/****************************************************************************** * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, * USA * * The full GNU General Public License is included in this distribution * in the file called COPYING. * * Contact Information: * Intel Linux Wireless * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 * * BSD LICENSE * * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * *****************************************************************************/ #ifndef __fw_api_h__ #define __fw_api_h__ #include "fw-api-rs.h" #include "fw-api-tx.h" #include "fw-api-sta.h" #include "fw-api-mac.h" #include "fw-api-power.h" #include "fw-api-d3.h" #include "fw-api-bt-coex.h" /* maximal number of Tx queues in any platform */ #define IWL_MVM_MAX_QUEUES 20 /* Tx queue numbers */ enum { IWL_MVM_OFFCHANNEL_QUEUE = 8, IWL_MVM_CMD_QUEUE = 9, }; #define IWL_MVM_CMD_FIFO 7 #define IWL_MVM_STATION_COUNT 16 /* commands */ enum { MVM_ALIVE = 0x1, REPLY_ERROR = 0x2, INIT_COMPLETE_NOTIF = 0x4, /* PHY context commands */ PHY_CONTEXT_CMD = 0x8, DBG_CFG = 0x9, /* station table */ ADD_STA_KEY = 0x17, ADD_STA = 0x18, REMOVE_STA = 0x19, /* TX */ TX_CMD = 0x1c, TXPATH_FLUSH = 0x1e, MGMT_MCAST_KEY = 0x1f, /* global key */ WEP_KEY = 0x20, /* MAC and Binding commands */ MAC_CONTEXT_CMD = 0x28, TIME_EVENT_CMD = 0x29, /* both CMD and response */ TIME_EVENT_NOTIFICATION = 0x2a, BINDING_CONTEXT_CMD = 0x2b, TIME_QUOTA_CMD = 0x2c, NON_QOS_TX_COUNTER_CMD = 0x2d, LQ_CMD = 0x4e, /* Calibration */ TEMPERATURE_NOTIFICATION = 0x62, CALIBRATION_CFG_CMD = 0x65, CALIBRATION_RES_NOTIFICATION = 0x66, CALIBRATION_COMPLETE_NOTIFICATION = 0x67, RADIO_VERSION_NOTIFICATION = 0x68, /* Scan offload */ SCAN_OFFLOAD_REQUEST_CMD = 0x51, SCAN_OFFLOAD_ABORT_CMD = 0x52, SCAN_OFFLOAD_COMPLETE = 0x6D, SCAN_OFFLOAD_UPDATE_PROFILES_CMD = 0x6E, SCAN_OFFLOAD_CONFIG_CMD = 0x6f, MATCH_FOUND_NOTIFICATION = 0xd9, /* Phy */ PHY_CONFIGURATION_CMD = 0x6a, CALIB_RES_NOTIF_PHY_DB = 0x6b, /* PHY_DB_CMD = 0x6c, */ /* Power - legacy power table command */ POWER_TABLE_CMD = 0x77, PSM_UAPSD_AP_MISBEHAVING_NOTIFICATION = 0x78, /* Thermal Throttling*/ REPLY_THERMAL_MNG_BACKOFF = 0x7e, /* Scanning */ SCAN_REQUEST_CMD = 0x80, SCAN_ABORT_CMD = 0x81, SCAN_START_NOTIFICATION = 0x82, SCAN_RESULTS_NOTIFICATION = 0x83, SCAN_COMPLETE_NOTIFICATION = 0x84, /* NVM */ NVM_ACCESS_CMD = 0x88, SET_CALIB_DEFAULT_CMD = 0x8e, BEACON_NOTIFICATION = 0x90, BEACON_TEMPLATE_CMD = 0x91, TX_ANT_CONFIGURATION_CMD = 0x98, BT_CONFIG = 0x9b, STATISTICS_NOTIFICATION = 0x9d, EOSP_NOTIFICATION = 0x9e, REDUCE_TX_POWER_CMD = 0x9f, /* RF-KILL commands and notifications */ CARD_STATE_CMD = 0xa0, CARD_STATE_NOTIFICATION = 0xa1, MISSED_BEACONS_NOTIFICATION = 0xa2, /* Power - new power table command */ MAC_PM_POWER_TABLE = 0xa9, REPLY_RX_PHY_CMD = 0xc0, REPLY_RX_MPDU_CMD = 0xc1, BA_NOTIF = 0xc5, /* BT Coex */ BT_COEX_PRIO_TABLE = 0xcc, BT_COEX_PROT_ENV = 0xcd, BT_PROFILE_NOTIFICATION = 0xce, BT_COEX_CI = 0x5d, REPLY_SF_CFG_CMD = 0xd1, REPLY_BEACON_FILTERING_CMD = 0xd2, REPLY_DEBUG_CMD = 0xf0, DEBUG_LOG_MSG = 0xf7, BCAST_FILTER_CMD = 0xcf, MCAST_FILTER_CMD = 0xd0, /* D3 commands/notifications */ D3_CONFIG_CMD = 0xd3, PROT_OFFLOAD_CONFIG_CMD = 0xd4, OFFLOADS_QUERY_CMD = 0xd5, REMOTE_WAKE_CONFIG_CMD = 0xd6, D0I3_END_CMD = 0xed, /* for WoWLAN in particular */ WOWLAN_PATTERNS = 0xe0, WOWLAN_CONFIGURATION = 0xe1, WOWLAN_TSC_RSC_PARAM = 0xe2, WOWLAN_TKIP_PARAM = 0xe3, WOWLAN_KEK_KCK_MATERIAL = 0xe4, WOWLAN_GET_STATUSES = 0xe5, WOWLAN_TX_POWER_PER_DB = 0xe6, /* and for NetDetect */ NET_DETECT_CONFIG_CMD = 0x54, NET_DETECT_PROFILES_QUERY_CMD = 0x56, NET_DETECT_PROFILES_CMD = 0x57, NET_DETECT_HOTSPOTS_CMD = 0x58, NET_DETECT_HOTSPOTS_QUERY_CMD = 0x59, REPLY_MAX = 0xff, }; /** * struct iwl_cmd_response - generic response struct for most commands * @status: status of the command asked, changes for each one */ struct iwl_cmd_response { __le32 status; }; /* * struct iwl_tx_ant_cfg_cmd * @valid: valid antenna configuration */ struct iwl_tx_ant_cfg_cmd { __le32 valid; } __packed; /** * struct iwl_reduce_tx_power_cmd - TX power reduction command * REDUCE_TX_POWER_CMD = 0x9f * @flags: (reserved for future implementation) * @mac_context_id: id of the mac ctx for which we are reducing TX power. * @pwr_restriction: TX power restriction in dBms. */ struct iwl_reduce_tx_power_cmd { u8 flags; u8 mac_context_id; __le16 pwr_restriction; } __packed; /* TX_REDUCED_POWER_API_S_VER_1 */ /* * Calibration control struct. * Sent as part of the phy configuration command. * @flow_trigger: bitmap for which calibrations to perform according to * flow triggers. * @event_trigger: bitmap for which calibrations to perform according to * event triggers. */ struct iwl_calib_ctrl { __le32 flow_trigger; __le32 event_trigger; } __packed; /* This enum defines the bitmap of various calibrations to enable in both * init ucode and runtime ucode through CALIBRATION_CFG_CMD. */ enum iwl_calib_cfg { IWL_CALIB_CFG_XTAL_IDX = BIT(0), IWL_CALIB_CFG_TEMPERATURE_IDX = BIT(1), IWL_CALIB_CFG_VOLTAGE_READ_IDX = BIT(2), IWL_CALIB_CFG_PAPD_IDX = BIT(3), IWL_CALIB_CFG_TX_PWR_IDX = BIT(4), IWL_CALIB_CFG_DC_IDX = BIT(5), IWL_CALIB_CFG_BB_FILTER_IDX = BIT(6), IWL_CALIB_CFG_LO_LEAKAGE_IDX = BIT(7), IWL_CALIB_CFG_TX_IQ_IDX = BIT(8), IWL_CALIB_CFG_TX_IQ_SKEW_IDX = BIT(9), IWL_CALIB_CFG_RX_IQ_IDX = BIT(10), IWL_CALIB_CFG_RX_IQ_SKEW_IDX = BIT(11), IWL_CALIB_CFG_SENSITIVITY_IDX = BIT(12), IWL_CALIB_CFG_CHAIN_NOISE_IDX = BIT(13), IWL_CALIB_CFG_DISCONNECTED_ANT_IDX = BIT(14), IWL_CALIB_CFG_ANT_COUPLING_IDX = BIT(15), IWL_CALIB_CFG_DAC_IDX = BIT(16), IWL_CALIB_CFG_ABS_IDX = BIT(17), IWL_CALIB_CFG_AGC_IDX = BIT(18), }; /* * Phy configuration command. */ struct iwl_phy_cfg_cmd { __le32 phy_cfg; struct iwl_calib_ctrl calib_control; } __packed; #define PHY_CFG_RADIO_TYPE (BIT(0) | BIT(1)) #define PHY_CFG_RADIO_STEP (BIT(2) | BIT(3)) #define PHY_CFG_RADIO_DASH (BIT(4) | BIT(5)) #define PHY_CFG_PRODUCT_NUMBER (BIT(6) | BIT(7)) #define PHY_CFG_TX_CHAIN_A BIT(8) #define PHY_CFG_TX_CHAIN_B BIT(9) #define PHY_CFG_TX_CHAIN_C BIT(10) #define PHY_CFG_RX_CHAIN_A BIT(12) #define PHY_CFG_RX_CHAIN_B BIT(13) #define PHY_CFG_RX_CHAIN_C BIT(14) /* Target of the NVM_ACCESS_CMD */ enum { NVM_ACCESS_TARGET_CACHE = 0, NVM_ACCESS_TARGET_OTP = 1, NVM_ACCESS_TARGET_EEPROM = 2, }; /* Section types for NVM_ACCESS_CMD */ enum { NVM_SECTION_TYPE_SW = 1, NVM_SECTION_TYPE_REGULATORY = 3, NVM_SECTION_TYPE_CALIBRATION = 4, NVM_SECTION_TYPE_PRODUCTION = 5, NVM_SECTION_TYPE_MAC_OVERRIDE = 11, NVM_MAX_NUM_SECTIONS = 12, }; /** * struct iwl_nvm_access_cmd_ver2 - Request the device to send an NVM section * @op_code: 0 - read, 1 - write * @target: NVM_ACCESS_TARGET_* * @type: NVM_SECTION_TYPE_* * @offset: offset in bytes into the section * @length: in bytes, to read/write * @data: if write operation, the data to write. On read its empty */ struct iwl_nvm_access_cmd { u8 op_code; u8 target; __le16 type; __le16 offset; __le16 length; u8 data[]; } __packed; /* NVM_ACCESS_CMD_API_S_VER_2 */ /** * struct iwl_nvm_access_resp_ver2 - response to NVM_ACCESS_CMD * @offset: offset in bytes into the section * @length: in bytes, either how much was written or read * @type: NVM_SECTION_TYPE_* * @status: 0 for success, fail otherwise * @data: if read operation, the data returned. Empty on write. */ struct iwl_nvm_access_resp { __le16 offset; __le16 length; __le16 type; __le16 status; u8 data[]; } __packed; /* NVM_ACCESS_CMD_RESP_API_S_VER_2 */ /* MVM_ALIVE 0x1 */ /* alive response is_valid values */ #define ALIVE_RESP_UCODE_OK BIT(0) #define ALIVE_RESP_RFKILL BIT(1) /* alive response ver_type values */ enum { FW_TYPE_HW = 0, FW_TYPE_PROT = 1, FW_TYPE_AP = 2, FW_TYPE_WOWLAN = 3, FW_TYPE_TIMING = 4, FW_TYPE_WIPAN = 5 }; /* alive response ver_subtype values */ enum { FW_SUBTYPE_FULL_FEATURE = 0, FW_SUBTYPE_BOOTSRAP = 1, /* Not valid */ FW_SUBTYPE_REDUCED = 2, FW_SUBTYPE_ALIVE_ONLY = 3, FW_SUBTYPE_WOWLAN = 4, FW_SUBTYPE_AP_SUBTYPE = 5, FW_SUBTYPE_WIPAN = 6, FW_SUBTYPE_INITIALIZE = 9 }; #define IWL_ALIVE_STATUS_ERR 0xDEAD #define IWL_ALIVE_STATUS_OK 0xCAFE #define IWL_ALIVE_FLG_RFKILL BIT(0) struct mvm_alive_resp { __le16 status; __le16 flags; u8 ucode_minor; u8 ucode_major; __le16 id; u8 api_minor; u8 api_major; u8 ver_subtype; u8 ver_type; u8 mac; u8 opt; __le16 reserved2; __le32 timestamp; __le32 error_event_table_ptr; /* SRAM address for error log */ __le32 log_event_table_ptr; /* SRAM address for event log */ __le32 cpu_register_ptr; __le32 dbgm_config_ptr; __le32 alive_counter_ptr; __le32 scd_base_ptr; /* SRAM address for SCD */ } __packed; /* ALIVE_RES_API_S_VER_1 */ struct mvm_alive_resp_ver2 { __le16 status; __le16 flags; u8 ucode_minor; u8 ucode_major; __le16 id; u8 api_minor; u8 api_major; u8 ver_subtype; u8 ver_type; u8 mac; u8 opt; __le16 reserved2; __le32 timestamp; __le32 error_event_table_ptr; /* SRAM address for error log */ __le32 log_event_table_ptr; /* SRAM address for LMAC event log */ __le32 cpu_register_ptr; __le32 dbgm_config_ptr; __le32 alive_counter_ptr; __le32 scd_base_ptr; /* SRAM address for SCD */ __le32 st_fwrd_addr; /* pointer to Store and forward */ __le32 st_fwrd_size; u8 umac_minor; /* UMAC version: minor */ u8 umac_major; /* UMAC version: major */ __le16 umac_id; /* UMAC version: id */ __le32 error_info_addr; /* SRAM address for UMAC error log */ __le32 dbg_print_buff_addr; } __packed; /* ALIVE_RES_API_S_VER_2 */ /* Error response/notification */ enum { FW_ERR_UNKNOWN_CMD = 0x0, FW_ERR_INVALID_CMD_PARAM = 0x1, FW_ERR_SERVICE = 0x2, FW_ERR_ARC_MEMORY = 0x3, FW_ERR_ARC_CODE = 0x4, FW_ERR_WATCH_DOG = 0x5, FW_ERR_WEP_GRP_KEY_INDX = 0x10, FW_ERR_WEP_KEY_SIZE = 0x11, FW_ERR_OBSOLETE_FUNC = 0x12, FW_ERR_UNEXPECTED = 0xFE, FW_ERR_FATAL = 0xFF }; /** * struct iwl_error_resp - FW error indication * ( REPLY_ERROR = 0x2 ) * @error_type: one of FW_ERR_* * @cmd_id: the command ID for which the error occured * @bad_cmd_seq_num: sequence number of the erroneous command * @error_service: which service created the error, applicable only if * error_type = 2, otherwise 0 * @timestamp: TSF in usecs. */ struct iwl_error_resp { __le32 error_type; u8 cmd_id; u8 reserved1; __le16 bad_cmd_seq_num; __le32 error_service; __le64 timestamp; } __packed; /* Common PHY, MAC and Bindings definitions */ #define MAX_MACS_IN_BINDING (3) #define MAX_BINDINGS (4) #define AUX_BINDING_INDEX (3) #define MAX_PHYS (4) /* Used to extract ID and color from the context dword */ #define FW_CTXT_ID_POS (0) #define FW_CTXT_ID_MSK (0xff << FW_CTXT_ID_POS) #define FW_CTXT_COLOR_POS (8) #define FW_CTXT_COLOR_MSK (0xff << FW_CTXT_COLOR_POS) #define FW_CTXT_INVALID (0xffffffff) #define FW_CMD_ID_AND_COLOR(_id, _color) ((_id << FW_CTXT_ID_POS) |\ (_color << FW_CTXT_COLOR_POS)) /* Possible actions on PHYs, MACs and Bindings */ enum { FW_CTXT_ACTION_STUB = 0, FW_CTXT_ACTION_ADD, FW_CTXT_ACTION_MODIFY, FW_CTXT_ACTION_REMOVE, FW_CTXT_ACTION_NUM }; /* COMMON_CONTEXT_ACTION_API_E_VER_1 */ /* Time Events */ /* Time Event types, according to MAC type */ enum iwl_time_event_type { /* BSS Station Events */ TE_BSS_STA_AGGRESSIVE_ASSOC, TE_BSS_STA_ASSOC, TE_BSS_EAP_DHCP_PROT, TE_BSS_QUIET_PERIOD, /* P2P Device Events */ TE_P2P_DEVICE_DISCOVERABLE, TE_P2P_DEVICE_LISTEN, TE_P2P_DEVICE_ACTION_SCAN, TE_P2P_DEVICE_FULL_SCAN, /* P2P Client Events */ TE_P2P_CLIENT_AGGRESSIVE_ASSOC, TE_P2P_CLIENT_ASSOC, TE_P2P_CLIENT_QUIET_PERIOD, /* P2P GO Events */ TE_P2P_GO_ASSOC_PROT, TE_P2P_GO_REPETITIVE_NOA, TE_P2P_GO_CT_WINDOW, /* WiDi Sync Events */ TE_WIDI_TX_SYNC, TE_MAX }; /* MAC_EVENT_TYPE_API_E_VER_1 */ /* Time event - defines for command API v1 */ /* * @TE_V1_FRAG_NONE: fragmentation of the time event is NOT allowed. * @TE_V1_FRAG_SINGLE: fragmentation of the time event is allowed, but only * the first fragment is scheduled. * @TE_V1_FRAG_DUAL: fragmentation of the time event is allowed, but only * the first 2 fragments are scheduled. * @TE_V1_FRAG_ENDLESS: fragmentation of the time event is allowed, and any * number of fragments are valid. * * Other than the constant defined above, specifying a fragmentation value 'x' * means that the event can be fragmented but only the first 'x' will be * scheduled. */ enum { TE_V1_FRAG_NONE = 0, TE_V1_FRAG_SINGLE = 1, TE_V1_FRAG_DUAL = 2, TE_V1_FRAG_ENDLESS = 0xffffffff }; /* If a Time Event can be fragmented, this is the max number of fragments */ #define TE_V1_FRAG_MAX_MSK 0x0fffffff /* Repeat the time event endlessly (until removed) */ #define TE_V1_REPEAT_ENDLESS 0xffffffff /* If a Time Event has bounded repetitions, this is the maximal value */ #define TE_V1_REPEAT_MAX_MSK_V1 0x0fffffff /* Time Event dependencies: none, on another TE, or in a specific time */ enum { TE_V1_INDEPENDENT = 0, TE_V1_DEP_OTHER = BIT(0), TE_V1_DEP_TSF = BIT(1), TE_V1_EVENT_SOCIOPATHIC = BIT(2), }; /* MAC_EVENT_DEPENDENCY_POLICY_API_E_VER_2 */ /* * @TE_V1_NOTIF_NONE: no notifications * @TE_V1_NOTIF_HOST_EVENT_START: request/receive notification on event start * @TE_V1_NOTIF_HOST_EVENT_END:request/receive notification on event end * @TE_V1_NOTIF_INTERNAL_EVENT_START: internal FW use * @TE_V1_NOTIF_INTERNAL_EVENT_END: internal FW use. * @TE_V1_NOTIF_HOST_FRAG_START: request/receive notification on frag start * @TE_V1_NOTIF_HOST_FRAG_END:request/receive notification on frag end * @TE_V1_NOTIF_INTERNAL_FRAG_START: internal FW use. * @TE_V1_NOTIF_INTERNAL_FRAG_END: internal FW use. * * Supported Time event notifications configuration. * A notification (both event and fragment) includes a status indicating weather * the FW was able to schedule the event or not. For fragment start/end * notification the status is always success. There is no start/end fragment * notification for monolithic events. */ enum { TE_V1_NOTIF_NONE = 0, TE_V1_NOTIF_HOST_EVENT_START = BIT(0), TE_V1_NOTIF_HOST_EVENT_END = BIT(1), TE_V1_NOTIF_INTERNAL_EVENT_START = BIT(2), TE_V1_NOTIF_INTERNAL_EVENT_END = BIT(3), TE_V1_NOTIF_HOST_FRAG_START = BIT(4), TE_V1_NOTIF_HOST_FRAG_END = BIT(5), TE_V1_NOTIF_INTERNAL_FRAG_START = BIT(6), TE_V1_NOTIF_INTERNAL_FRAG_END = BIT(7), }; /* MAC_EVENT_ACTION_API_E_VER_2 */ /** * struct iwl_time_event_cmd_api_v1 - configuring Time Events * with struct MAC_TIME_EVENT_DATA_API_S_VER_1 (see also * with version 2. determined by IWL_UCODE_TLV_FLAGS) * ( TIME_EVENT_CMD = 0x29 ) * @id_and_color: ID and color of the relevant MAC * @action: action to perform, one of FW_CTXT_ACTION_* * @id: this field has two meanings, depending on the action: * If the action is ADD, then it means the type of event to add. * For all other actions it is the unique event ID assigned when the * event was added by the FW. * @apply_time: When to start the Time Event (in GP2) * @max_delay: maximum delay to event's start (apply time), in TU * @depends_on: the unique ID of the event we depend on (if any) * @interval: interval between repetitions, in TU * @interval_reciprocal: 2^32 / interval * @duration: duration of event in TU * @repeat: how many repetitions to do, can be TE_REPEAT_ENDLESS * @dep_policy: one of TE_V1_INDEPENDENT, TE_V1_DEP_OTHER, TE_V1_DEP_TSF * and TE_V1_EVENT_SOCIOPATHIC * @is_present: 0 or 1, are we present or absent during the Time Event * @max_frags: maximal number of fragments the Time Event can be divided to * @notify: notifications using TE_V1_NOTIF_* (whom to notify when) */ struct iwl_time_event_cmd_v1 { /* COMMON_INDEX_HDR_API_S_VER_1 */ __le32 id_and_color; __le32 action; __le32 id; /* MAC_TIME_EVENT_DATA_API_S_VER_1 */ __le32 apply_time; __le32 max_delay; __le32 dep_policy; __le32 depends_on; __le32 is_present; __le32 max_frags; __le32 interval; __le32 interval_reciprocal; __le32 duration; __le32 repeat; __le32 notify; } __packed; /* MAC_TIME_EVENT_CMD_API_S_VER_1 */ /* Time event - defines for command API v2 */ /* * @TE_V2_FRAG_NONE: fragmentation of the time event is NOT allowed. * @TE_V2_FRAG_SINGLE: fragmentation of the time event is allowed, but only * the first fragment is scheduled. * @TE_V2_FRAG_DUAL: fragmentation of the time event is allowed, but only * the first 2 fragments are scheduled. * @TE_V2_FRAG_ENDLESS: fragmentation of the time event is allowed, and any * number of fragments are valid. * * Other than the constant defined above, specifying a fragmentation value 'x' * means that the event can be fragmented but only the first 'x' will be * scheduled. */ enum { TE_V2_FRAG_NONE = 0, TE_V2_FRAG_SINGLE = 1, TE_V2_FRAG_DUAL = 2, TE_V2_FRAG_MAX = 0xfe, TE_V2_FRAG_ENDLESS = 0xff }; /* Repeat the time event endlessly (until removed) */ #define TE_V2_REPEAT_ENDLESS 0xff /* If a Time Event has bounded repetitions, this is the maximal value */ #define TE_V2_REPEAT_MAX 0xfe #define TE_V2_PLACEMENT_POS 12 #define TE_V2_ABSENCE_POS 15 /* Time event policy values (for time event cmd api v2) * A notification (both event and fragment) includes a status indicating weather * the FW was able to schedule the event or not. For fragment start/end * notification the status is always success. There is no start/end fragment * notification for monolithic events. * * @TE_V2_DEFAULT_POLICY: independent, social, present, unoticable * @TE_V2_NOTIF_HOST_EVENT_START: request/receive notification on event start * @TE_V2_NOTIF_HOST_EVENT_END:request/receive notification on event end * @TE_V2_NOTIF_INTERNAL_EVENT_START: internal FW use * @TE_V2_NOTIF_INTERNAL_EVENT_END: internal FW use. * @TE_V2_NOTIF_HOST_FRAG_START: request/receive notification on frag start * @TE_V2_NOTIF_HOST_FRAG_END:request/receive notification on frag end * @TE_V2_NOTIF_INTERNAL_FRAG_START: internal FW use. * @TE_V2_NOTIF_INTERNAL_FRAG_END: internal FW use. * @TE_V2_DEP_OTHER: depends on another time event * @TE_V2_DEP_TSF: depends on a specific time * @TE_V2_EVENT_SOCIOPATHIC: can't co-exist with other events of tha same MAC * @TE_V2_ABSENCE: are we present or absent during the Time Event. */ enum { TE_V2_DEFAULT_POLICY = 0x0, /* notifications (event start/stop, fragment start/stop) */ TE_V2_NOTIF_HOST_EVENT_START = BIT(0), TE_V2_NOTIF_HOST_EVENT_END = BIT(1), TE_V2_NOTIF_INTERNAL_EVENT_START = BIT(2), TE_V2_NOTIF_INTERNAL_EVENT_END = BIT(3), TE_V2_NOTIF_HOST_FRAG_START = BIT(4), TE_V2_NOTIF_HOST_FRAG_END = BIT(5), TE_V2_NOTIF_INTERNAL_FRAG_START = BIT(6), TE_V2_NOTIF_INTERNAL_FRAG_END = BIT(7), T2_V2_START_IMMEDIATELY = BIT(11), TE_V2_NOTIF_MSK = 0xff, /* placement characteristics */ TE_V2_DEP_OTHER = BIT(TE_V2_PLACEMENT_POS), TE_V2_DEP_TSF = BIT(TE_V2_PLACEMENT_POS + 1), TE_V2_EVENT_SOCIOPATHIC = BIT(TE_V2_PLACEMENT_POS + 2), /* are we present or absent during the Time Event. */ TE_V2_ABSENCE = BIT(TE_V2_ABSENCE_POS), }; /** * struct iwl_time_event_cmd_api_v2 - configuring Time Events * with struct MAC_TIME_EVENT_DATA_API_S_VER_2 (see also * with version 1. determined by IWL_UCODE_TLV_FLAGS) * ( TIME_EVENT_CMD = 0x29 ) * @id_and_color: ID and color of the relevant MAC * @action: action to perform, one of FW_CTXT_ACTION_* * @id: this field has two meanings, depending on the action: * If the action is ADD, then it means the type of event to add. * For all other actions it is the unique event ID assigned when the * event was added by the FW. * @apply_time: When to start the Time Event (in GP2) * @max_delay: maximum delay to event's start (apply time), in TU * @depends_on: the unique ID of the event we depend on (if any) * @interval: interval between repetitions, in TU * @duration: duration of event in TU * @repeat: how many repetitions to do, can be TE_REPEAT_ENDLESS * @max_frags: maximal number of fragments the Time Event can be divided to * @policy: defines whether uCode shall notify the host or other uCode modules * on event and/or fragment start and/or end * using one of TE_INDEPENDENT, TE_DEP_OTHER, TE_DEP_TSF * TE_EVENT_SOCIOPATHIC * using TE_ABSENCE and using TE_NOTIF_* */ struct iwl_time_event_cmd_v2 { /* COMMON_INDEX_HDR_API_S_VER_1 */ __le32 id_and_color; __le32 action; __le32 id; /* MAC_TIME_EVENT_DATA_API_S_VER_2 */ __le32 apply_time; __le32 max_delay; __le32 depends_on; __le32 interval; __le32 duration; u8 repeat; u8 max_frags; __le16 policy; } __packed; /* MAC_TIME_EVENT_CMD_API_S_VER_2 */ /** * struct iwl_time_event_resp - response structure to iwl_time_event_cmd * @status: bit 0 indicates success, all others specify errors * @id: the Time Event type * @unique_id: the unique ID assigned (in ADD) or given (others) to the TE * @id_and_color: ID and color of the relevant MAC */ struct iwl_time_event_resp { __le32 status; __le32 id; __le32 unique_id; __le32 id_and_color; } __packed; /* MAC_TIME_EVENT_RSP_API_S_VER_1 */ /** * struct iwl_time_event_notif - notifications of time event start/stop * ( TIME_EVENT_NOTIFICATION = 0x2a ) * @timestamp: action timestamp in GP2 * @session_id: session's unique id * @unique_id: unique id of the Time Event itself * @id_and_color: ID and color of the relevant MAC * @action: one of TE_NOTIF_START or TE_NOTIF_END * @status: true if scheduled, false otherwise (not executed) */ struct iwl_time_event_notif { __le32 timestamp; __le32 session_id; __le32 unique_id; __le32 id_and_color; __le32 action; __le32 status; } __packed; /* MAC_TIME_EVENT_NTFY_API_S_VER_1 */ /* Bindings and Time Quota */ /** * struct iwl_binding_cmd - configuring bindings * ( BINDING_CONTEXT_CMD = 0x2b ) * @id_and_color: ID and color of the relevant Binding * @action: action to perform, one of FW_CTXT_ACTION_* * @macs: array of MAC id and colors which belong to the binding * @phy: PHY id and color which belongs to the binding */ struct iwl_binding_cmd { /* COMMON_INDEX_HDR_API_S_VER_1 */ __le32 id_and_color; __le32 action; /* BINDING_DATA_API_S_VER_1 */ __le32 macs[MAX_MACS_IN_BINDING]; __le32 phy; } __packed; /* BINDING_CMD_API_S_VER_1 */ /* The maximal number of fragments in the FW's schedule session */ #define IWL_MVM_MAX_QUOTA 128 /** * struct iwl_time_quota_data - configuration of time quota per binding * @id_and_color: ID and color of the relevant Binding * @quota: absolute time quota in TU. The scheduler will try to divide the * remainig quota (after Time Events) according to this quota. * @max_duration: max uninterrupted context duration in TU */ struct iwl_time_quota_data { __le32 id_and_color; __le32 quota; __le32 max_duration; } __packed; /* TIME_QUOTA_DATA_API_S_VER_1 */ /** * struct iwl_time_quota_cmd - configuration of time quota between bindings * ( TIME_QUOTA_CMD = 0x2c ) * @quotas: allocations per binding */ struct iwl_time_quota_cmd { struct iwl_time_quota_data quotas[MAX_BINDINGS]; } __packed; /* TIME_QUOTA_ALLOCATION_CMD_API_S_VER_1 */ /* PHY context */ /* Supported bands */ #define PHY_BAND_5 (0) #define PHY_BAND_24 (1) /* Supported channel width, vary if there is VHT support */ #define PHY_VHT_CHANNEL_MODE20 (0x0) #define PHY_VHT_CHANNEL_MODE40 (0x1) #define PHY_VHT_CHANNEL_MODE80 (0x2) #define PHY_VHT_CHANNEL_MODE160 (0x3) /* * Control channel position: * For legacy set bit means upper channel, otherwise lower. * For VHT - bit-2 marks if the control is lower/upper relative to center-freq * bits-1:0 mark the distance from the center freq. for 20Mhz, offset is 0. * center_freq * | * 40Mhz |_______|_______| * 80Mhz |_______|_______|_______|_______| * 160Mhz |_______|_______|_______|_______|_______|_______|_______|_______| * code 011 010 001 000 | 100 101 110 111 */ #define PHY_VHT_CTRL_POS_1_BELOW (0x0) #define PHY_VHT_CTRL_POS_2_BELOW (0x1) #define PHY_VHT_CTRL_POS_3_BELOW (0x2) #define PHY_VHT_CTRL_POS_4_BELOW (0x3) #define PHY_VHT_CTRL_POS_1_ABOVE (0x4) #define PHY_VHT_CTRL_POS_2_ABOVE (0x5) #define PHY_VHT_CTRL_POS_3_ABOVE (0x6) #define PHY_VHT_CTRL_POS_4_ABOVE (0x7) /* * @band: PHY_BAND_* * @channel: channel number * @width: PHY_[VHT|LEGACY]_CHANNEL_* * @ctrl channel: PHY_[VHT|LEGACY]_CTRL_* */ struct iwl_fw_channel_info { u8 band; u8 channel; u8 width; u8 ctrl_pos; } __packed; #define PHY_RX_CHAIN_DRIVER_FORCE_POS (0) #define PHY_RX_CHAIN_DRIVER_FORCE_MSK \ (0x1 << PHY_RX_CHAIN_DRIVER_FORCE_POS) #define PHY_RX_CHAIN_VALID_POS (1) #define PHY_RX_CHAIN_VALID_MSK \ (0x7 << PHY_RX_CHAIN_VALID_POS) #define PHY_RX_CHAIN_FORCE_SEL_POS (4) #define PHY_RX_CHAIN_FORCE_SEL_MSK \ (0x7 << PHY_RX_CHAIN_FORCE_SEL_POS) #define PHY_RX_CHAIN_FORCE_MIMO_SEL_POS (7) #define PHY_RX_CHAIN_FORCE_MIMO_SEL_MSK \ (0x7 << PHY_RX_CHAIN_FORCE_MIMO_SEL_POS) #define PHY_RX_CHAIN_CNT_POS (10) #define PHY_RX_CHAIN_CNT_MSK \ (0x3 << PHY_RX_CHAIN_CNT_POS) #define PHY_RX_CHAIN_MIMO_CNT_POS (12) #define PHY_RX_CHAIN_MIMO_CNT_MSK \ (0x3 << PHY_RX_CHAIN_MIMO_CNT_POS) #define PHY_RX_CHAIN_MIMO_FORCE_POS (14) #define PHY_RX_CHAIN_MIMO_FORCE_MSK \ (0x1 << PHY_RX_CHAIN_MIMO_FORCE_POS) /* TODO: fix the value, make it depend on firmware at runtime? */ #define NUM_PHY_CTX 3 /* TODO: complete missing documentation */ /** * struct iwl_phy_context_cmd - config of the PHY context * ( PHY_CONTEXT_CMD = 0x8 ) * @id_and_color: ID and color of the relevant Binding * @action: action to perform, one of FW_CTXT_ACTION_* * @apply_time: 0 means immediate apply and context switch. * other value means apply new params after X usecs * @tx_param_color: ??? * @channel_info: * @txchain_info: ??? * @rxchain_info: ??? * @acquisition_data: ??? * @dsp_cfg_flags: set to 0 */ struct iwl_phy_context_cmd { /* COMMON_INDEX_HDR_API_S_VER_1 */ __le32 id_and_color; __le32 action; /* PHY_CONTEXT_DATA_API_S_VER_1 */ __le32 apply_time; __le32 tx_param_color; struct iwl_fw_channel_info ci; __le32 txchain_info; __le32 rxchain_info; __le32 acquisition_data; __le32 dsp_cfg_flags; } __packed; /* PHY_CONTEXT_CMD_API_VER_1 */ #define IWL_RX_INFO_PHY_CNT 8 #define IWL_RX_INFO_ENERGY_ANT_ABC_IDX 1 #define IWL_RX_INFO_ENERGY_ANT_A_MSK 0x000000ff #define IWL_RX_INFO_ENERGY_ANT_B_MSK 0x0000ff00 #define IWL_RX_INFO_ENERGY_ANT_C_MSK 0x00ff0000 #define IWL_RX_INFO_ENERGY_ANT_A_POS 0 #define IWL_RX_INFO_ENERGY_ANT_B_POS 8 #define IWL_RX_INFO_ENERGY_ANT_C_POS 16 #define IWL_RX_INFO_AGC_IDX 1 #define IWL_RX_INFO_RSSI_AB_IDX 2 #define IWL_OFDM_AGC_A_MSK 0x0000007f #define IWL_OFDM_AGC_A_POS 0 #define IWL_OFDM_AGC_B_MSK 0x00003f80 #define IWL_OFDM_AGC_B_POS 7 #define IWL_OFDM_AGC_CODE_MSK 0x3fe00000 #define IWL_OFDM_AGC_CODE_POS 20 #define IWL_OFDM_RSSI_INBAND_A_MSK 0x00ff #define IWL_OFDM_RSSI_A_POS 0 #define IWL_OFDM_RSSI_ALLBAND_A_MSK 0xff00 #define IWL_OFDM_RSSI_ALLBAND_A_POS 8 #define IWL_OFDM_RSSI_INBAND_B_MSK 0xff0000 #define IWL_OFDM_RSSI_B_POS 16 #define IWL_OFDM_RSSI_ALLBAND_B_MSK 0xff000000 #define IWL_OFDM_RSSI_ALLBAND_B_POS 24 /** * struct iwl_rx_phy_info - phy info * (REPLY_RX_PHY_CMD = 0xc0) * @non_cfg_phy_cnt: non configurable DSP phy data byte count * @cfg_phy_cnt: configurable DSP phy data byte count * @stat_id: configurable DSP phy data set ID * @reserved1: * @system_timestamp: GP2 at on air rise * @timestamp: TSF at on air rise * @beacon_time_stamp: beacon at on-air rise * @phy_flags: general phy flags: band, modulation, ... * @channel: channel number * @non_cfg_phy_buf: for various implementations of non_cfg_phy * @rate_n_flags: RATE_MCS_* * @byte_count: frame's byte-count * @frame_time: frame's time on the air, based on byte count and frame rate * calculation * @mac_active_msk: what MACs were active when the frame was received * * Before each Rx, the device sends this data. It contains PHY information * about the reception of the packet. */ struct iwl_rx_phy_info { u8 non_cfg_phy_cnt; u8 cfg_phy_cnt; u8 stat_id; u8 reserved1; __le32 system_timestamp; __le64 timestamp; __le32 beacon_time_stamp; __le16 phy_flags; __le16 channel; __le32 non_cfg_phy[IWL_RX_INFO_PHY_CNT]; __le32 rate_n_flags; __le32 byte_count; __le16 mac_active_msk; __le16 frame_time; } __packed; struct iwl_rx_mpdu_res_start { __le16 byte_count; __le16 reserved; } __packed; /** * enum iwl_rx_phy_flags - to parse %iwl_rx_phy_info phy_flags * @RX_RES_PHY_FLAGS_BAND_24: true if the packet was received on 2.4 band * @RX_RES_PHY_FLAGS_MOD_CCK: * @RX_RES_PHY_FLAGS_SHORT_PREAMBLE: true if packet's preamble was short * @RX_RES_PHY_FLAGS_NARROW_BAND: * @RX_RES_PHY_FLAGS_ANTENNA: antenna on which the packet was received * @RX_RES_PHY_FLAGS_AGG: set if the packet was part of an A-MPDU * @RX_RES_PHY_FLAGS_OFDM_HT: The frame was an HT frame * @RX_RES_PHY_FLAGS_OFDM_GF: The frame used GF preamble * @RX_RES_PHY_FLAGS_OFDM_VHT: The frame was a VHT frame */ enum iwl_rx_phy_flags { RX_RES_PHY_FLAGS_BAND_24 = BIT(0), RX_RES_PHY_FLAGS_MOD_CCK = BIT(1), RX_RES_PHY_FLAGS_SHORT_PREAMBLE = BIT(2), RX_RES_PHY_FLAGS_NARROW_BAND = BIT(3), RX_RES_PHY_FLAGS_ANTENNA = (0x7 << 4), RX_RES_PHY_FLAGS_ANTENNA_POS = 4, RX_RES_PHY_FLAGS_AGG = BIT(7), RX_RES_PHY_FLAGS_OFDM_HT = BIT(8), RX_RES_PHY_FLAGS_OFDM_GF = BIT(9), RX_RES_PHY_FLAGS_OFDM_VHT = BIT(10), }; /** * enum iwl_mvm_rx_status - written by fw for each Rx packet * @RX_MPDU_RES_STATUS_CRC_OK: CRC is fine * @RX_MPDU_RES_STATUS_OVERRUN_OK: there was no RXE overflow * @RX_MPDU_RES_STATUS_SRC_STA_FOUND: * @RX_MPDU_RES_STATUS_KEY_VALID: * @RX_MPDU_RES_STATUS_KEY_PARAM_OK: * @RX_MPDU_RES_STATUS_ICV_OK: ICV is fine, if not, the packet is destroyed * @RX_MPDU_RES_STATUS_MIC_OK: used for CCM alg only. TKIP MIC is checked * in the driver. * @RX_MPDU_RES_STATUS_TTAK_OK: TTAK is fine * @RX_MPDU_RES_STATUS_MNG_FRAME_REPLAY_ERR: valid for alg = CCM_CMAC or * alg = CCM only. Checks replay attack for 11w frames. Relevant only if * %RX_MPDU_RES_STATUS_ROBUST_MNG_FRAME is set. * @RX_MPDU_RES_STATUS_SEC_NO_ENC: this frame is not encrypted * @RX_MPDU_RES_STATUS_SEC_WEP_ENC: this frame is encrypted using WEP * @RX_MPDU_RES_STATUS_SEC_CCM_ENC: this frame is encrypted using CCM * @RX_MPDU_RES_STATUS_SEC_TKIP_ENC: this frame is encrypted using TKIP * @RX_MPDU_RES_STATUS_SEC_CCM_CMAC_ENC: this frame is encrypted using CCM_CMAC * @RX_MPDU_RES_STATUS_SEC_ENC_ERR: this frame couldn't be decrypted * @RX_MPDU_RES_STATUS_SEC_ENC_MSK: bitmask of the encryption algorithm * @RX_MPDU_RES_STATUS_DEC_DONE: this frame has been successfully decrypted * @RX_MPDU_RES_STATUS_PROTECT_FRAME_BIT_CMP: * @RX_MPDU_RES_STATUS_EXT_IV_BIT_CMP: * @RX_MPDU_RES_STATUS_KEY_ID_CMP_BIT: * @RX_MPDU_RES_STATUS_ROBUST_MNG_FRAME: this frame is an 11w management frame * @RX_MPDU_RES_STATUS_HASH_INDEX_MSK: * @RX_MPDU_RES_STATUS_STA_ID_MSK: * @RX_MPDU_RES_STATUS_RRF_KILL: * @RX_MPDU_RES_STATUS_FILTERING_MSK: * @RX_MPDU_RES_STATUS2_FILTERING_MSK: */ enum iwl_mvm_rx_status { RX_MPDU_RES_STATUS_CRC_OK = BIT(0), RX_MPDU_RES_STATUS_OVERRUN_OK = BIT(1), RX_MPDU_RES_STATUS_SRC_STA_FOUND = BIT(2), RX_MPDU_RES_STATUS_KEY_VALID = BIT(3), RX_MPDU_RES_STATUS_KEY_PARAM_OK = BIT(4), RX_MPDU_RES_STATUS_ICV_OK = BIT(5), RX_MPDU_RES_STATUS_MIC_OK = BIT(6), RX_MPDU_RES_STATUS_TTAK_OK = BIT(7), RX_MPDU_RES_STATUS_MNG_FRAME_REPLAY_ERR = BIT(7), RX_MPDU_RES_STATUS_SEC_NO_ENC = (0 << 8), RX_MPDU_RES_STATUS_SEC_WEP_ENC = (1 << 8), RX_MPDU_RES_STATUS_SEC_CCM_ENC = (2 << 8), RX_MPDU_RES_STATUS_SEC_TKIP_ENC = (3 << 8), RX_MPDU_RES_STATUS_SEC_EXT_ENC = (4 << 8), RX_MPDU_RES_STATUS_SEC_CCM_CMAC_ENC = (6 << 8), RX_MPDU_RES_STATUS_SEC_ENC_ERR = (7 << 8), RX_MPDU_RES_STATUS_SEC_ENC_MSK = (7 << 8), RX_MPDU_RES_STATUS_DEC_DONE = BIT(11), RX_MPDU_RES_STATUS_PROTECT_FRAME_BIT_CMP = BIT(12), RX_MPDU_RES_STATUS_EXT_IV_BIT_CMP = BIT(13), RX_MPDU_RES_STATUS_KEY_ID_CMP_BIT = BIT(14), RX_MPDU_RES_STATUS_ROBUST_MNG_FRAME = BIT(15), RX_MPDU_RES_STATUS_HASH_INDEX_MSK = (0x3F0000), RX_MPDU_RES_STATUS_STA_ID_MSK = (0x1f000000), RX_MPDU_RES_STATUS_RRF_KILL = BIT(29), RX_MPDU_RES_STATUS_FILTERING_MSK = (0xc00000), RX_MPDU_RES_STATUS2_FILTERING_MSK = (0xc0000000), }; /** * struct iwl_radio_version_notif - information on the radio version * ( RADIO_VERSION_NOTIFICATION = 0x68 ) * @radio_flavor: * @radio_step: * @radio_dash: */ struct iwl_radio_version_notif { __le32 radio_flavor; __le32 radio_step; __le32 radio_dash; } __packed; /* RADIO_VERSION_NOTOFICATION_S_VER_1 */ enum iwl_card_state_flags { CARD_ENABLED = 0x00, HW_CARD_DISABLED = 0x01, SW_CARD_DISABLED = 0x02, CT_KILL_CARD_DISABLED = 0x04, HALT_CARD_DISABLED = 0x08, CARD_DISABLED_MSK = 0x0f, CARD_IS_RX_ON = 0x10, }; /** * struct iwl_radio_version_notif - information on the radio version * ( CARD_STATE_NOTIFICATION = 0xa1 ) * @flags: %iwl_card_state_flags */ struct iwl_card_state_notif { __le32 flags; } __packed; /* CARD_STATE_NTFY_API_S_VER_1 */ /** * struct iwl_missed_beacons_notif - information on missed beacons * ( MISSED_BEACONS_NOTIFICATION = 0xa2 ) * @mac_id: interface ID * @consec_missed_beacons_since_last_rx: number of consecutive missed * beacons since last RX. * @consec_missed_beacons: number of consecutive missed beacons * @num_expected_beacons: * @num_recvd_beacons: */ struct iwl_missed_beacons_notif { __le32 mac_id; __le32 consec_missed_beacons_since_last_rx; __le32 consec_missed_beacons; __le32 num_expected_beacons; __le32 num_recvd_beacons; } __packed; /* MISSED_BEACON_NTFY_API_S_VER_3 */ /** * struct iwl_set_calib_default_cmd - set default value for calibration. * ( SET_CALIB_DEFAULT_CMD = 0x8e ) * @calib_index: the calibration to set value for * @length: of data * @data: the value to set for the calibration result */ struct iwl_set_calib_default_cmd { __le16 calib_index; __le16 length; u8 data[0]; } __packed; /* PHY_CALIB_OVERRIDE_VALUES_S */ #define MAX_PORT_ID_NUM 2 #define MAX_MCAST_FILTERING_ADDRESSES 256 /** * struct iwl_mcast_filter_cmd - configure multicast filter. * @filter_own: Set 1 to filter out multicast packets sent by station itself * @port_id: Multicast MAC addresses array specifier. This is a strange way * to identify network interface adopted in host-device IF. * It is used by FW as index in array of addresses. This array has * MAX_PORT_ID_NUM members. * @count: Number of MAC addresses in the array * @pass_all: Set 1 to pass all multicast packets. * @bssid: current association BSSID. * @addr_list: Place holder for array of MAC addresses. * IMPORTANT: add padding if necessary to ensure DWORD alignment. */ struct iwl_mcast_filter_cmd { u8 filter_own; u8 port_id; u8 count; u8 pass_all; u8 bssid[6]; u8 reserved[2]; u8 addr_list[0]; } __packed; /* MCAST_FILTERING_CMD_API_S_VER_1 */ #define MAX_BCAST_FILTERS 8 #define MAX_BCAST_FILTER_ATTRS 2 /** * enum iwl_mvm_bcast_filter_attr_offset - written by fw for each Rx packet * @BCAST_FILTER_OFFSET_PAYLOAD_START: offset is from payload start. * @BCAST_FILTER_OFFSET_IP_END: offset is from ip header end (i.e. * start of ip payload). */ enum iwl_mvm_bcast_filter_attr_offset { BCAST_FILTER_OFFSET_PAYLOAD_START = 0, BCAST_FILTER_OFFSET_IP_END = 1, }; /** * struct iwl_fw_bcast_filter_attr - broadcast filter attribute * @offset_type: &enum iwl_mvm_bcast_filter_attr_offset. * @offset: starting offset of this pattern. * @val: value to match - big endian (MSB is the first * byte to match from offset pos). * @mask: mask to match (big endian). */ struct iwl_fw_bcast_filter_attr { u8 offset_type; u8 offset; __le16 reserved1; __be32 val; __be32 mask; } __packed; /* BCAST_FILTER_ATT_S_VER_1 */ /** * enum iwl_mvm_bcast_filter_frame_type - filter frame type * @BCAST_FILTER_FRAME_TYPE_ALL: consider all frames. * @BCAST_FILTER_FRAME_TYPE_IPV4: consider only ipv4 frames */ enum iwl_mvm_bcast_filter_frame_type { BCAST_FILTER_FRAME_TYPE_ALL = 0, BCAST_FILTER_FRAME_TYPE_IPV4 = 1, }; /** * struct iwl_fw_bcast_filter - broadcast filter * @discard: discard frame (1) or let it pass (0). * @frame_type: &enum iwl_mvm_bcast_filter_frame_type. * @num_attrs: number of valid attributes in this filter. * @attrs: attributes of this filter. a filter is considered matched * only when all its attributes are matched (i.e. AND relationship) */ struct iwl_fw_bcast_filter { u8 discard; u8 frame_type; u8 num_attrs; u8 reserved1; struct iwl_fw_bcast_filter_attr attrs[MAX_BCAST_FILTER_ATTRS]; } __packed; /* BCAST_FILTER_S_VER_1 */ /** * struct iwl_fw_bcast_mac - per-mac broadcast filtering configuration. * @default_discard: default action for this mac (discard (1) / pass (0)). * @attached_filters: bitmap of relevant filters for this mac. */ struct iwl_fw_bcast_mac { u8 default_discard; u8 reserved1; __le16 attached_filters; } __packed; /* BCAST_MAC_CONTEXT_S_VER_1 */ /** * struct iwl_bcast_filter_cmd - broadcast filtering configuration * @disable: enable (0) / disable (1) * @max_bcast_filters: max number of filters (MAX_BCAST_FILTERS) * @max_macs: max number of macs (NUM_MAC_INDEX_DRIVER) * @filters: broadcast filters * @macs: broadcast filtering configuration per-mac */ struct iwl_bcast_filter_cmd { u8 disable; u8 max_bcast_filters; u8 max_macs; u8 reserved1; struct iwl_fw_bcast_filter filters[MAX_BCAST_FILTERS]; struct iwl_fw_bcast_mac macs[NUM_MAC_INDEX_DRIVER]; } __packed; /* BCAST_FILTERING_HCMD_API_S_VER_1 */ struct mvm_statistics_dbg { __le32 burst_check; __le32 burst_count; __le32 wait_for_silence_timeout_cnt; __le32 reserved[3]; } __packed; /* STATISTICS_DEBUG_API_S_VER_2 */ struct mvm_statistics_div { __le32 tx_on_a; __le32 tx_on_b; __le32 exec_time; __le32 probe_time; __le32 rssi_ant; __le32 reserved2; } __packed; /* STATISTICS_SLOW_DIV_API_S_VER_2 */ struct mvm_statistics_general_common { __le32 temperature; /* radio temperature */ __le32 temperature_m; /* radio voltage */ struct mvm_statistics_dbg dbg; __le32 sleep_time; __le32 slots_out; __le32 slots_idle; __le32 ttl_timestamp; struct mvm_statistics_div div; __le32 rx_enable_counter; /* * num_of_sos_states: * count the number of times we have to re-tune * in order to get out of bad PHY status */ __le32 num_of_sos_states; } __packed; /* STATISTICS_GENERAL_API_S_VER_5 */ struct mvm_statistics_rx_non_phy { __le32 bogus_cts; /* CTS received when not expecting CTS */ __le32 bogus_ack; /* ACK received when not expecting ACK */ __le32 non_bssid_frames; /* number of frames with BSSID that * doesn't belong to the STA BSSID */ __le32 filtered_frames; /* count frames that were dumped in the * filtering process */ __le32 non_channel_beacons; /* beacons with our bss id but not on * our serving channel */ __le32 channel_beacons; /* beacons with our bss id and in our * serving channel */ __le32 num_missed_bcon; /* number of missed beacons */ __le32 adc_rx_saturation_time; /* count in 0.8us units the time the * ADC was in saturation */ __le32 ina_detection_search_time;/* total time (in 0.8us) searched * for INA */ __le32 beacon_silence_rssi_a; /* RSSI silence after beacon frame */ __le32 beacon_silence_rssi_b; /* RSSI silence after beacon frame */ __le32 beacon_silence_rssi_c; /* RSSI silence after beacon frame */ __le32 interference_data_flag; /* flag for interference data * availability. 1 when data is * available. */ __le32 channel_load; /* counts RX Enable time in uSec */ __le32 dsp_false_alarms; /* DSP false alarm (both OFDM * and CCK) counter */ __le32 beacon_rssi_a; __le32 beacon_rssi_b; __le32 beacon_rssi_c; __le32 beacon_energy_a; __le32 beacon_energy_b; __le32 beacon_energy_c; __le32 num_bt_kills; __le32 mac_id; __le32 directed_data_mpdu; } __packed; /* STATISTICS_RX_NON_PHY_API_S_VER_3 */ struct mvm_statistics_rx_phy { __le32 ina_cnt; __le32 fina_cnt; __le32 plcp_err; __le32 crc32_err; __le32 overrun_err; __le32 early_overrun_err; __le32 crc32_good; __le32 false_alarm_cnt; __le32 fina_sync_err_cnt; __le32 sfd_timeout; __le32 fina_timeout; __le32 unresponded_rts; __le32 rxe_frame_limit_overrun; __le32 sent_ack_cnt; __le32 sent_cts_cnt; __le32 sent_ba_rsp_cnt; __le32 dsp_self_kill; __le32 mh_format_err; __le32 re_acq_main_rssi_sum; __le32 reserved; } __packed; /* STATISTICS_RX_PHY_API_S_VER_2 */ struct mvm_statistics_rx_ht_phy { __le32 plcp_err; __le32 overrun_err; __le32 early_overrun_err; __le32 crc32_good; __le32 crc32_err; __le32 mh_format_err; __le32 agg_crc32_good; __le32 agg_mpdu_cnt; __le32 agg_cnt; __le32 unsupport_mcs; } __packed; /* STATISTICS_HT_RX_PHY_API_S_VER_1 */ #define MAX_CHAINS 3 struct mvm_statistics_tx_non_phy_agg { __le32 ba_timeout; __le32 ba_reschedule_frames; __le32 scd_query_agg_frame_cnt; __le32 scd_query_no_agg; __le32 scd_query_agg; __le32 scd_query_mismatch; __le32 frame_not_ready; __le32 underrun; __le32 bt_prio_kill; __le32 rx_ba_rsp_cnt; __s8 txpower[MAX_CHAINS]; __s8 reserved; __le32 reserved2; } __packed; /* STATISTICS_TX_NON_PHY_AGG_API_S_VER_1 */ struct mvm_statistics_tx_channel_width { __le32 ext_cca_narrow_ch20[1]; __le32 ext_cca_narrow_ch40[2]; __le32 ext_cca_narrow_ch80[3]; __le32 ext_cca_narrow_ch160[4]; __le32 last_tx_ch_width_indx; __le32 rx_detected_per_ch_width[4]; __le32 success_per_ch_width[4]; __le32 fail_per_ch_width[4]; }; /* STATISTICS_TX_CHANNEL_WIDTH_API_S_VER_1 */ struct mvm_statistics_tx { __le32 preamble_cnt; __le32 rx_detected_cnt; __le32 bt_prio_defer_cnt; __le32 bt_prio_kill_cnt; __le32 few_bytes_cnt; __le32 cts_timeout; __le32 ack_timeout; __le32 expected_ack_cnt; __le32 actual_ack_cnt; __le32 dump_msdu_cnt; __le32 burst_abort_next_frame_mismatch_cnt; __le32 burst_abort_missing_next_frame_cnt; __le32 cts_timeout_collision; __le32 ack_or_ba_timeout_collision; struct mvm_statistics_tx_non_phy_agg agg; struct mvm_statistics_tx_channel_width channel_width; } __packed; /* STATISTICS_TX_API_S_VER_4 */ struct mvm_statistics_bt_activity { __le32 hi_priority_tx_req_cnt; __le32 hi_priority_tx_denied_cnt; __le32 lo_priority_tx_req_cnt; __le32 lo_priority_tx_denied_cnt; __le32 hi_priority_rx_req_cnt; __le32 hi_priority_rx_denied_cnt; __le32 lo_priority_rx_req_cnt; __le32 lo_priority_rx_denied_cnt; } __packed; /* STATISTICS_BT_ACTIVITY_API_S_VER_1 */ struct mvm_statistics_general { struct mvm_statistics_general_common common; __le32 beacon_filtered; __le32 missed_beacons; __s8 beacon_filter_average_energy; __s8 beacon_filter_reason; __s8 beacon_filter_current_energy; __s8 beacon_filter_reserved; __le32 beacon_filter_delta_time; struct mvm_statistics_bt_activity bt_activity; } __packed; /* STATISTICS_GENERAL_API_S_VER_5 */ struct mvm_statistics_rx { struct mvm_statistics_rx_phy ofdm; struct mvm_statistics_rx_phy cck; struct mvm_statistics_rx_non_phy general; struct mvm_statistics_rx_ht_phy ofdm_ht; } __packed; /* STATISTICS_RX_API_S_VER_3 */ /* * STATISTICS_NOTIFICATION = 0x9d (notification only, not a command) * * By default, uCode issues this notification after receiving a beacon * while associated. To disable this behavior, set DISABLE_NOTIF flag in the * REPLY_STATISTICS_CMD 0x9c, above. * * Statistics counters continue to increment beacon after beacon, but are * cleared when changing channels or when driver issues REPLY_STATISTICS_CMD * 0x9c with CLEAR_STATS bit set (see above). * * uCode also issues this notification during scans. uCode clears statistics * appropriately so that each notification contains statistics for only the * one channel that has just been scanned. */ struct iwl_notif_statistics { /* STATISTICS_NTFY_API_S_VER_8 */ __le32 flag; struct mvm_statistics_rx rx; struct mvm_statistics_tx tx; struct mvm_statistics_general general; } __packed; /*********************************** * Smart Fifo API ***********************************/ /* Smart Fifo state */ enum iwl_sf_state { SF_LONG_DELAY_ON = 0, /* should never be called by driver */ SF_FULL_ON, SF_UNINIT, SF_INIT_OFF, SF_HW_NUM_STATES }; /* Smart Fifo possible scenario */ enum iwl_sf_scenario { SF_SCENARIO_SINGLE_UNICAST, SF_SCENARIO_AGG_UNICAST, SF_SCENARIO_MULTICAST, SF_SCENARIO_BA_RESP, SF_SCENARIO_TX_RESP, SF_NUM_SCENARIO }; #define SF_TRANSIENT_STATES_NUMBER 2 /* SF_LONG_DELAY_ON and SF_FULL_ON */ #define SF_NUM_TIMEOUT_TYPES 2 /* Aging timer and Idle timer */ /* smart FIFO default values */ #define SF_W_MARK_SISO 4096 #define SF_W_MARK_MIMO2 8192 #define SF_W_MARK_MIMO3 6144 #define SF_W_MARK_LEGACY 4096 #define SF_W_MARK_SCAN 4096 /* SF Scenarios timers for FULL_ON state (aligned to 32 uSec) */ #define SF_SINGLE_UNICAST_IDLE_TIMER 320 /* 300 uSec */ #define SF_SINGLE_UNICAST_AGING_TIMER 2016 /* 2 mSec */ #define SF_AGG_UNICAST_IDLE_TIMER 320 /* 300 uSec */ #define SF_AGG_UNICAST_AGING_TIMER 2016 /* 2 mSec */ #define SF_MCAST_IDLE_TIMER 2016 /* 2 mSec */ #define SF_MCAST_AGING_TIMER 10016 /* 10 mSec */ #define SF_BA_IDLE_TIMER 320 /* 300 uSec */ #define SF_BA_AGING_TIMER 2016 /* 2 mSec */ #define SF_TX_RE_IDLE_TIMER 320 /* 300 uSec */ #define SF_TX_RE_AGING_TIMER 2016 /* 2 mSec */ #define SF_LONG_DELAY_AGING_TIMER 1000000 /* 1 Sec */ /** * Smart Fifo configuration command. * @state: smart fifo state, types listed in iwl_sf_sate. * @watermark: Minimum allowed availabe free space in RXF for transient state. * @long_delay_timeouts: aging and idle timer values for each scenario * in long delay state. * @full_on_timeouts: timer values for each scenario in full on state. */ struct iwl_sf_cfg_cmd { enum iwl_sf_state state; __le32 watermark[SF_TRANSIENT_STATES_NUMBER]; __le32 long_delay_timeouts[SF_NUM_SCENARIO][SF_NUM_TIMEOUT_TYPES]; __le32 full_on_timeouts[SF_NUM_SCENARIO][SF_NUM_TIMEOUT_TYPES]; } __packed; /* SF_CFG_API_S_VER_2 */ #endif /* __fw_api_h__ */