/* * Multi buffer SHA1 algorithm Glue Code * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * Copyright(c) 2014 Intel Corporation. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * Contact Information: * Tim Chen * * BSD LICENSE * * Copyright(c) 2014 Intel Corporation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "sha_mb_ctx.h" #define FLUSH_INTERVAL 1000 /* in usec */ struct mcryptd_alg_state sha1_mb_alg_state; struct sha1_mb_ctx { struct mcryptd_ahash *mcryptd_tfm; }; static inline struct mcryptd_hash_request_ctx *cast_hash_to_mcryptd_ctx(struct sha1_hash_ctx *hash_ctx) { struct shash_desc *desc; desc = container_of((void *) hash_ctx, struct shash_desc, __ctx); return container_of(desc, struct mcryptd_hash_request_ctx, desc); } static inline struct ahash_request *cast_mcryptd_ctx_to_req(struct mcryptd_hash_request_ctx *ctx) { return container_of((void *) ctx, struct ahash_request, __ctx); } static void req_ctx_init(struct mcryptd_hash_request_ctx *rctx, struct shash_desc *desc) { rctx->flag = HASH_UPDATE; } asmlinkage void (*sha1_job_mgr_init)(struct sha1_mb_mgr *state); asmlinkage struct job_sha1* (*sha1_job_mgr_submit)(struct sha1_mb_mgr *state, struct job_sha1 *job); asmlinkage struct job_sha1* (*sha1_job_mgr_flush)(struct sha1_mb_mgr *state); asmlinkage struct job_sha1* (*sha1_job_mgr_get_comp_job)(struct sha1_mb_mgr *state); inline void sha1_init_digest(uint32_t *digest) { static const uint32_t initial_digest[SHA1_DIGEST_LENGTH] = {SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4 }; memcpy(digest, initial_digest, sizeof(initial_digest)); } inline uint32_t sha1_pad(uint8_t padblock[SHA1_BLOCK_SIZE * 2], uint32_t total_len) { uint32_t i = total_len & (SHA1_BLOCK_SIZE - 1); memset(&padblock[i], 0, SHA1_BLOCK_SIZE); padblock[i] = 0x80; i += ((SHA1_BLOCK_SIZE - 1) & (0 - (total_len + SHA1_PADLENGTHFIELD_SIZE + 1))) + 1 + SHA1_PADLENGTHFIELD_SIZE; #if SHA1_PADLENGTHFIELD_SIZE == 16 *((uint64_t *) &padblock[i - 16]) = 0; #endif *((uint64_t *) &padblock[i - 8]) = cpu_to_be64(total_len << 3); /* Number of extra blocks to hash */ return i >> SHA1_LOG2_BLOCK_SIZE; } static struct sha1_hash_ctx *sha1_ctx_mgr_resubmit(struct sha1_ctx_mgr *mgr, struct sha1_hash_ctx *ctx) { while (ctx) { if (ctx->status & HASH_CTX_STS_COMPLETE) { /* Clear PROCESSING bit */ ctx->status = HASH_CTX_STS_COMPLETE; return ctx; } /* * If the extra blocks are empty, begin hashing what remains * in the user's buffer. */ if (ctx->partial_block_buffer_length == 0 && ctx->incoming_buffer_length) { const void *buffer = ctx->incoming_buffer; uint32_t len = ctx->incoming_buffer_length; uint32_t copy_len; /* * Only entire blocks can be hashed. * Copy remainder to extra blocks buffer. */ copy_len = len & (SHA1_BLOCK_SIZE-1); if (copy_len) { len -= copy_len; memcpy(ctx->partial_block_buffer, ((const char *) buffer + len), copy_len); ctx->partial_block_buffer_length = copy_len; } ctx->incoming_buffer_length = 0; /* len should be a multiple of the block size now */ assert((len % SHA1_BLOCK_SIZE) == 0); /* Set len to the number of blocks to be hashed */ len >>= SHA1_LOG2_BLOCK_SIZE; if (len) { ctx->job.buffer = (uint8_t *) buffer; ctx->job.len = len; ctx = (struct sha1_hash_ctx *) sha1_job_mgr_submit(&mgr->mgr, &ctx->job); continue; } } /* * If the extra blocks are not empty, then we are * either on the last block(s) or we need more * user input before continuing. */ if (ctx->status & HASH_CTX_STS_LAST) { uint8_t *buf = ctx->partial_block_buffer; uint32_t n_extra_blocks = sha1_pad(buf, ctx->total_length); ctx->status = (HASH_CTX_STS_PROCESSING | HASH_CTX_STS_COMPLETE); ctx->job.buffer = buf; ctx->job.len = (uint32_t) n_extra_blocks; ctx = (struct sha1_hash_ctx *) sha1_job_mgr_submit(&mgr->mgr, &ctx->job); continue; } if (ctx) ctx->status = HASH_CTX_STS_IDLE; return ctx; } return NULL; } struct sha1_hash_ctx *sha1_ctx_mgr_get_comp_ctx(struct sha1_ctx_mgr *mgr) { /* * If get_comp_job returns NULL, there are no jobs complete. * If get_comp_job returns a job, verify that it is safe to return to the user. * If it is not ready, resubmit the job to finish processing. * If sha1_ctx_mgr_resubmit returned a job, it is ready to be returned. * Otherwise, all jobs currently being managed by the hash_ctx_mgr still need processing. */ struct sha1_hash_ctx *ctx; ctx = (struct sha1_hash_ctx *) sha1_job_mgr_get_comp_job(&mgr->mgr); return sha1_ctx_mgr_resubmit(mgr, ctx); } void sha1_ctx_mgr_init(struct sha1_ctx_mgr *mgr) { sha1_job_mgr_init(&mgr->mgr); } struct sha1_hash_ctx *sha1_ctx_mgr_submit(struct sha1_ctx_mgr *mgr, struct sha1_hash_ctx *ctx, const void *buffer, uint32_t len, int flags) { if (flags & (~HASH_ENTIRE)) { /* User should not pass anything other than FIRST, UPDATE, or LAST */ ctx->error = HASH_CTX_ERROR_INVALID_FLAGS; return ctx; } if (ctx->status & HASH_CTX_STS_PROCESSING) { /* Cannot submit to a currently processing job. */ ctx->error = HASH_CTX_ERROR_ALREADY_PROCESSING; return ctx; } if ((ctx->status & HASH_CTX_STS_COMPLETE) && !(flags & HASH_FIRST)) { /* Cannot update a finished job. */ ctx->error = HASH_CTX_ERROR_ALREADY_COMPLETED; return ctx; } if (flags & HASH_FIRST) { /* Init digest */ sha1_init_digest(ctx->job.result_digest); /* Reset byte counter */ ctx->total_length = 0; /* Clear extra blocks */ ctx->partial_block_buffer_length = 0; } /* If we made it here, there were no errors during this call to submit */ ctx->error = HASH_CTX_ERROR_NONE; /* Store buffer ptr info from user */ ctx->incoming_buffer = buffer; ctx->incoming_buffer_length = len; /* Store the user's request flags and mark this ctx as currently being processed. */ ctx->status = (flags & HASH_LAST) ? (HASH_CTX_STS_PROCESSING | HASH_CTX_STS_LAST) : HASH_CTX_STS_PROCESSING; /* Advance byte counter */ ctx->total_length += len; /* * If there is anything currently buffered in the extra blocks, * append to it until it contains a whole block. * Or if the user's buffer contains less than a whole block, * append as much as possible to the extra block. */ if ((ctx->partial_block_buffer_length) | (len < SHA1_BLOCK_SIZE)) { /* Compute how many bytes to copy from user buffer into extra block */ uint32_t copy_len = SHA1_BLOCK_SIZE - ctx->partial_block_buffer_length; if (len < copy_len) copy_len = len; if (copy_len) { /* Copy and update relevant pointers and counters */ memcpy(&ctx->partial_block_buffer[ctx->partial_block_buffer_length], buffer, copy_len); ctx->partial_block_buffer_length += copy_len; ctx->incoming_buffer = (const void *)((const char *)buffer + copy_len); ctx->incoming_buffer_length = len - copy_len; } /* The extra block should never contain more than 1 block here */ assert(ctx->partial_block_buffer_length <= SHA1_BLOCK_SIZE); /* If the extra block buffer contains exactly 1 block, it can be hashed. */ if (ctx->partial_block_buffer_length >= SHA1_BLOCK_SIZE) { ctx->partial_block_buffer_length = 0; ctx->job.buffer = ctx->partial_block_buffer; ctx->job.len = 1; ctx = (struct sha1_hash_ctx *) sha1_job_mgr_submit(&mgr->mgr, &ctx->job); } } return sha1_ctx_mgr_resubmit(mgr, ctx); } struct sha1_hash_ctx *sha1_ctx_mgr_flush(struct sha1_ctx_mgr *mgr) { struct sha1_hash_ctx *ctx; while (1) { ctx = (struct sha1_hash_ctx *) sha1_job_mgr_flush(&mgr->mgr); /* If flush returned 0, there are no more jobs in flight. */ if (!ctx) return NULL; /* * If flush returned a job, resubmit the job to finish processing. */ ctx = sha1_ctx_mgr_resubmit(mgr, ctx); /* * If sha1_ctx_mgr_resubmit returned a job, it is ready to be returned. * Otherwise, all jobs currently being managed by the sha1_ctx_mgr * still need processing. Loop. */ if (ctx) return ctx; } } static int sha1_mb_init(struct shash_desc *desc) { struct sha1_hash_ctx *sctx = shash_desc_ctx(desc); hash_ctx_init(sctx); sctx->job.result_digest[0] = SHA1_H0; sctx->job.result_digest[1] = SHA1_H1; sctx->job.result_digest[2] = SHA1_H2; sctx->job.result_digest[3] = SHA1_H3; sctx->job.result_digest[4] = SHA1_H4; sctx->total_length = 0; sctx->partial_block_buffer_length = 0; sctx->status = HASH_CTX_STS_IDLE; return 0; } static int sha1_mb_set_results(struct mcryptd_hash_request_ctx *rctx) { int i; struct sha1_hash_ctx *sctx = shash_desc_ctx(&rctx->desc); __be32 *dst = (__be32 *) rctx->out; for (i = 0; i < 5; ++i) dst[i] = cpu_to_be32(sctx->job.result_digest[i]); return 0; } static int sha_finish_walk(struct mcryptd_hash_request_ctx **ret_rctx, struct mcryptd_alg_cstate *cstate, bool flush) { int flag = HASH_UPDATE; int nbytes, err = 0; struct mcryptd_hash_request_ctx *rctx = *ret_rctx; struct sha1_hash_ctx *sha_ctx; /* more work ? */ while (!(rctx->flag & HASH_DONE)) { nbytes = crypto_ahash_walk_done(&rctx->walk, 0); if (nbytes < 0) { err = nbytes; goto out; } /* check if the walk is done */ if (crypto_ahash_walk_last(&rctx->walk)) { rctx->flag |= HASH_DONE; if (rctx->flag & HASH_FINAL) flag |= HASH_LAST; } sha_ctx = (struct sha1_hash_ctx *) shash_desc_ctx(&rctx->desc); kernel_fpu_begin(); sha_ctx = sha1_ctx_mgr_submit(cstate->mgr, sha_ctx, rctx->walk.data, nbytes, flag); if (!sha_ctx) { if (flush) sha_ctx = sha1_ctx_mgr_flush(cstate->mgr); } kernel_fpu_end(); if (sha_ctx) rctx = cast_hash_to_mcryptd_ctx(sha_ctx); else { rctx = NULL; goto out; } } /* copy the results */ if (rctx->flag & HASH_FINAL) sha1_mb_set_results(rctx); out: *ret_rctx = rctx; return err; } static int sha_complete_job(struct mcryptd_hash_request_ctx *rctx, struct mcryptd_alg_cstate *cstate, int err) { struct ahash_request *req = cast_mcryptd_ctx_to_req(rctx); struct sha1_hash_ctx *sha_ctx; struct mcryptd_hash_request_ctx *req_ctx; int ret; /* remove from work list */ spin_lock(&cstate->work_lock); list_del(&rctx->waiter); spin_unlock(&cstate->work_lock); if (irqs_disabled()) rctx->complete(&req->base, err); else { local_bh_disable(); rctx->complete(&req->base, err); local_bh_enable(); } /* check to see if there are other jobs that are done */ sha_ctx = sha1_ctx_mgr_get_comp_ctx(cstate->mgr); while (sha_ctx) { req_ctx = cast_hash_to_mcryptd_ctx(sha_ctx); ret = sha_finish_walk(&req_ctx, cstate, false); if (req_ctx) { spin_lock(&cstate->work_lock); list_del(&req_ctx->waiter); spin_unlock(&cstate->work_lock); req = cast_mcryptd_ctx_to_req(req_ctx); if (irqs_disabled()) rctx->complete(&req->base, ret); else { local_bh_disable(); rctx->complete(&req->base, ret); local_bh_enable(); } } sha_ctx = sha1_ctx_mgr_get_comp_ctx(cstate->mgr); } return 0; } static void sha1_mb_add_list(struct mcryptd_hash_request_ctx *rctx, struct mcryptd_alg_cstate *cstate) { unsigned long next_flush; unsigned long delay = usecs_to_jiffies(FLUSH_INTERVAL); /* initialize tag */ rctx->tag.arrival = jiffies; /* tag the arrival time */ rctx->tag.seq_num = cstate->next_seq_num++; next_flush = rctx->tag.arrival + delay; rctx->tag.expire = next_flush; spin_lock(&cstate->work_lock); list_add_tail(&rctx->waiter, &cstate->work_list); spin_unlock(&cstate->work_lock); mcryptd_arm_flusher(cstate, delay); } static int sha1_mb_update(struct shash_desc *desc, const u8 *data, unsigned int len) { struct mcryptd_hash_request_ctx *rctx = container_of(desc, struct mcryptd_hash_request_ctx, desc); struct mcryptd_alg_cstate *cstate = this_cpu_ptr(sha1_mb_alg_state.alg_cstate); struct ahash_request *req = cast_mcryptd_ctx_to_req(rctx); struct sha1_hash_ctx *sha_ctx; int ret = 0, nbytes; /* sanity check */ if (rctx->tag.cpu != smp_processor_id()) { pr_err("mcryptd error: cpu clash\n"); goto done; } /* need to init context */ req_ctx_init(rctx, desc); nbytes = crypto_ahash_walk_first(req, &rctx->walk); if (nbytes < 0) { ret = nbytes; goto done; } if (crypto_ahash_walk_last(&rctx->walk)) rctx->flag |= HASH_DONE; /* submit */ sha_ctx = (struct sha1_hash_ctx *) shash_desc_ctx(desc); sha1_mb_add_list(rctx, cstate); kernel_fpu_begin(); sha_ctx = sha1_ctx_mgr_submit(cstate->mgr, sha_ctx, rctx->walk.data, nbytes, HASH_UPDATE); kernel_fpu_end(); /* check if anything is returned */ if (!sha_ctx) return -EINPROGRESS; if (sha_ctx->error) { ret = sha_ctx->error; rctx = cast_hash_to_mcryptd_ctx(sha_ctx); goto done; } rctx = cast_hash_to_mcryptd_ctx(sha_ctx); ret = sha_finish_walk(&rctx, cstate, false); if (!rctx) return -EINPROGRESS; done: sha_complete_job(rctx, cstate, ret); return ret; } static int sha1_mb_finup(struct shash_desc *desc, const u8 *data, unsigned int len, u8 *out) { struct mcryptd_hash_request_ctx *rctx = container_of(desc, struct mcryptd_hash_request_ctx, desc); struct mcryptd_alg_cstate *cstate = this_cpu_ptr(sha1_mb_alg_state.alg_cstate); struct ahash_request *req = cast_mcryptd_ctx_to_req(rctx); struct sha1_hash_ctx *sha_ctx; int ret = 0, flag = HASH_UPDATE, nbytes; /* sanity check */ if (rctx->tag.cpu != smp_processor_id()) { pr_err("mcryptd error: cpu clash\n"); goto done; } /* need to init context */ req_ctx_init(rctx, desc); nbytes = crypto_ahash_walk_first(req, &rctx->walk); if (nbytes < 0) { ret = nbytes; goto done; } if (crypto_ahash_walk_last(&rctx->walk)) { rctx->flag |= HASH_DONE; flag = HASH_LAST; } rctx->out = out; /* submit */ rctx->flag |= HASH_FINAL; sha_ctx = (struct sha1_hash_ctx *) shash_desc_ctx(desc); sha1_mb_add_list(rctx, cstate); kernel_fpu_begin(); sha_ctx = sha1_ctx_mgr_submit(cstate->mgr, sha_ctx, rctx->walk.data, nbytes, flag); kernel_fpu_end(); /* check if anything is returned */ if (!sha_ctx) return -EINPROGRESS; if (sha_ctx->error) { ret = sha_ctx->error; goto done; } rctx = cast_hash_to_mcryptd_ctx(sha_ctx); ret = sha_finish_walk(&rctx, cstate, false); if (!rctx) return -EINPROGRESS; done: sha_complete_job(rctx, cstate, ret); return ret; } static int sha1_mb_final(struct shash_desc *desc, u8 *out) { struct mcryptd_hash_request_ctx *rctx = container_of(desc, struct mcryptd_hash_request_ctx, desc); struct mcryptd_alg_cstate *cstate = this_cpu_ptr(sha1_mb_alg_state.alg_cstate); struct sha1_hash_ctx *sha_ctx; int ret = 0; u8 data; /* sanity check */ if (rctx->tag.cpu != smp_processor_id()) { pr_err("mcryptd error: cpu clash\n"); goto done; } /* need to init context */ req_ctx_init(rctx, desc); rctx->out = out; rctx->flag |= HASH_DONE | HASH_FINAL; sha_ctx = (struct sha1_hash_ctx *) shash_desc_ctx(desc); /* flag HASH_FINAL and 0 data size */ sha1_mb_add_list(rctx, cstate); kernel_fpu_begin(); sha_ctx = sha1_ctx_mgr_submit(cstate->mgr, sha_ctx, &data, 0, HASH_LAST); kernel_fpu_end(); /* check if anything is returned */ if (!sha_ctx) return -EINPROGRESS; if (sha_ctx->error) { ret = sha_ctx->error; rctx = cast_hash_to_mcryptd_ctx(sha_ctx); goto done; } rctx = cast_hash_to_mcryptd_ctx(sha_ctx); ret = sha_finish_walk(&rctx, cstate, false); if (!rctx) return -EINPROGRESS; done: sha_complete_job(rctx, cstate, ret); return ret; } static int sha1_mb_export(struct shash_desc *desc, void *out) { struct sha1_hash_ctx *sctx = shash_desc_ctx(desc); memcpy(out, sctx, sizeof(*sctx)); return 0; } static int sha1_mb_import(struct shash_desc *desc, const void *in) { struct sha1_hash_ctx *sctx = shash_desc_ctx(desc); memcpy(sctx, in, sizeof(*sctx)); return 0; } static struct shash_alg sha1_mb_shash_alg = { .digestsize = SHA1_DIGEST_SIZE, .init = sha1_mb_init, .update = sha1_mb_update, .final = sha1_mb_final, .finup = sha1_mb_finup, .export = sha1_mb_export, .import = sha1_mb_import, .descsize = sizeof(struct sha1_hash_ctx), .statesize = sizeof(struct sha1_hash_ctx), .base = { .cra_name = "__sha1-mb", .cra_driver_name = "__intel_sha1-mb", .cra_priority = 100, /* * use ASYNC flag as some buffers in multi-buffer * algo may not have completed before hashing thread sleep */ .cra_flags = CRYPTO_ALG_TYPE_SHASH | CRYPTO_ALG_ASYNC, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_module = THIS_MODULE, .cra_list = LIST_HEAD_INIT(sha1_mb_shash_alg.base.cra_list), } }; static int sha1_mb_async_init(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm); struct ahash_request *mcryptd_req = ahash_request_ctx(req); struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm; memcpy(mcryptd_req, req, sizeof(*req)); ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base); return crypto_ahash_init(mcryptd_req); } static int sha1_mb_async_update(struct ahash_request *req) { struct ahash_request *mcryptd_req = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm); struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm; memcpy(mcryptd_req, req, sizeof(*req)); ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base); return crypto_ahash_update(mcryptd_req); } static int sha1_mb_async_finup(struct ahash_request *req) { struct ahash_request *mcryptd_req = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm); struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm; memcpy(mcryptd_req, req, sizeof(*req)); ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base); return crypto_ahash_finup(mcryptd_req); } static int sha1_mb_async_final(struct ahash_request *req) { struct ahash_request *mcryptd_req = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm); struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm; memcpy(mcryptd_req, req, sizeof(*req)); ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base); return crypto_ahash_final(mcryptd_req); } int sha1_mb_async_digest(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm); struct ahash_request *mcryptd_req = ahash_request_ctx(req); struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm; memcpy(mcryptd_req, req, sizeof(*req)); ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base); return crypto_ahash_digest(mcryptd_req); } static int sha1_mb_async_init_tfm(struct crypto_tfm *tfm) { struct mcryptd_ahash *mcryptd_tfm; struct sha1_mb_ctx *ctx = crypto_tfm_ctx(tfm); struct mcryptd_hash_ctx *mctx; mcryptd_tfm = mcryptd_alloc_ahash("__intel_sha1-mb", 0, 0); if (IS_ERR(mcryptd_tfm)) return PTR_ERR(mcryptd_tfm); mctx = crypto_ahash_ctx(&mcryptd_tfm->base); mctx->alg_state = &sha1_mb_alg_state; ctx->mcryptd_tfm = mcryptd_tfm; crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), sizeof(struct ahash_request) + crypto_ahash_reqsize(&mcryptd_tfm->base)); return 0; } static void sha1_mb_async_exit_tfm(struct crypto_tfm *tfm) { struct sha1_mb_ctx *ctx = crypto_tfm_ctx(tfm); mcryptd_free_ahash(ctx->mcryptd_tfm); } static struct ahash_alg sha1_mb_async_alg = { .init = sha1_mb_async_init, .update = sha1_mb_async_update, .final = sha1_mb_async_final, .finup = sha1_mb_async_finup, .digest = sha1_mb_async_digest, .halg = { .digestsize = SHA1_DIGEST_SIZE, .base = { .cra_name = "sha1", .cra_driver_name = "sha1_mb", .cra_priority = 200, .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_type = &crypto_ahash_type, .cra_module = THIS_MODULE, .cra_list = LIST_HEAD_INIT(sha1_mb_async_alg.halg.base.cra_list), .cra_init = sha1_mb_async_init_tfm, .cra_exit = sha1_mb_async_exit_tfm, .cra_ctxsize = sizeof(struct sha1_mb_ctx), .cra_alignmask = 0, }, }, }; unsigned long sha1_mb_flusher(struct mcryptd_alg_cstate *cstate) { struct mcryptd_hash_request_ctx *rctx; unsigned long cur_time; unsigned long next_flush = 0; struct sha1_hash_ctx *sha_ctx; cur_time = jiffies; while (!list_empty(&cstate->work_list)) { rctx = list_entry(cstate->work_list.next, struct mcryptd_hash_request_ctx, waiter); if time_before(cur_time, rctx->tag.expire) break; kernel_fpu_begin(); sha_ctx = (struct sha1_hash_ctx *) sha1_ctx_mgr_flush(cstate->mgr); kernel_fpu_end(); if (!sha_ctx) { pr_err("sha1_mb error: nothing got flushed for non-empty list\n"); break; } rctx = cast_hash_to_mcryptd_ctx(sha_ctx); sha_finish_walk(&rctx, cstate, true); sha_complete_job(rctx, cstate, 0); } if (!list_empty(&cstate->work_list)) { rctx = list_entry(cstate->work_list.next, struct mcryptd_hash_request_ctx, waiter); /* get the hash context and then flush time */ next_flush = rctx->tag.expire; mcryptd_arm_flusher(cstate, get_delay(next_flush)); } return next_flush; } static int __init sha1_mb_mod_init(void) { int cpu; int err; struct mcryptd_alg_cstate *cpu_state; /* check for dependent cpu features */ if (!boot_cpu_has(X86_FEATURE_AVX2) || !boot_cpu_has(X86_FEATURE_BMI2)) return -ENODEV; /* initialize multibuffer structures */ sha1_mb_alg_state.alg_cstate = alloc_percpu(struct mcryptd_alg_cstate); sha1_job_mgr_init = sha1_mb_mgr_init_avx2; sha1_job_mgr_submit = sha1_mb_mgr_submit_avx2; sha1_job_mgr_flush = sha1_mb_mgr_flush_avx2; sha1_job_mgr_get_comp_job = sha1_mb_mgr_get_comp_job_avx2; if (!sha1_mb_alg_state.alg_cstate) return -ENOMEM; for_each_possible_cpu(cpu) { cpu_state = per_cpu_ptr(sha1_mb_alg_state.alg_cstate, cpu); cpu_state->next_flush = 0; cpu_state->next_seq_num = 0; cpu_state->flusher_engaged = false; INIT_DELAYED_WORK(&cpu_state->flush, mcryptd_flusher); cpu_state->cpu = cpu; cpu_state->alg_state = &sha1_mb_alg_state; cpu_state->mgr = (struct sha1_ctx_mgr *) kzalloc(sizeof(struct sha1_ctx_mgr), GFP_KERNEL); if (!cpu_state->mgr) goto err2; sha1_ctx_mgr_init(cpu_state->mgr); INIT_LIST_HEAD(&cpu_state->work_list); spin_lock_init(&cpu_state->work_lock); } sha1_mb_alg_state.flusher = &sha1_mb_flusher; err = crypto_register_shash(&sha1_mb_shash_alg); if (err) goto err2; err = crypto_register_ahash(&sha1_mb_async_alg); if (err) goto err1; return 0; err1: crypto_unregister_shash(&sha1_mb_shash_alg); err2: for_each_possible_cpu(cpu) { cpu_state = per_cpu_ptr(sha1_mb_alg_state.alg_cstate, cpu); kfree(cpu_state->mgr); } free_percpu(sha1_mb_alg_state.alg_cstate); return -ENODEV; } static void __exit sha1_mb_mod_fini(void) { int cpu; struct mcryptd_alg_cstate *cpu_state; crypto_unregister_ahash(&sha1_mb_async_alg); crypto_unregister_shash(&sha1_mb_shash_alg); for_each_possible_cpu(cpu) { cpu_state = per_cpu_ptr(sha1_mb_alg_state.alg_cstate, cpu); kfree(cpu_state->mgr); } free_percpu(sha1_mb_alg_state.alg_cstate); } module_init(sha1_mb_mod_init); module_exit(sha1_mb_mod_fini); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("SHA1 Secure Hash Algorithm, multi buffer accelerated"); MODULE_ALIAS("sha1");