /* * Previously issued event registration includes * current request. Nothing to do. */ return 0; } else { curr_aen.members.locale |= prev_aen.members.locale; if (prev_aen.members.class < curr_aen.members.class) curr_aen.members.class = prev_aen.members.class; instance->aen_cmd->abort_aen = 1; ret_val = megasas_issue_blocked_abort_cmd(instance, instance-> aen_cmd); if (ret_val) { printk(KERN_DEBUG "megasas: Failed to abort " "previous AEN command\n"); return ret_val; } } } cmd = megasas_get_cmd(instance); if (!cmd) return -ENOMEM; dcmd = &cmd->frame->dcmd; memset(instance->evt_detail, 0, sizeof(struct megasas_evt_detail)); /* * Prepare DCMD for aen registration */ memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); dcmd->cmd = MFI_CMD_DCMD; dcmd->cmd_status = 0x0; dcmd->sge_count = 1; dcmd->flags = MFI_FRAME_DIR_READ; dcmd->timeout = 0; dcmd->pad_0 = 0; instance->last_seq_num = seq_num; dcmd->data_xfer_len = sizeof(struct megasas_evt_detail); dcmd->opcode = MR_DCMD_CTRL_EVENT_WAIT; dcmd->mbox.w[0] = seq_num; dcmd->mbox.w[1] = curr_aen.word; dcmd->sgl.sge32[0].phys_addr = (u32) instance->evt_detail_h; dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_detail); if (instance->aen_cmd != NULL) { megasas_return_cmd(instance, cmd); return 0; } /* * Store reference to the cmd used to register for AEN. When an * application wants us to register for AEN, we have to abort this * cmd and re-register with a new EVENT LOCALE supplied by that app */ instance->aen_cmd = cmd; /* * Issue the aen registration frame */ instance->instancet->fire_cmd(instance, cmd->frame_phys_addr, 0, instance->reg_set); return 0; } /** * megasas_start_aen - Subscribes to AEN during driver load time * @instance: Adapter soft state */ static int megasas_start_aen(struct megasas_instance *instance) { struct megasas_evt_log_info eli; union megasas_evt_class_locale class_locale; /* * Get the latest sequence number from FW */ memset(&eli, 0, sizeof(eli)); if (megasas_get_seq_num(instance, &eli)) return -1; /* * Register AEN with FW for latest sequence number plus 1 */ class_locale.members.reserved = 0; class_locale.members.locale = MR_EVT_LOCALE_ALL; class_locale.members.class = MR_EVT_CLASS_DEBUG; return megasas_register_aen(instance, eli.newest_seq_num + 1, class_locale.word); } /** * megasas_io_attach - Attaches this driver to SCSI mid-layer * @instance: Adapter soft state */ static int megasas_io_attach(struct megasas_instance *instance) { struct Scsi_Host *host = instance->host; /* * Export parameters required by SCSI mid-layer */ host->irq = instance->pdev->irq; host->unique_id = instance->unique_id; if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0073SKINNY) || (instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0071SKINNY)) { host->can_queue = instance->max_fw_cmds - MEGASAS_SKINNY_INT_CMDS; } else host->can_queue = instance->max_fw_cmds - MEGASAS_INT_CMDS; host->this_id = instance->init_id; host->sg_tablesize = instance->max_num_sge; /* * Check if the module parameter value for max_sectors can be used */ if (max_sectors && max_sectors < instance->max_sectors_per_req) instance->max_sectors_per_req = max_sectors; else { if (max_sectors) { if (((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS1078GEN2) || (instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0079GEN2)) && (max_sectors <= MEGASAS_MAX_SECTORS)) { instance->max_sectors_per_req = max_sectors; } else { printk(KERN_INFO "megasas: max_sectors should be > 0" "and <= %d (or < 1MB for GEN2 controller)\n", instance->max_sectors_per_req); } } } host->max_sectors = instance->max_sectors_per_req; host->cmd_per_lun = 128; host->max_channel = MEGASAS_MAX_CHANNELS - 1; host->max_id = MEGASAS_MAX_DEV_PER_CHANNEL; host->max_lun = MEGASAS_MAX_LUN; host->max_cmd_len = 16; /* * Notify the mid-layer about the new controller */ if (scsi_add_host(host, &instance->pdev->dev)) { printk(KERN_DEBUG "megasas: scsi_add_host failed\n"); return -ENODEV; } /* * Trigger SCSI to scan our drives */ scsi_scan_host(host); return 0; } static int megasas_set_dma_mask(struct pci_dev *pdev) { /* * All our contollers are capable of performing 64-bit DMA */ if (IS_DMA64) { if (pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) != 0) { if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) != 0) goto fail_set_dma_mask; } } else { if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) != 0) goto fail_set_dma_mask; } return 0; fail_set_dma_mask: return 1; } /** * megasas_probe_one - PCI hotplug entry point * @pdev: PCI device structure * @id: PCI ids of supported hotplugged adapter */ static int __devinit megasas_probe_one(struct pci_dev *pdev, const struct pci_device_id *id) { int rval; struct Scsi_Host *host; struct megasas_instance *instance; /* * Announce PCI information */ printk(KERN_INFO "megasas: %#4.04x:%#4.04x:%#4.04x:%#4.04x: ", pdev->vendor, pdev->device, pdev->subsystem_vendor, pdev->subsystem_device); printk("bus %d:slot %d:func %d\n", pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); /* * PCI prepping: enable device set bus mastering and dma mask */ rval = pci_enable_device_mem(pdev); if (rval) { return rval; } pci_set_master(pdev); if (megasas_set_dma_mask(pdev)) goto fail_set_dma_mask; host = scsi_host_alloc(&megasas_template, sizeof(struct megasas_instance)); if (!host) { printk(KERN_DEBUG "megasas: scsi_host_alloc failed\n"); goto fail_alloc_instance; } instance = (struct megasas_instance *)host->hostdata; memset(instance, 0, sizeof(*instance)); atomic_set( &instance->fw_reset_no_pci_access, 0 ); instance->producer = pci_alloc_consistent(pdev, sizeof(u32), &instance->producer_h); instance->consumer = pci_alloc_consistent(pdev, sizeof(u32), &instance->consumer_h); if (!instance->producer || !instance->consumer) { printk(KERN_DEBUG "megasas: Failed to allocate memory for " "producer, consumer\n"); goto fail_alloc_dma_buf; } *instance->producer = 0; *instance->consumer = 0; megasas_poll_wait_aen = 0; instance->flag_ieee = 0; instance->ev = NULL; instance->issuepend_done = 1; instance->adprecovery = MEGASAS_HBA_OPERATIONAL; megasas_poll_wait_aen = 0; instance->evt_detail = pci_alloc_consistent(pdev, sizeof(struct megasas_evt_detail), &instance->evt_detail_h); if (!instance->evt_detail) { printk(KERN_DEBUG "megasas: Failed to allocate memory for " "event detail structure\n"); goto fail_alloc_dma_buf; } /* * Initialize locks and queues */ INIT_LIST_HEAD(&instance->cmd_pool); INIT_LIST_HEAD(&instance->internal_reset_pending_q); atomic_set(&instance->fw_outstanding,0); init_waitqueue_head(&instance->int_cmd_wait_q); init_waitqueue_head(&instance->abort_cmd_wait_q); spin_lock_init(&instance->cmd_pool_lock); spin_lock_init(&instance->hba_lock); spin_lock_init(&instance->completion_lock); spin_lock_init(&poll_aen_lock); mutex_init(&instance->aen_mutex); /* * Initialize PCI related and misc parameters */ instance->pdev = pdev; instance->host = host; instance->unique_id = pdev->bus->number << 8 | pdev->devfn; instance->init_id = MEGASAS_DEFAULT_INIT_ID; if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0073SKINNY) || (instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0071SKINNY)) { instance->flag_ieee = 1; sema_init(&instance->ioctl_sem, MEGASAS_SKINNY_INT_CMDS); } else sema_init(&instance->ioctl_sem, MEGASAS_INT_CMDS); megasas_dbg_lvl = 0; instance->flag = 0; instance->unload = 1; instance->last_time = 0; instance->disableOnlineCtrlReset = 1; INIT_WORK(&instance->work_init, process_fw_state_change_wq); /* * Initialize MFI Firmware */ if (megasas_init_mfi(instance)) goto fail_init_mfi; /* * Register IRQ */ if (request_irq(pdev->irq, megasas_isr, IRQF_SHARED, "megasas", instance)) { printk(KERN_DEBUG "megasas: Failed to register IRQ\n"); goto fail_irq; } instance->instancet->enable_intr(instance->reg_set); /* * Store instance in PCI softstate */ pci_set_drvdata(pdev, instance); /* * Add this controller to megasas_mgmt_info structure so that it * can be exported to management applications */ megasas_mgmt_info.count++; megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = instance; megasas_mgmt_info.max_index++; /* * Initiate AEN (Asynchronous Event Notification) */ if (megasas_start_aen(instance)) { printk(KERN_DEBUG "megasas: start aen failed\n"); goto fail_start_aen; } /* * Register with SCSI mid-layer */ if (megasas_io_attach(instance)) goto fail_io_attach; instance->unload = 0; return 0; fail_start_aen: fail_io_attach: megasas_mgmt_info.count--; megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = NULL; megasas_mgmt_info.max_index--; pci_set_drvdata(pdev, NULL); instance->instancet->disable_intr(instance->reg_set); free_irq(instance->pdev->irq, instance); megasas_release_mfi(instance); fail_irq: fail_init_mfi: fail_alloc_dma_buf: if (instance->evt_detail) pci_free_consistent(pdev, sizeof(struct megasas_evt_detail), instance->evt_detail, instance->evt_detail_h); if (instance->producer) pci_free_consistent(pdev, sizeof(u32), instance->producer, instance->producer_h); if (instance->consumer) pci_free_consistent(pdev, sizeof(u32), instance->consumer, instance->consumer_h); scsi_host_put(host); fail_alloc_instance: fail_set_dma_mask: pci_disable_device(pdev); return -ENODEV; } /** * megasas_flush_cache - Requests FW to flush all its caches * @instance: Adapter soft state */ static void megasas_flush_cache(struct megasas_instance *instance) { struct megasas_cmd *cmd; struct megasas_dcmd_frame *dcmd; if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) return; cmd = megasas_get_cmd(instance); if (!cmd) return; dcmd = &cmd->frame->dcmd; memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); dcmd->cmd = MFI_CMD_DCMD; dcmd->cmd_status = 0x0; dcmd->sge_count = 0; dcmd->flags = MFI_FRAME_DIR_NONE; dcmd->timeout = 0; dcmd->pad_0 = 0; dcmd->data_xfer_len = 0; dcmd->opcode = MR_DCMD_CTRL_CACHE_FLUSH; dcmd->mbox.b[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE; megasas_issue_blocked_cmd(instance, cmd); megasas_return_cmd(instance, cmd); return; } /** * megasas_shutdown_controller - Instructs FW to shutdown the controller * @instance: Adapter soft state * @opcode: Shutdown/Hibernate */ static void megasas_shutdown_controller(struct megasas_instance *instance, u32 opcode) { struct megasas_cmd *cmd; struct megasas_dcmd_frame *dcmd; if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) return; cmd = megasas_get_cmd(instance); if (!cmd) return; if (instance->aen_cmd) megasas_issue_blocked_abort_cmd(instance, instance->aen_cmd); dcmd = &cmd->frame->dcmd; memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE); dcmd->cmd = MFI_CMD_DCMD; dcmd->cmd_status = 0x0; dcmd->sge_count = 0; dcmd->flags = MFI_FRAME_DIR_NONE; dcmd->timeout = 0; dcmd->pad_0 = 0; dcmd->data_xfer_len = 0; dcmd->opcode = opcode; megasas_issue_blocked_cmd(instance, cmd); megasas_return_cmd(instance, cmd); return; } #ifdef CONFIG_PM /** * megasas_suspend - driver suspend entry point * @pdev: PCI device structure * @state: PCI power state to suspend routine */ static int megasas_suspend(struct pci_dev *pdev, pm_message_t state) { struct Scsi_Host *host; struct megasas_instance *instance; instance = pci_get_drvdata(pdev); host = instance->host; instance->unload = 1; if (poll_mode_io) del_timer_sync(&instance->io_completion_timer); megasas_flush_cache(instance); megasas_shutdown_controller(instance, MR_DCMD_HIBERNATE_SHUTDOWN); /* cancel the delayed work if this work still in queue */ if (instance->ev != NULL) { struct megasas_aen_event *ev = instance->ev; cancel_delayed_work( (struct delayed_work *)&ev->hotplug_work); flush_scheduled_work(); instance->ev = NULL; } tasklet_kill(&instance->isr_tasklet); pci_set_drvdata(instance->pdev, instance); instance->instancet->disable_intr(instance->reg_set); free_irq(instance->pdev->irq, instance); pci_save_state(pdev); pci_disable_device(pdev); pci_set_power_state(pdev, pci_choose_state(pdev, state)); return 0; } /** * megasas_resume- driver resume entry point * @pdev: PCI device structure */ static int megasas_resume(struct pci_dev *pdev) { int rval; struct Scsi_Host *host; struct megasas_instance *instance; instance = pci_get_drvdata(pdev); host = instance->host; pci_set_power_state(pdev, PCI_D0); pci_enable_wake(pdev, PCI_D0, 0); pci_restore_state(pdev); /* * PCI prepping: enable device set bus mastering and dma mask */ rval = pci_enable_device_mem(pdev); if (rval) { printk(KERN_ERR "megasas: Enable device failed\n"); return rval; } pci_set_master(pdev); if (megasas_set_dma_mask(pdev)) goto fail_set_dma_mask; /* * Initialize MFI Firmware */ *instance->producer = 0; *instance->consumer = 0; atomic_set(&instance->fw_outstanding, 0); /* * We expect the FW state to be READY */ if (megasas_transition_to_ready(instance)) goto fail_ready_state; if (megasas_issue_init_mfi(instance)) goto fail_init_mfi; tasklet_init(&instance->isr_tasklet, megasas_complete_cmd_dpc, (unsigned long)instance); /* * Register IRQ */ if (request_irq(pdev->irq, megasas_isr, IRQF_SHARED, "megasas", instance)) { printk(KERN_ERR "megasas: Failed to register IRQ\n"); goto fail_irq; } instance->instancet->enable_intr(instance->reg_set); /* * Initiate AEN (Asynchronous Event Notification) */ if (megasas_start_aen(instance)) printk(KERN_ERR "megasas: Start AEN failed\n"); /* Initialize the cmd completion timer */ if (poll_mode_io) megasas_start_timer(instance, &instance->io_completion_timer, megasas_io_completion_timer, MEGASAS_COMPLETION_TIMER_INTERVAL); instance->unload = 0; return 0; fail_irq: fail_init_mfi: if (instance->evt_detail) pci_free_consistent(pdev, sizeof(struct megasas_evt_detail), instance->evt_detail, instance->evt_detail_h); if (instance->producer) pci_free_consistent(pdev, sizeof(u32), instance->producer, instance->producer_h); if (instance->consumer) pci_free_consistent(pdev, sizeof(u32), instance->consumer, instance->consumer_h); scsi_host_put(host); fail_set_dma_mask: fail_ready_state: pci_disable_device(pdev); return -ENODEV; } #else #define megasas_suspend NULL #define megasas_resume NULL #endif /** * megasas_detach_one - PCI hot"un"plug entry point * @pdev: PCI device structure */ static void __devexit megasas_detach_one(struct pci_dev *pdev) { int i; struct Scsi_Host *host; struct megasas_instance *instance; instance = pci_get_drvdata(pdev); instance->unload = 1; host = instance->host; if (poll_mode_io) del_timer_sync(&instance->io_completion_timer); scsi_remove_host(instance->host); megasas_flush_cache(instance); megasas_shutdown_controller(instance, MR_DCMD_CTRL_SHUTDOWN); /* cancel the delayed work if this work still in queue*/ if (instance->ev != NULL) { struct megasas_aen_event *ev = instance->ev; cancel_delayed_work( (struct delayed_work *)&ev->hotplug_work); flush_scheduled_work(); instance->ev = NULL; } tasklet_kill(&instance->isr_tasklet); /* * Take the instance off the instance array. Note that we will not * decrement the max_index. We let this array be sparse array */ for (i = 0; i < megasas_mgmt_info.max_index; i++) { if (megasas_mgmt_info.instance[i] == instance) { megasas_mgmt_info.count--; megasas_mgmt_info.instance[i] = NULL; break; } } pci_set_drvdata(instance->pdev, NULL); instance->instancet->disable_intr(instance->reg_set); free_irq(instance->pdev->irq, instance); megasas_release_mfi(instance); pci_free_consistent(pdev, sizeof(struct megasas_evt_detail), instance->evt_detail, instance->evt_detail_h); pci_free_consistent(pdev, sizeof(u32), instance->producer, instance->producer_h); pci_free_consistent(pdev, sizeof(u32), instance->consumer, instance->consumer_h); scsi_host_put(host); pci_set_drvdata(pdev, NULL); pci_disable_device(pdev); return; } /** * megasas_shutdown - Shutdown entry point * @device: Generic device structure */ static void megasas_shutdown(struct pci_dev *pdev) { struct megasas_instance *instance = pci_get_drvdata(pdev); instance->unload = 1; megasas_flush_cache(instance); megasas_shutdown_controller(instance, MR_DCMD_CTRL_SHUTDOWN); } /** * megasas_mgmt_open - char node "open" entry point */ static int megasas_mgmt_open(struct inode *inode, struct file *filep) { /* * Allow only those users with admin rights */ if (!capable(CAP_SYS_ADMIN)) return -EACCES; return 0; } /** * megasas_mgmt_fasync - Async notifier registration from applications * * This function adds the calling process to a driver global queue. When an * event occurs, SIGIO will be sent to all processes in this queue. */ static int megasas_mgmt_fasync(int fd, struct file *filep, int mode) { int rc; mutex_lock(&megasas_async_queue_mutex); rc = fasync_helper(fd, filep, mode, &megasas_async_queue); mutex_unlock(&megasas_async_queue_mutex); if (rc >= 0) { /* For sanity check when we get ioctl */ filep->private_data = filep; return 0; } printk(KERN_DEBUG "megasas: fasync_helper failed [%d]\n", rc); return rc; } /** * megasas_mgmt_poll - char node "poll" entry point * */ static unsigned int megasas_mgmt_poll(struct file *file, poll_table *wait) { unsigned int mask; unsigned long flags; poll_wait(file, &megasas_poll_wait, wait); spin_lock_irqsave(&poll_aen_lock, flags); if (megasas_poll_wait_aen) mask = (POLLIN | POLLRDNORM); else mask = 0; spin_unlock_irqrestore(&poll_aen_lock, flags); return mask; } /** * megasas_mgmt_fw_ioctl - Issues management ioctls to FW * @instance: Adapter soft state * @argp: User's ioctl packet */ static int megasas_mgmt_fw_ioctl(struct megasas_instance *instance, struct megasas_iocpacket __user * user_ioc, struct megasas_iocpacket *ioc) { struct megasas_sge32 *kern_sge32; struct megasas_cmd *cmd; void *kbuff_arr[MAX_IOCTL_SGE]; dma_addr_t buf_handle = 0; int error = 0, i; void *sense = NULL; dma_addr_t sense_handle; unsigned long *sense_ptr; memset(kbuff_arr, 0, sizeof(kbuff_arr)); if (ioc->sge_count > MAX_IOCTL_SGE) { printk(KERN_DEBUG "megasas: SGE count [%d] > max limit [%d]\n", ioc->sge_count, MAX_IOCTL_SGE); return -EINVAL; } cmd = megasas_get_cmd(instance); if (!cmd) { printk(KERN_DEBUG "megasas: Failed to get a cmd packet\n"); return -ENOMEM; } /* * User's IOCTL packet has 2 frames (maximum). Copy those two * frames into our cmd's frames. cmd->frame's context will get * overwritten when we copy from user's frames. So set that value * alone separately */ memcpy(cmd->frame, ioc->frame.raw, 2 * MEGAMFI_FRAME_SIZE); cmd->frame->hdr.context = cmd->index; cmd->frame->hdr.pad_0 = 0; /* * The management interface between applications and the fw uses * MFI frames. E.g, RAID configuration changes, LD property changes * etc are accomplishes through different kinds of MFI frames. The * driver needs to care only about substituting user buffers with * kernel buffers in SGLs. The location of SGL is embedded in the * struct iocpacket itself. */ kern_sge32 = (struct megasas_sge32 *) ((unsigned long)cmd->frame + ioc->sgl_off); /* * For each user buffer, create a mirror buffer and copy in */ for (i = 0; i < ioc->sge_count; i++) { kbuff_arr[i] = dma_alloc_coherent(&instance->pdev->dev, ioc->sgl[i].iov_len, &buf_handle, GFP_KERNEL); if (!kbuff_arr[i]) { printk(KERN_DEBUG "megasas: Failed to alloc " "kernel SGL buffer for IOCTL \n"); error = -ENOMEM; goto out; } /* * We don't change the dma_coherent_mask, so * pci_alloc_consistent only returns 32bit addresses */ kern_sge32[i].phys_addr = (u32) buf_handle; kern_sge32[i].length = ioc->sgl[i].iov_len; /* * We created a kernel buffer corresponding to the * user buffer. Now copy in from the user buffer */ if (copy_from_user(kbuff_arr[i], ioc->sgl[i].iov_base, (u32) (ioc->sgl[i].iov_len))) { error = -EFAULT; goto out; } } if (ioc->sense_len) { sense = dma_alloc_coherent(&instance->pdev->dev, ioc->sense_len, &sense_handle, GFP_KERNEL); if (!sense) { error = -ENOMEM; goto out; } sense_ptr = (unsigned long *) ((unsigned long)cmd->frame + ioc->sense_off); *sense_ptr = sense_handle; } /* * Set the sync_cmd flag so that the ISR knows not to complete this * cmd to the SCSI mid-layer */ cmd->sync_cmd = 1; megasas_issue_blocked_cmd(instance, cmd); cmd->sync_cmd = 0; /* * copy out the kernel buffers to user buffers */ for (i = 0; i < ioc->sge_count; i++) { if (copy_to_user(ioc->sgl[i].iov_base, kbuff_arr[i], ioc->sgl[i].iov_len)) { error = -EFAULT; goto out; } } /* * copy out the sense */ if (ioc->sense_len) { /* * sense_ptr points to the location that has the user * sense buffer address */ sense_ptr = (unsigned long *) ((unsigned long)ioc->frame.raw + ioc->sense_off); if (copy_to_user((void __user *)((unsigned long)(*sense_ptr)), sense, ioc->sense_len)) { printk(KERN_ERR "megasas: Failed to copy out to user " "sense data\n"); error = -EFAULT; goto out; } } /* * copy the status codes returned by the fw */ if (copy_to_user(&user_ioc->frame.hdr.cmd_status, &cmd->frame->hdr.cmd_status, sizeof(u8))) { printk(KERN_DEBUG "megasas: Error copying out cmd_status\n"); error = -EFAULT; } out: if (sense) { dma_free_coherent(&instance->pdev->dev, ioc->sense_len, sense, sense_handle); } for (i = 0; i < ioc->sge_count && kbuff_arr[i]; i++) { dma_free_coherent(&instance->pdev->dev, kern_sge32[i].length, kbuff_arr[i], kern_sge32[i].phys_addr); } megasas_return_cmd(instance, cmd); return error; } static int megasas_mgmt_ioctl_fw(struct file *file, unsigned long arg) { struct megasas_iocpacket __user *user_ioc = (struct megasas_iocpacket __user *)arg; struct megasas_iocpacket *ioc; struct megasas_instance *instance; int error; int i; unsigned long flags; u32 wait_time = MEGASAS_RESET_WAIT_TIME; ioc = kmalloc(sizeof(*ioc), GFP_KERNEL); if (!ioc) return -ENOMEM; if (copy_from_user(ioc, user_ioc, sizeof(*ioc))) { error = -EFAULT; goto out_kfree_ioc; } instance = megasas_lookup_instance(ioc->host_no); if (!instance) { error = -ENODEV; goto out_kfree_ioc; } if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) { printk(KERN_ERR "Controller in crit error\n"); error = -ENODEV; goto out_kfree_ioc; } if (instance->unload == 1) { error = -ENODEV; goto out_kfree_ioc; } /* * We will allow only MEGASAS_INT_CMDS number of parallel ioctl cmds */ if (down_interruptible(&instance->ioctl_sem)) { error = -ERESTARTSYS; goto out_kfree_ioc; } for (i = 0; i < wait_time; i++) { spin_lock_irqsave(&instance->hba_lock, flags); if (instance->adprecovery == MEGASAS_HBA_OPERATIONAL) { spin_unlock_irqrestore(&instance->hba_lock, flags); break; } spin_unlock_irqrestore(&instance->hba_lock, flags); if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) { printk(KERN_NOTICE "megasas: waiting" "for controller reset to finish\n"); } msleep(1000); } spin_lock_irqsave(&instance->hba_lock, flags); if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) { spin_unlock_irqrestore(&instance->hba_lock, flags); printk(KERN_ERR "megaraid_sas: timed out while" "waiting for HBA to recover\n"); error = -ENODEV; goto out_kfree_ioc; } spin_unlock_irqrestore(&instance->hba_lock, flags); error = megasas_mgmt_fw_ioctl(instance, user_ioc, ioc); up(&instance->ioctl_sem); out_kfree_ioc: kfree(ioc); return error; } static int megasas_mgmt_ioctl_aen(struct file *file, unsigned long arg) { struct megasas_instance *instance; struct megasas_aen aen; int error; int i; unsigned long flags; u32 wait_time = MEGASAS_RESET_WAIT_TIME; if (file->private_data != file) { printk(KERN_DEBUG "megasas: fasync_helper was not " "called first\n"); return -EINVAL; } if (copy_from_user(&aen, (void __user *)arg, sizeof(aen))) return -EFAULT; instance = megasas_lookup_instance(aen.host_no); if (!instance) return -ENODEV; if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) { return -ENODEV; } if (instance->unload == 1) { return -ENODEV; } for (i = 0; i < wait_time; i++) { spin_lock_irqsave(&instance->hba_lock, flags); if (instance->adprecovery == MEGASAS_HBA_OPERATIONAL) { spin_unlock_irqrestore(&instance->hba_lock, flags); break; } spin_unlock_irqrestore(&instance->hba_lock, flags); if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) { printk(KERN_NOTICE "megasas: waiting for" "controller reset to finish\n"); } msleep(1000); } spin_lock_irqsave(&instance->hba_lock, flags); if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) { spin_unlock_irqrestore(&instance->hba_lock, flags); printk(KERN_ERR "megaraid_sas: timed out while waiting" "for HBA to recover.\n"); return -ENODEV; } spin_unlock_irqrestore(&instance->hba_lock, flags); mutex_lock(&instance->aen_mutex); error = megasas_register_aen(instance, aen.seq_num, aen.class_locale_word); mutex_unlock(&instance->aen_mutex); return error; } /** * megasas_mgmt_ioctl - char node ioctl entry point */ static long megasas_mgmt_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { switch (cmd) { case MEGASAS_IOC_FIRMWARE: return megasas_mgmt_ioctl_fw(file, arg); case MEGASAS_IOC_GET_AEN: return megasas_mgmt_ioctl_aen(file, arg); } return -ENOTTY; } #ifdef CONFIG_COMPAT static int megasas_mgmt_compat_ioctl_fw(struct file *file, unsigned long arg) { struct compat_megasas_iocpacket __user *cioc = (struct compat_megasas_iocpacket __user *)arg; struct megasas_iocpacket __user *ioc = compat_alloc_user_space(sizeof(struct megasas_iocpacket)); int i; int error = 0; compat_uptr_t ptr; if (clear_user(ioc, sizeof(*ioc))) return -EFAULT; if (copy_in_user(&ioc->host_no, &cioc->host_no, sizeof(u16)) || copy_in_user(&ioc->sgl_off, &cioc->sgl_off, sizeof(u32)) || copy_in_user(&ioc->sense_off, &cioc->sense_off, sizeof(u32)) || copy_in_user(&ioc->sense_len, &cioc->sense_len, sizeof(u32)) || copy_in_user(ioc->frame.raw, cioc->frame.raw, 128) || copy_in_user(&ioc->sge_count, &cioc->sge_count, sizeof(u32))) return -EFAULT; /* * The sense_ptr is used in megasas_mgmt_fw_ioctl only when * sense_len is not null, so prepare the 64bit value under * the same condition. */ if (ioc->sense_len) { void __user **sense_ioc_ptr = (void __user **)(ioc->frame.raw + ioc->sense_off); compat_uptr_t *sense_cioc_ptr = (compat_uptr_t *)(cioc->frame.raw + cioc->sense_off); if (get_user(ptr, sense_cioc_ptr) || put_user(compat_ptr(ptr), sense_ioc_ptr)) return -EFAULT; } for (i = 0; i < MAX_IOCTL_SGE; i++) { if (get_user(ptr, &cioc->sgl[i].iov_base) || put_user(compat_ptr(ptr), &ioc->sgl[i].iov_base) || copy_in_user(&ioc->sgl[i].iov_len, &cioc->sgl[i].iov_len, sizeof(compat_size_t))) return -EFAULT; } error = megasas_mgmt_ioctl_fw(file, (unsigned long)ioc); if (copy_in_user(&cioc->frame.hdr.cmd_status, &ioc->frame.hdr.cmd_status, sizeof(u8))) { printk(KERN_DEBUG "megasas: error copy_in_user cmd_status\n"); return -EFAULT; } return error; } static long megasas_mgmt_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { switch (cmd) { case MEGASAS_IOC_FIRMWARE32: return megasas_mgmt_compat_ioctl_fw(file, arg); case MEGASAS_IOC_GET_AEN: return megasas_mgmt_ioctl_aen(file, arg); } return -ENOTTY; } #endif /* * File operations structure for management interface */ static const struct file_operations megasas_mgmt_fops = { .owner = THIS_MODULE, .open = megasas_mgmt_open, .fasync = megasas_mgmt_fasync, .unlocked_ioctl = megasas_mgmt_ioctl, .poll = megasas_mgmt_poll, #ifdef CONFIG_COMPAT .compat_ioctl = megasas_mgmt_compat_ioctl, #endif .llseek = noop_llseek, }; /* * PCI hotplug support registration structure */ static struct pci_driver megasas_pci_driver = { .name = "megaraid_sas", .id_table = megasas_pci_table, .probe = megasas_probe_one, .remove = __devexit_p(megasas_detach_one), .suspend = megasas_suspend, .resume = megasas_resume, .shutdown = megasas_shutdown, }; /* * Sysfs driver attributes */ static ssize_t megasas_sysfs_show_version(struct device_driver *dd, char *buf) { return snprintf(buf, strlen(MEGASAS_VERSION) + 2, "%s\n", MEGASAS_VERSION); } static DRIVER_ATTR(version, S_IRUGO, megasas_sysfs_show_version, NULL); static ssize_t megasas_sysfs_show_release_date(struct device_driver *dd, char *buf) { return snprintf(buf, strlen(MEGASAS_RELDATE) + 2, "%s\n", MEGASAS_RELDATE); } static DRIVER_ATTR(release_date, S_IRUGO, megasas_sysfs_show_release_date, NULL); static ssize_t megasas_sysfs_show_support_poll_for_event(struct device_driver *dd, char *buf) { return sprintf(buf, "%u\n", support_poll_for_event); } static DRIVER_ATTR(support_poll_for_event, S_IRUGO, megasas_sysfs_show_support_poll_for_event, NULL); static ssize_t megasas_sysfs_show_support_device_change(struct device_driver *dd, char *buf) { return sprintf(buf, "%u\n", support_device_change); } static DRIVER_ATTR(support_device_change, S_IRUGO, megasas_sysfs_show_support_device_change, NULL); static ssize_t megasas_sysfs_show_dbg_lvl(struct device_driver *dd, char *buf) { return sprintf(buf, "%u\n", megasas_dbg_lvl); } static ssize_t megasas_sysfs_set_dbg_lvl(struct device_driver *dd, const char *buf, size_t count) { int retval = count; if(sscanf(buf,"%u",&megasas_dbg_lvl)<1){ printk(KERN_ERR "megasas: could not set dbg_lvl\n"); retval = -EINVAL; } return retval; } static DRIVER_ATTR(dbg_lvl, S_IRUGO|S_IWUSR, megasas_sysfs_show_dbg_lvl, megasas_sysfs_set_dbg_lvl); static ssize_t megasas_sysfs_show_poll_mode_io(struct device_driver *dd, char *buf) { return sprintf(buf, "%u\n", poll_mode_io); } static ssize_t megasas_sysfs_set_poll_mode_io(struct device_driver *dd, const char *buf, size_t count) { int retval = count; int tmp = poll_mode_io; int i; struct megasas_instance *instance; if (sscanf(buf, "%u", &poll_mode_io) < 1) { printk(KERN_ERR "megasas: could not set poll_mode_io\n"); retval = -EINVAL; } /* * Check if poll_mode_io is already set or is same as previous value */ if ((tmp && poll_mode_io) || (tmp == poll_mode_io)) goto out; if (poll_mode_io) { /* * Start timers for all adapters */ for (i = 0; i < megasas_mgmt_info.max_index; i++) { instance = megasas_mgmt_info.instance[i]; if (instance) { megasas_start_timer(instance, &instance->io_completion_timer, megasas_io_completion_timer, MEGASAS_COMPLETION_TIMER_INTERVAL); } } } else { /* * Delete timers for all adapters */ for (i = 0; i < megasas_mgmt_info.max_index; i++) { instance = megasas_mgmt_info.instance[i]; if (instance) del_timer_sync(&instance->io_completion_timer); } } out: return retval; } static void megasas_aen_polling(struct work_struct *work) { struct megasas_aen_event *ev = container_of(work, struct megasas_aen_event, hotplug_work); struct megasas_instance *instance = ev->instance; union megasas_evt_class_locale class_locale; struct Scsi_Host *host; struct scsi_device *sdev1; u16 pd_index = 0; u16 ld_index = 0; int i, j, doscan = 0; u32 seq_num; int error; if (!instance) { printk(KERN_ERR "invalid instance!\n"); kfree(ev); return; } instance->ev = NULL; host = instance->host; if (instance->evt_detail) { switch (instance->evt_detail->code) { case MR_EVT_PD_INSERTED: if (megasas_get_pd_list(instance) == 0) { for (i = 0; i < MEGASAS_MAX_PD_CHANNELS; i++) { for (j = 0; j < MEGASAS_MAX_DEV_PER_CHANNEL; j++) { pd_index = (i * MEGASAS_MAX_DEV_PER_CHANNEL) + j; sdev1 = scsi_device_lookup(host, i, j, 0); if (instance->pd_list[pd_index].driveState == MR_PD_STATE_SYSTEM) { if (!sdev1) { scsi_add_device(host, i, j, 0); } if (sdev1) scsi_device_put(sdev1); } } } } doscan = 0; break; case MR_EVT_PD_REMOVED: if (megasas_get_pd_list(instance) == 0) { megasas_get_pd_list(instance); for (i = 0; i < MEGASAS_MAX_PD_CHANNELS; i++) { for (j = 0; j < MEGASAS_MAX_DEV_PER_CHANNEL; j++) { pd_index = (i * MEGASAS_MAX_DEV_PER_CHANNEL) + j; sdev1 = scsi_device_lookup(host, i, j, 0); if (instance->pd_list[pd_index].driveState == MR_PD_STATE_SYSTEM) { if (sdev1) { scsi_device_put(sdev1); } } else { if (sdev1) { scsi_remove_device(sdev1); scsi_device_put(sdev1); } } } } } doscan = 0; break; case MR_EVT_LD_OFFLINE: case MR_EVT_LD_DELETED: megasas_get_ld_list(instance); for (i = 0; i < MEGASAS_MAX_LD_CHANNELS; i++) { for (j = 0; j < MEGASAS_MAX_DEV_PER_CHANNEL; j++) { ld_index = (i * MEGASAS_MAX_DEV_PER_CHANNEL) + j; sdev1 = scsi_device_lookup(host, i + MEGASAS_MAX_LD_CHANNELS, j, 0); if (instance->ld_ids[ld_index] != 0xff) { if (sdev1) { scsi_device_put(sdev1); } } else { if (sdev1) { scsi_remove_device(sdev1); scsi_device_put(sdev1); } } } } doscan = 0; break; case MR_EVT_LD_CREATED: megasas_get_ld_list(instance); for (i = 0; i < MEGASAS_MAX_LD_CHANNELS; i++) { for (j = 0; j < MEGASAS_MAX_DEV_PER_CHANNEL; j++) { ld_index = (i * MEGASAS_MAX_DEV_PER_CHANNEL) + j; sdev1 = scsi_device_lookup(host, i+MEGASAS_MAX_LD_CHANNELS, j, 0); if (instance->ld_ids[ld_index] != 0xff) { if (!sdev1) { scsi_add_device(host, i + 2, j, 0); } } if (sdev1) { scsi_device_put(sdev1); } } } doscan = 0; break; case MR_EVT_CTRL_HOST_BUS_SCAN_REQUESTED: case MR_EVT_FOREIGN_CFG_IMPORTED: doscan = 1; break; default: doscan = 0; break; } } else { printk(KERN_ERR "invalid evt_detail!\n"); kfree(ev); return; } if (doscan) { printk(KERN_INFO "scanning ...\n"); megasas_get_pd_list(instance); for (i = 0; i < MEGASAS_MAX_PD_CHANNELS; i++) { for (j = 0; j < MEGASAS_MAX_DEV_PER_CHANNEL; j++) { pd_index = i*MEGASAS_MAX_DEV_PER_CHANNEL + j; sdev1 = scsi_device_lookup(host, i, j, 0); if (instance->pd_list[pd_index].driveState == MR_PD_STATE_SYSTEM) { if (!sdev1) { scsi_add_device(host, i, j, 0); } if (sdev1) scsi_device_put(sdev1); } else { if (sdev1) { scsi_remove_device(sdev1); scsi_device_put(sdev1); } } } } megasas_get_ld_list(instance); for (i = 0; i < MEGASAS_MAX_LD_CHANNELS; i++) { for (j = 0; j < MEGASAS_MAX_DEV_PER_CHANNEL; j++) { ld_index = (i * MEGASAS_MAX_DEV_PER_CHANNEL) + j; sdev1 = scsi_device_lookup(host, i+MEGASAS_MAX_LD_CHANNELS, j, 0); if (instance->ld_ids[ld_index] != 0xff) { if (!sdev1) { scsi_add_device(host, i+2, j, 0); } else { scsi_device_put(sdev1); } } else { if (sdev1) { scsi_remove_device(sdev1); scsi_device_put(sdev1); } } } } } if ( instance->aen_cmd != NULL ) { kfree(ev); return ; } seq_num = instance->evt_detail->seq_num + 1; /* Register AEN with FW for latest sequence number plus 1 */ class_locale.members.reserved = 0; class_locale.members.locale = MR_EVT_LOCALE_ALL; class_locale.members.class = MR_EVT_CLASS_DEBUG; mutex_lock(&instance->aen_mutex); error = megasas_register_aen(instance, seq_num, class_locale.word); mutex_unlock(&instance->aen_mutex); if (error) printk(KERN_ERR "register aen failed error %x\n", error); kfree(ev); } static DRIVER_ATTR(poll_mode_io, S_IRUGO|S_IWUSR, megasas_sysfs_show_poll_mode_io, megasas_sysfs_set_poll_mode_io); /** * megasas_init - Driver load entry point */ static int __init megasas_init(void) { int rval; /* * Announce driver version and other information */ printk(KERN_INFO "megasas: %s %s\n", MEGASAS_VERSION, MEGASAS_EXT_VERSION); support_poll_for_event = 2; support_device_change = 1; memset(&megasas_mgmt_info, 0, sizeof(megasas_mgmt_info)); /* * Register character device node */ rval = register_chrdev(0, "megaraid_sas_ioctl", &megasas_mgmt_fops); if (rval < 0) { printk(KERN_DEBUG "megasas: failed to open device node\n"); return rval; } megasas_mgmt_majorno = rval; /* * Register ourselves as PCI hotplug module */ rval = pci_register_driver(&megasas_pci_driver); if (rval) { printk(KERN_DEBUG "megasas: PCI hotplug regisration failed \n"); goto err_pcidrv; } rval = driver_create_file(&megasas_pci_driver.driver, &driver_attr_version); if (rval) goto err_dcf_attr_ver; rval = driver_create_file(&megasas_pci_driver.driver, &driver_attr_release_date); if (rval) goto err_dcf_rel_date; rval = driver_create_file(&megasas_pci_driver.driver, &driver_attr_support_poll_for_event); if (rval) goto err_dcf_support_poll_for_event; rval = driver_create_file(&megasas_pci_driver.driver, &driver_attr_dbg_lvl); if (rval) goto err_dcf_dbg_lvl; rval = driver_create_file(&megasas_pci_driver.driver, &driver_attr_poll_mode_io); if (rval) goto err_dcf_poll_mode_io; rval = driver_create_file(&megasas_pci_driver.driver, &driver_attr_support_device_change); if (rval) goto err_dcf_support_device_change; return rval; err_dcf_support_device_change: driver_remove_file(&megasas_pci_driver.driver, &driver_attr_poll_mode_io); err_dcf_poll_mode_io: driver_remove_file(&megasas_pci_driver.driver, &driver_attr_dbg_lvl); err_dcf_dbg_lvl: driver_remove_file(&megasas_pci_driver.driver, &driver_attr_support_poll_for_event); err_dcf_support_poll_for_event: driver_remove_file(&megasas_pci_driver.driver, &driver_attr_release_date); err_dcf_rel_date: driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version); err_dcf_attr_ver: pci_unregister_driver(&megasas_pci_driver); err_pcidrv: unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl"); return rval; } /** * megasas_exit - Driver unload entry point */ static void __exit megasas_exit(void) { driver_remove_file(&megasas_pci_driver.driver, &driver_attr_poll_mode_io); driver_remove_file(&megasas_pci_driver.driver, &driver_attr_dbg_lvl); driver_remove_file(&megasas_pci_driver.driver, &driver_attr_support_poll_for_event); driver_remove_file(&megasas_pci_driver.driver, &driver_attr_support_device_change); driver_remove_file(&megasas_pci_driver.driver, &driver_attr_release_date); driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version); pci_unregister_driver(&megasas_pci_driver); unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl"); } module_init(megasas_init); module_exit(megasas_exit);