/* * The file intends to implement the functions needed by EEH, which is * built on IODA compliant chip. Actually, lots of functions related * to EEH would be built based on the OPAL APIs. * * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2013. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "powernv.h" #include "pci.h" static int ioda_eeh_nb_init = 0; static int ioda_eeh_event(struct notifier_block *nb, unsigned long events, void *change) { uint64_t changed_evts = (uint64_t)change; /* We simply send special EEH event */ if ((changed_evts & OPAL_EVENT_PCI_ERROR) && (events & OPAL_EVENT_PCI_ERROR) && eeh_enabled()) eeh_send_failure_event(NULL); return 0; } static struct notifier_block ioda_eeh_nb = { .notifier_call = ioda_eeh_event, .next = NULL, .priority = 0 }; #ifdef CONFIG_DEBUG_FS static int ioda_eeh_dbgfs_set(void *data, int offset, u64 val) { struct pci_controller *hose = data; struct pnv_phb *phb = hose->private_data; out_be64(phb->regs + offset, val); return 0; } static int ioda_eeh_dbgfs_get(void *data, int offset, u64 *val) { struct pci_controller *hose = data; struct pnv_phb *phb = hose->private_data; *val = in_be64(phb->regs + offset); return 0; } static int ioda_eeh_outb_dbgfs_set(void *data, u64 val) { return ioda_eeh_dbgfs_set(data, 0xD10, val); } static int ioda_eeh_outb_dbgfs_get(void *data, u64 *val) { return ioda_eeh_dbgfs_get(data, 0xD10, val); } static int ioda_eeh_inbA_dbgfs_set(void *data, u64 val) { return ioda_eeh_dbgfs_set(data, 0xD90, val); } static int ioda_eeh_inbA_dbgfs_get(void *data, u64 *val) { return ioda_eeh_dbgfs_get(data, 0xD90, val); } static int ioda_eeh_inbB_dbgfs_set(void *data, u64 val) { return ioda_eeh_dbgfs_set(data, 0xE10, val); } static int ioda_eeh_inbB_dbgfs_get(void *data, u64 *val) { return ioda_eeh_dbgfs_get(data, 0xE10, val); } DEFINE_SIMPLE_ATTRIBUTE(ioda_eeh_outb_dbgfs_ops, ioda_eeh_outb_dbgfs_get, ioda_eeh_outb_dbgfs_set, "0x%llx\n"); DEFINE_SIMPLE_ATTRIBUTE(ioda_eeh_inbA_dbgfs_ops, ioda_eeh_inbA_dbgfs_get, ioda_eeh_inbA_dbgfs_set, "0x%llx\n"); DEFINE_SIMPLE_ATTRIBUTE(ioda_eeh_inbB_dbgfs_ops, ioda_eeh_inbB_dbgfs_get, ioda_eeh_inbB_dbgfs_set, "0x%llx\n"); #endif /* CONFIG_DEBUG_FS */ /** * ioda_eeh_post_init - Chip dependent post initialization * @hose: PCI controller * * The function will be called after eeh PEs and devices * have been built. That means the EEH is ready to supply * service with I/O cache. */ static int ioda_eeh_post_init(struct pci_controller *hose) { struct pnv_phb *phb = hose->private_data; int ret; /* Register OPAL event notifier */ if (!ioda_eeh_nb_init) { ret = opal_notifier_register(&ioda_eeh_nb); if (ret) { pr_err("%s: Can't register OPAL event notifier (%d)\n", __func__, ret); return ret; } ioda_eeh_nb_init = 1; } #ifdef CONFIG_DEBUG_FS if (phb->dbgfs) { debugfs_create_file("err_injct_outbound", 0600, phb->dbgfs, hose, &ioda_eeh_outb_dbgfs_ops); debugfs_create_file("err_injct_inboundA", 0600, phb->dbgfs, hose, &ioda_eeh_inbA_dbgfs_ops); debugfs_create_file("err_injct_inboundB", 0600, phb->dbgfs, hose, &ioda_eeh_inbB_dbgfs_ops); } #endif phb->flags |= PNV_PHB_FLAG_EEH; return 0; } /** * ioda_eeh_set_option - Set EEH operation or I/O setting * @pe: EEH PE * @option: options * * Enable or disable EEH option for the indicated PE. The * function also can be used to enable I/O or DMA for the * PE. */ static int ioda_eeh_set_option(struct eeh_pe *pe, int option) { s64 ret; u32 pe_no; struct pci_controller *hose = pe->phb; struct pnv_phb *phb = hose->private_data; /* Check on PE number */ if (pe->addr < 0 || pe->addr >= phb->ioda.total_pe) { pr_err("%s: PE address %x out of range [0, %x] " "on PHB#%x\n", __func__, pe->addr, phb->ioda.total_pe, hose->global_number); return -EINVAL; } pe_no = pe->addr; switch (option) { case EEH_OPT_DISABLE: ret = -EEXIST; break; case EEH_OPT_ENABLE: ret = 0; break; case EEH_OPT_THAW_MMIO: ret = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, OPAL_EEH_ACTION_CLEAR_FREEZE_MMIO); if (ret) { pr_warning("%s: Failed to enable MMIO for " "PHB#%x-PE#%x, err=%lld\n", __func__, hose->global_number, pe_no, ret); return -EIO; } break; case EEH_OPT_THAW_DMA: ret = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, OPAL_EEH_ACTION_CLEAR_FREEZE_DMA); if (ret) { pr_warning("%s: Failed to enable DMA for " "PHB#%x-PE#%x, err=%lld\n", __func__, hose->global_number, pe_no, ret); return -EIO; } break; default: pr_warning("%s: Invalid option %d\n", __func__, option); return -EINVAL; } return ret; } static void ioda_eeh_phb_diag(struct pci_controller *hose) { struct pnv_phb *phb = hose->private_data; long rc; rc = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag.blob, PNV_PCI_DIAG_BUF_SIZE); if (rc != OPAL_SUCCESS) { pr_warning("%s: Failed to get diag-data for PHB#%x (%ld)\n", __func__, hose->global_number, rc); return; } pnv_pci_dump_phb_diag_data(hose, phb->diag.blob); } /** * ioda_eeh_get_state - Retrieve the state of PE * @pe: EEH PE * * The PE's state should be retrieved from the PEEV, PEST * IODA tables. Since the OPAL has exported the function * to do it, it'd better to use that. */ static int ioda_eeh_get_state(struct eeh_pe *pe) { s64 ret = 0; u8 fstate; u16 pcierr; u32 pe_no; int result; struct pci_controller *hose = pe->phb; struct pnv_phb *phb = hose->private_data; /* * Sanity check on PE address. The PHB PE address should * be zero. */ if (pe->addr < 0 || pe->addr >= phb->ioda.total_pe) { pr_err("%s: PE address %x out of range [0, %x] " "on PHB#%x\n", __func__, pe->addr, phb->ioda.total_pe, hose->global_number); return EEH_STATE_NOT_SUPPORT; } /* Retrieve PE status through OPAL */ pe_no = pe->addr; ret = opal_pci_eeh_freeze_status(phb->opal_id, pe_no, &fstate, &pcierr, NULL); if (ret) { pr_err("%s: Failed to get EEH status on " "PHB#%x-PE#%x\n, err=%lld\n", __func__, hose->global_number, pe_no, ret); return EEH_STATE_NOT_SUPPORT; } /* Check PHB status */ if (pe->type & EEH_PE_PHB) { result = 0; result &= ~EEH_STATE_RESET_ACTIVE; if (pcierr != OPAL_EEH_PHB_ERROR) { result |= EEH_STATE_MMIO_ACTIVE; result |= EEH_STATE_DMA_ACTIVE; result |= EEH_STATE_MMIO_ENABLED; result |= EEH_STATE_DMA_ENABLED; } else if (!(pe->state & EEH_PE_ISOLATED)) { eeh_pe_state_mark(pe, EEH_PE_ISOLATED); ioda_eeh_phb_diag(hose); } return result; } /* Parse result out */ result = 0; switch (fstate) { case OPAL_EEH_STOPPED_NOT_FROZEN: result &= ~EEH_STATE_RESET_ACTIVE; result |= EEH_STATE_MMIO_ACTIVE; result |= EEH_STATE_DMA_ACTIVE; result |= EEH_STATE_MMIO_ENABLED; result |= EEH_STATE_DMA_ENABLED; break; case OPAL_EEH_STOPPED_MMIO_FREEZE: result &= ~EEH_STATE_RESET_ACTIVE; result |= EEH_STATE_DMA_ACTIVE; result |= EEH_STATE_DMA_ENABLED; break; case OPAL_EEH_STOPPED_DMA_FREEZE: result &= ~EEH_STATE_RESET_ACTIVE; result |= EEH_STATE_MMIO_ACTIVE; result |= EEH_STATE_MMIO_ENABLED; break; case OPAL_EEH_STOPPED_MMIO_DMA_FREEZE: result &= ~EEH_STATE_RESET_ACTIVE; break; case OPAL_EEH_STOPPED_RESET: result |= EEH_STATE_RESET_ACTIVE; break; case OPAL_EEH_STOPPED_TEMP_UNAVAIL: result |= EEH_STATE_UNAVAILABLE; break; case OPAL_EEH_STOPPED_PERM_UNAVAIL: result |= EEH_STATE_NOT_SUPPORT; break; default: pr_warning("%s: Unexpected EEH status 0x%x " "on PHB#%x-PE#%x\n", __func__, fstate, hose->global_number, pe_no); } /* Dump PHB diag-data for frozen PE */ if (result != EEH_STATE_NOT_SUPPORT && (result & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) != (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE) && !(pe->state & EEH_PE_ISOLATED)) { eeh_pe_state_mark(pe, EEH_PE_ISOLATED); ioda_eeh_phb_diag(hose); } return result; } static int ioda_eeh_pe_clear(struct eeh_pe *pe) { struct pci_controller *hose; struct pnv_phb *phb; u32 pe_no; u8 fstate; u16 pcierr; s64 ret; pe_no = pe->addr; hose = pe->phb; phb = pe->phb->private_data; /* Clear the EEH error on the PE */ ret = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); if (ret) { pr_err("%s: Failed to clear EEH error for " "PHB#%x-PE#%x, err=%lld\n", __func__, hose->global_number, pe_no, ret); return -EIO; } /* * Read the PE state back and verify that the frozen * state has been removed. */ ret = opal_pci_eeh_freeze_status(phb->opal_id, pe_no, &fstate, &pcierr, NULL); if (ret) { pr_err("%s: Failed to get EEH status on " "PHB#%x-PE#%x\n, err=%lld\n", __func__, hose->global_number, pe_no, ret); return -EIO; } if (fstate != OPAL_EEH_STOPPED_NOT_FROZEN) { pr_err("%s: Frozen state not cleared on " "PHB#%x-PE#%x, sts=%x\n", __func__, hose->global_number, pe_no, fstate); return -EIO; } return 0; } static s64 ioda_eeh_phb_poll(struct pnv_phb *phb) { s64 rc = OPAL_HARDWARE; while (1) { rc = opal_pci_poll(phb->opal_id); if (rc <= 0) break; msleep(rc); } return rc; } static int ioda_eeh_phb_reset(struct pci_controller *hose, int option) { struct pnv_phb *phb = hose->private_data; s64 rc = OPAL_HARDWARE; pr_debug("%s: Reset PHB#%x, option=%d\n", __func__, hose->global_number, option); /* Issue PHB complete reset request */ if (option == EEH_RESET_FUNDAMENTAL || option == EEH_RESET_HOT) rc = opal_pci_reset(phb->opal_id, OPAL_PHB_COMPLETE, OPAL_ASSERT_RESET); else if (option == EEH_RESET_DEACTIVATE) rc = opal_pci_reset(phb->opal_id, OPAL_PHB_COMPLETE, OPAL_DEASSERT_RESET); if (rc < 0) goto out; /* * Poll state of the PHB until the request is done * successfully. */ rc = ioda_eeh_phb_poll(phb); out: if (rc != OPAL_SUCCESS) return -EIO; return 0; } static int ioda_eeh_root_reset(struct pci_controller *hose, int option) { struct pnv_phb *phb = hose->private_data; s64 rc = OPAL_SUCCESS; pr_debug("%s: Reset PHB#%x, option=%d\n", __func__, hose->global_number, option); /* * During the reset deassert time, we needn't care * the reset scope because the firmware does nothing * for fundamental or hot reset during deassert phase. */ if (option == EEH_RESET_FUNDAMENTAL) rc = opal_pci_reset(phb->opal_id, OPAL_PCI_FUNDAMENTAL_RESET, OPAL_ASSERT_RESET); else if (option == EEH_RESET_HOT) rc = opal_pci_reset(phb->opal_id, OPAL_PCI_HOT_RESET, OPAL_ASSERT_RESET); else if (option == EEH_RESET_DEACTIVATE) rc = opal_pci_reset(phb->opal_id, OPAL_PCI_HOT_RESET, OPAL_DEASSERT_RESET); if (rc < 0) goto out; /* Poll state of the PHB until the request is done */ rc = ioda_eeh_phb_poll(phb); out: if (rc != OPAL_SUCCESS) return -EIO; return 0; } static int ioda_eeh_bridge_reset(struct pci_dev *dev, int option) { struct device_node *dn = pci_device_to_OF_node(dev); u32 ctrl; pr_debug("%s: Reset PCI bus %04x:%02x with option %d\n", __func__, pci_domain_nr(dev->bus), dev->bus->number, option); switch (option) { case EEH_RESET_FUNDAMENTAL: case EEH_RESET_HOT: eeh_ops->read_config(dn, PCI_BRIDGE_CONTROL, 2, &ctrl); ctrl |= PCI_BRIDGE_CTL_BUS_RESET; eeh_ops->write_config(dn, PCI_BRIDGE_CONTROL, 2, ctrl); break; case EEH_RESET_DEACTIVATE: eeh_ops->read_config(dn, PCI_BRIDGE_CONTROL, 2, &ctrl); ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; eeh_ops->write_config(dn, PCI_BRIDGE_CONTROL, 2, ctrl); break; } return 0; } /** * ioda_eeh_reset - Reset the indicated PE * @pe: EEH PE * @option: reset option * * Do reset on the indicated PE. For PCI bus sensitive PE, * we need to reset the parent p2p bridge. The PHB has to * be reinitialized if the p2p bridge is root bridge. For * PCI device sensitive PE, we will try to reset the device * through FLR. For now, we don't have OPAL APIs to do HARD * reset yet, so all reset would be SOFT (HOT) reset. */ static int ioda_eeh_reset(struct eeh_pe *pe, int option) { struct pci_controller *hose = pe->phb; struct pci_bus *bus; int ret; /* * Anyway, we have to clear the problematic state for the * corresponding PE. However, we needn't do it if the PE * is PHB associated. That means the PHB is having fatal * errors and it needs reset. Further more, the AIB interface * isn't reliable any more. */ if (!(pe->type & EEH_PE_PHB) && (option == EEH_RESET_HOT || option == EEH_RESET_FUNDAMENTAL)) { ret = ioda_eeh_pe_clear(pe); if (ret) return -EIO; } /* * The rules applied to reset, either fundamental or hot reset: * * We always reset the direct upstream bridge of the PE. If the * direct upstream bridge isn't root bridge, we always take hot * reset no matter what option (fundamental or hot) is. Otherwise, * we should do the reset according to the required option. */ if (pe->type & EEH_PE_PHB) { ret = ioda_eeh_phb_reset(hose, option); } else { bus = eeh_pe_bus_get(pe); if (pci_is_root_bus(bus)) ret = ioda_eeh_root_reset(hose, option); else ret = ioda_eeh_bridge_reset(bus->self, option); } return ret; } /** * ioda_eeh_configure_bridge - Configure the PCI bridges for the indicated PE * @pe: EEH PE * * For particular PE, it might have included PCI bridges. In order * to make the PE work properly, those PCI bridges should be configured * correctly. However, we need do nothing on P7IOC since the reset * function will do everything that should be covered by the function. */ static int ioda_eeh_configure_bridge(struct eeh_pe *pe) { return 0; } static void ioda_eeh_hub_diag_common(struct OpalIoP7IOCErrorData *data) { /* GEM */ pr_info(" GEM XFIR: %016llx\n", data->gemXfir); pr_info(" GEM RFIR: %016llx\n", data->gemRfir); pr_info(" GEM RIRQFIR: %016llx\n", data->gemRirqfir); pr_info(" GEM Mask: %016llx\n", data->gemMask); pr_info(" GEM RWOF: %016llx\n", data->gemRwof); /* LEM */ pr_info(" LEM FIR: %016llx\n", data->lemFir); pr_info(" LEM Error Mask: %016llx\n", data->lemErrMask); pr_info(" LEM Action 0: %016llx\n", data->lemAction0); pr_info(" LEM Action 1: %016llx\n", data->lemAction1); pr_info(" LEM WOF: %016llx\n", data->lemWof); } static void ioda_eeh_hub_diag(struct pci_controller *hose) { struct pnv_phb *phb = hose->private_data; struct OpalIoP7IOCErrorData *data = &phb->diag.hub_diag; long rc; rc = opal_pci_get_hub_diag_data(phb->hub_id, data, sizeof(*data)); if (rc != OPAL_SUCCESS) { pr_warning("%s: Failed to get HUB#%llx diag-data (%ld)\n", __func__, phb->hub_id, rc); return; } switch (data->type) { case OPAL_P7IOC_DIAG_TYPE_RGC: pr_info("P7IOC diag-data for RGC\n\n"); ioda_eeh_hub_diag_common(data); pr_info(" RGC Status: %016llx\n", data->rgc.rgcStatus); pr_info(" RGC LDCP: %016llx\n", data->rgc.rgcLdcp); break; case OPAL_P7IOC_DIAG_TYPE_BI: pr_info("P7IOC diag-data for BI %s\n\n", data->bi.biDownbound ? "Downbound" : "Upbound"); ioda_eeh_hub_diag_common(data); pr_info(" BI LDCP 0: %016llx\n", data->bi.biLdcp0); pr_info(" BI LDCP 1: %016llx\n", data->bi.biLdcp1); pr_info(" BI LDCP 2: %016llx\n", data->bi.biLdcp2); pr_info(" BI Fence Status: %016llx\n", data->bi.biFenceStatus); break; case OPAL_P7IOC_DIAG_TYPE_CI: pr_info("P7IOC diag-data for CI Port %d\\nn", data->ci.ciPort); ioda_eeh_hub_diag_common(data); pr_info(" CI Port Status: %016llx\n", data->ci.ciPortStatus); pr_info(" CI Port LDCP: %016llx\n", data->ci.ciPortLdcp); break; case OPAL_P7IOC_DIAG_TYPE_MISC: pr_info("P7IOC diag-data for MISC\n\n"); ioda_eeh_hub_diag_common(data); break; case OPAL_P7IOC_DIAG_TYPE_I2C: pr_info("P7IOC diag-data for I2C\n\n"); ioda_eeh_hub_diag_common(data); break; default: pr_warning("%s: Invalid type of HUB#%llx diag-data (%d)\n", __func__, phb->hub_id, data->type); } } static int ioda_eeh_get_pe(struct pci_controller *hose, u16 pe_no, struct eeh_pe **pe) { struct eeh_pe *phb_pe, *dev_pe; struct eeh_dev dev; /* Find the PHB PE */ phb_pe = eeh_phb_pe_get(hose); if (!phb_pe) return -EEXIST; /* Find the PE according to PE# */ memset(&dev, 0, sizeof(struct eeh_dev)); dev.phb = hose; dev.pe_config_addr = pe_no; dev_pe = eeh_pe_get(&dev); if (!dev_pe) return -EEXIST; *pe = dev_pe; return 0; } /** * ioda_eeh_next_error - Retrieve next error for EEH core to handle * @pe: The affected PE * * The function is expected to be called by EEH core while it gets * special EEH event (without binding PE). The function calls to * OPAL APIs for next error to handle. The informational error is * handled internally by platform. However, the dead IOC, dead PHB, * fenced PHB and frozen PE should be handled by EEH core eventually. */ static int ioda_eeh_next_error(struct eeh_pe **pe) { struct pci_controller *hose; struct pnv_phb *phb; struct eeh_pe *phb_pe; u64 frozen_pe_no; u16 err_type, severity; long rc; int ret = EEH_NEXT_ERR_NONE; /* * While running here, it's safe to purge the event queue. * And we should keep the cached OPAL notifier event sychronized * between the kernel and firmware. */ eeh_remove_event(NULL); opal_notifier_update_evt(OPAL_EVENT_PCI_ERROR, 0x0ul); list_for_each_entry(hose, &hose_list, list_node) { /* * If the subordinate PCI buses of the PHB has been * removed or is exactly under error recovery, we * needn't take care of it any more. */ phb = hose->private_data; phb_pe = eeh_phb_pe_get(hose); if (!phb_pe || (phb_pe->state & EEH_PE_ISOLATED)) continue; rc = opal_pci_next_error(phb->opal_id, &frozen_pe_no, &err_type, &severity); /* If OPAL API returns error, we needn't proceed */ if (rc != OPAL_SUCCESS) { pr_devel("%s: Invalid return value on " "PHB#%x (0x%lx) from opal_pci_next_error", __func__, hose->global_number, rc); continue; } /* If the PHB doesn't have error, stop processing */ if (err_type == OPAL_EEH_NO_ERROR || severity == OPAL_EEH_SEV_NO_ERROR) { pr_devel("%s: No error found on PHB#%x\n", __func__, hose->global_number); continue; } /* * Processing the error. We're expecting the error with * highest priority reported upon multiple errors on the * specific PHB. */ pr_devel("%s: Error (%d, %d, %llu) on PHB#%x\n", __func__, err_type, severity, frozen_pe_no, hose->global_number); switch (err_type) { case OPAL_EEH_IOC_ERROR: if (severity == OPAL_EEH_SEV_IOC_DEAD) { pr_err("EEH: dead IOC detected\n"); ret = EEH_NEXT_ERR_DEAD_IOC; } else if (severity == OPAL_EEH_SEV_INF) { pr_info("EEH: IOC informative error " "detected\n"); ioda_eeh_hub_diag(hose); ret = EEH_NEXT_ERR_NONE; } break; case OPAL_EEH_PHB_ERROR: if (severity == OPAL_EEH_SEV_PHB_DEAD) { *pe = phb_pe; pr_err("EEH: dead PHB#%x detected\n", hose->global_number); ret = EEH_NEXT_ERR_DEAD_PHB; } else if (severity == OPAL_EEH_SEV_PHB_FENCED) { *pe = phb_pe; pr_err("EEH: fenced PHB#%x detected\n", hose->global_number); ret = EEH_NEXT_ERR_FENCED_PHB; } else if (severity == OPAL_EEH_SEV_INF) { pr_info("EEH: PHB#%x informative error " "detected\n", hose->global_number); ioda_eeh_phb_diag(hose); ret = EEH_NEXT_ERR_NONE; } break; case OPAL_EEH_PE_ERROR: /* * If we can't find the corresponding PE, the * PEEV / PEST would be messy. So we force an * fenced PHB so that it can be recovered. */ if (ioda_eeh_get_pe(hose, frozen_pe_no, pe)) { *pe = phb_pe; pr_err("EEH: Escalated fenced PHB#%x " "detected for PE#%llx\n", hose->global_number, frozen_pe_no); ret = EEH_NEXT_ERR_FENCED_PHB; } else { pr_err("EEH: Frozen PE#%x on PHB#%x detected\n", (*pe)->addr, (*pe)->phb->global_number); ret = EEH_NEXT_ERR_FROZEN_PE; } break; default: pr_warn("%s: Unexpected error type %d\n", __func__, err_type); } /* * EEH core will try recover from fenced PHB or * frozen PE. In the time for frozen PE, EEH core * enable IO path for that before collecting logs, * but it ruins the site. So we have to dump the * log in advance here. */ if ((ret == EEH_NEXT_ERR_FROZEN_PE || ret == EEH_NEXT_ERR_FENCED_PHB) && !((*pe)->state & EEH_PE_ISOLATED)) { eeh_pe_state_mark(*pe, EEH_PE_ISOLATED); ioda_eeh_phb_diag(hose); } /* * If we have no errors on the specific PHB or only * informative error there, we continue poking it. * Otherwise, we need actions to be taken by upper * layer. */ if (ret > EEH_NEXT_ERR_INF) break; } return ret; } struct pnv_eeh_ops ioda_eeh_ops = { .post_init = ioda_eeh_post_init, .set_option = ioda_eeh_set_option, .get_state = ioda_eeh_get_state, .reset = ioda_eeh_reset, .configure_bridge = ioda_eeh_configure_bridge, .next_error = ioda_eeh_next_error };