/* * File: msi.c * Purpose: PCI Message Signaled Interrupt (MSI) * * Copyright (C) 2003-2004 Intel * Copyright (C) Tom Long Nguyen (tom.l.nguyen@intel.com) */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "pci.h" static int pci_msi_enable = 1; #define msix_table_size(flags) ((flags & PCI_MSIX_FLAGS_QSIZE) + 1) /* Arch hooks */ int __weak arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc) { struct msi_chip *chip = dev->bus->msi; int err; if (!chip || !chip->setup_irq) return -EINVAL; err = chip->setup_irq(chip, dev, desc); if (err < 0) return err; irq_set_chip_data(desc->irq, chip); return 0; } void __weak arch_teardown_msi_irq(unsigned int irq) { struct msi_chip *chip = irq_get_chip_data(irq); if (!chip || !chip->teardown_irq) return; chip->teardown_irq(chip, irq); } int __weak arch_msi_check_device(struct pci_dev *dev, int nvec, int type) { struct msi_chip *chip = dev->bus->msi; if (!chip || !chip->check_device) return 0; return chip->check_device(chip, dev, nvec, type); } int __weak arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type) { struct msi_desc *entry; int ret; /* * If an architecture wants to support multiple MSI, it needs to * override arch_setup_msi_irqs() */ if (type == PCI_CAP_ID_MSI && nvec > 1) return 1; list_for_each_entry(entry, &dev->msi_list, list) { ret = arch_setup_msi_irq(dev, entry); if (ret < 0) return ret; if (ret > 0) return -ENOSPC; } return 0; } /* * We have a default implementation available as a separate non-weak * function, as it is used by the Xen x86 PCI code */ void default_teardown_msi_irqs(struct pci_dev *dev) { struct msi_desc *entry; list_for_each_entry(entry, &dev->msi_list, list) { int i, nvec; if (entry->irq == 0) continue; if (entry->nvec_used) nvec = entry->nvec_used; else nvec = 1 << entry->msi_attrib.multiple; for (i = 0; i < nvec; i++) arch_teardown_msi_irq(entry->irq + i); } } void __weak arch_teardown_msi_irqs(struct pci_dev *dev) { return default_teardown_msi_irqs(dev); } void default_restore_msi_irqs(struct pci_dev *dev, int irq) { struct msi_desc *entry; entry = NULL; if (dev->msix_enabled) { list_for_each_entry(entry, &dev->msi_list, list) { if (irq == entry->irq) break; } } else if (dev->msi_enabled) { entry = irq_get_msi_desc(irq); } if (entry) write_msi_msg(irq, &entry->msg); } void __weak arch_restore_msi_irqs(struct pci_dev *dev, int irq) { return default_restore_msi_irqs(dev, irq); } static void msi_set_enable(struct pci_dev *dev, int enable) { u16 control; pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control); control &= ~PCI_MSI_FLAGS_ENABLE; if (enable) control |= PCI_MSI_FLAGS_ENABLE; pci_write_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, control); } static void msix_set_enable(struct pci_dev *dev, int enable) { u16 control; pci_read_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, &control); control &= ~PCI_MSIX_FLAGS_ENABLE; if (enable) control |= PCI_MSIX_FLAGS_ENABLE; pci_write_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, control); } static inline __attribute_const__ u32 msi_mask(unsigned x) { /* Don't shift by >= width of type */ if (x >= 5) return 0xffffffff; return (1 << (1 << x)) - 1; } static inline __attribute_const__ u32 msi_capable_mask(u16 control) { return msi_mask((control >> 1) & 7); } static inline __attribute_const__ u32 msi_enabled_mask(u16 control) { return msi_mask((control >> 4) & 7); } /* * PCI 2.3 does not specify mask bits for each MSI interrupt. Attempting to * mask all MSI interrupts by clearing the MSI enable bit does not work * reliably as devices without an INTx disable bit will then generate a * level IRQ which will never be cleared. */ u32 default_msi_mask_irq(struct msi_desc *desc, u32 mask, u32 flag) { u32 mask_bits = desc->masked; if (!desc->msi_attrib.maskbit) return 0; mask_bits &= ~mask; mask_bits |= flag; pci_write_config_dword(desc->dev, desc->mask_pos, mask_bits); return mask_bits; } __weak u32 arch_msi_mask_irq(struct msi_desc *desc, u32 mask, u32 flag) { return default_msi_mask_irq(desc, mask, flag); } static void msi_mask_irq(struct msi_desc *desc, u32 mask, u32 flag) { desc->masked = arch_msi_mask_irq(desc, mask, flag); } /* * This internal function does not flush PCI writes to the device. * All users must ensure that they read from the device before either * assuming that the device state is up to date, or returning out of this * file. This saves a few milliseconds when initialising devices with lots * of MSI-X interrupts. */ u32 default_msix_mask_irq(struct msi_desc *desc, u32 flag) { u32 mask_bits = desc->masked; unsigned offset = desc->msi_attrib.entry_nr * PCI_MSIX_ENTRY_SIZE + PCI_MSIX_ENTRY_VECTOR_CTRL; mask_bits &= ~PCI_MSIX_ENTRY_CTRL_MASKBIT; if (flag) mask_bits |= PCI_MSIX_ENTRY_CTRL_MASKBIT; writel(mask_bits, desc->mask_base + offset); return mask_bits; } __weak u32 arch_msix_mask_irq(struct msi_desc *desc, u32 flag) { return default_msix_mask_irq(desc, flag); } static void msix_mask_irq(struct msi_desc *desc, u32 flag) { desc->masked = arch_msix_mask_irq(desc, flag); } static void msi_set_mask_bit(struct irq_data *data, u32 flag) { struct msi_desc *desc = irq_data_get_msi(data); if (desc->msi_attrib.is_msix) { msix_mask_irq(desc, flag); readl(desc->mask_base); /* Flush write to device */ } else { unsigned offset = data->irq - desc->dev->irq; msi_mask_irq(desc, 1 << offset, flag << offset); } } void mask_msi_irq(struct irq_data *data) { msi_set_mask_bit(data, 1); } void unmask_msi_irq(struct irq_data *data) { msi_set_mask_bit(data, 0); } void __read_msi_msg(struct msi_desc *entry, struct msi_msg *msg) { BUG_ON(entry->dev->current_state != PCI_D0); if (entry->msi_attrib.is_msix) { void __iomem *base = entry->mask_base + entry->msi_attrib.entry_nr * PCI_MSIX_ENTRY_SIZE; msg->address_lo = readl(base + PCI_MSIX_ENTRY_LOWER_ADDR); msg->address_hi = readl(base + PCI_MSIX_ENTRY_UPPER_ADDR); msg->data = readl(base + PCI_MSIX_ENTRY_DATA); } else { struct pci_dev *dev = entry->dev; int pos = dev->msi_cap; u16 data; pci_read_config_dword(dev, pos + PCI_MSI_ADDRESS_LO, &msg->address_lo); if (entry->msi_attrib.is_64) { pci_read_config_dword(dev, pos + PCI_MSI_ADDRESS_HI, &msg->address_hi); pci_read_config_word(dev, pos + PCI_MSI_DATA_64, &data); } else { msg->address_hi = 0; pci_read_config_word(dev, pos + PCI_MSI_DATA_32, &data); } msg->data = data; } } void read_msi_msg(unsigned int irq, struct msi_msg *msg) { struct msi_desc *entry = irq_get_msi_desc(irq); __read_msi_msg(entry, msg); } void __get_cached_msi_msg(struct msi_desc *entry, struct msi_msg *msg) { /* Assert that the cache is valid, assuming that * valid messages are not all-zeroes. */ BUG_ON(!(entry->msg.address_hi | entry->msg.address_lo | entry->msg.data)); *msg = entry->msg; } void get_cached_msi_msg(unsigned int irq, struct msi_msg *msg) { struct msi_desc *entry = irq_get_msi_desc(irq); __get_cached_msi_msg(entry, msg); } void __write_msi_msg(struct msi_desc *entry, struct msi_msg *msg) { if (entry->dev->current_state != PCI_D0) { /* Don't touch the hardware now */ } else if (entry->msi_attrib.is_msix) { void __iomem *base; base = entry->mask_base + entry->msi_attrib.entry_nr * PCI_MSIX_ENTRY_SIZE; writel(msg->address_lo, base + PCI_MSIX_ENTRY_LOWER_ADDR); writel(msg->address_hi, base + PCI_MSIX_ENTRY_UPPER_ADDR); writel(msg->data, base + PCI_MSIX_ENTRY_DATA); } else { struct pci_dev *dev = entry->dev; int pos = dev->msi_cap; u16 msgctl; pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &msgctl); msgctl &= ~PCI_MSI_FLAGS_QSIZE; msgctl |= entry->msi_attrib.multiple << 4; pci_write_config_word(dev, pos + PCI_MSI_FLAGS, msgctl); pci_write_config_dword(dev, pos + PCI_MSI_ADDRESS_LO, msg->address_lo); if (entry->msi_attrib.is_64) { pci_write_config_dword(dev, pos + PCI_MSI_ADDRESS_HI, msg->address_hi); pci_write_config_word(dev, pos + PCI_MSI_DATA_64, msg->data); } else { pci_write_config_word(dev, pos + PCI_MSI_DATA_32, msg->data); } } entry->msg = *msg; } void write_msi_msg(unsigned int irq, struct msi_msg *msg) { struct msi_desc *entry = irq_get_msi_desc(irq); __write_msi_msg(entry, msg); } static void free_msi_irqs(struct pci_dev *dev) { struct msi_desc *entry, *tmp; struct attribute **msi_attrs; struct device_attribute *dev_attr; int count = 0; list_for_each_entry(entry, &dev->msi_list, list) { int i, nvec; if (!entry->irq) continue; if (entry->nvec_used) nvec = entry->nvec_used; else nvec = 1 << entry->msi_attrib.multiple; for (i = 0; i < nvec; i++) BUG_ON(irq_has_action(entry->irq + i)); } arch_teardown_msi_irqs(dev); list_for_each_entry_safe(entry, tmp, &dev->msi_list, list) { if (entry->msi_attrib.is_msix) { if (list_is_last(&entry->list, &dev->msi_list)) iounmap(entry->mask_base); } /* * Its possible that we get into this path * When populate_msi_sysfs fails, which means the entries * were not registered with sysfs. In that case don't * unregister them. */ if (entry->kobj.parent) { kobject_del(&entry->kobj); kobject_put(&entry->kobj); } list_del(&entry->list); kfree(entry); } if (dev->msi_irq_groups) { sysfs_remove_groups(&dev->dev.kobj, dev->msi_irq_groups); msi_attrs = dev->msi_irq_groups[0]->attrs; list_for_each_entry(entry, &dev->msi_list, list) { dev_attr = container_of(msi_attrs[count], struct device_attribute, attr); kfree(dev_attr->attr.name); kfree(dev_attr); ++count; } kfree(msi_attrs); kfree(dev->msi_irq_groups[0]); kfree(dev->msi_irq_groups); dev->msi_irq_groups = NULL; } } static struct msi_desc *alloc_msi_entry(struct pci_dev *dev) { struct msi_desc *desc = kzalloc(sizeof(*desc), GFP_KERNEL); if (!desc) return NULL; INIT_LIST_HEAD(&desc->list); desc->dev = dev; return desc; } static void pci_intx_for_msi(struct pci_dev *dev, int enable) { if (!(dev->dev_flags & PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG)) pci_intx(dev, enable); } static void __pci_restore_msi_state(struct pci_dev *dev) { u16 control; struct msi_desc *entry; if (!dev->msi_enabled) return; entry = irq_get_msi_desc(dev->irq); pci_intx_for_msi(dev, 0); msi_set_enable(dev, 0); arch_restore_msi_irqs(dev, dev->irq); pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control); msi_mask_irq(entry, msi_capable_mask(control), entry->masked); control &= ~PCI_MSI_FLAGS_QSIZE; control |= (entry->msi_attrib.multiple << 4) | PCI_MSI_FLAGS_ENABLE; pci_write_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, control); } static void __pci_restore_msix_state(struct pci_dev *dev) { struct msi_desc *entry; u16 control; if (!dev->msix_enabled) return; BUG_ON(list_empty(&dev->msi_list)); entry = list_first_entry(&dev->msi_list, struct msi_desc, list); pci_read_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, &control); /* route the table */ pci_intx_for_msi(dev, 0); control |= PCI_MSIX_FLAGS_ENABLE | PCI_MSIX_FLAGS_MASKALL; pci_write_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, control); list_for_each_entry(entry, &dev->msi_list, list) { arch_restore_msi_irqs(dev, entry->irq); msix_mask_irq(entry, entry->masked); } control &= ~PCI_MSIX_FLAGS_MASKALL; pci_write_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, control); } void pci_restore_msi_state(struct pci_dev *dev) { __pci_restore_msi_state(dev); __pci_restore_msix_state(dev); } EXPORT_SYMBOL_GPL(pci_restore_msi_state); static ssize_t msi_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct pci_dev *pdev = to_pci_dev(dev); struct msi_desc *entry; unsigned long irq; int retval; retval = kstrtoul(attr->attr.name, 10, &irq); if (retval) return retval; list_for_each_entry(entry, &pdev->msi_list, list) { if (entry->irq == irq) { return sprintf(buf, "%s\n", entry->msi_attrib.is_msix ? "msix" : "msi"); } } return -ENODEV; } static int populate_msi_sysfs(struct pci_dev *pdev) { struct attribute **msi_attrs; struct attribute *msi_attr; struct device_attribute *msi_dev_attr; struct attribute_group *msi_irq_group; const struct attribute_group **msi_irq_groups; struct msi_desc *entry; int ret = -ENOMEM; int num_msi = 0; int count = 0; /* Determine how many msi entries we have */ list_for_each_entry(entry, &pdev->msi_list, list) { ++num_msi; } if (!num_msi) return 0; /* Dynamically create the MSI attributes for the PCI device */ msi_attrs = kzalloc(sizeof(void *) * (num_msi + 1), GFP_KERNEL); if (!msi_attrs) return -ENOMEM; list_for_each_entry(entry, &pdev->msi_list, list) { char *name = kmalloc(20, GFP_KERNEL); msi_dev_attr = kzalloc(sizeof(*msi_dev_attr), GFP_KERNEL); if (!msi_dev_attr) goto error_attrs; sprintf(name, "%d", entry->irq); sysfs_attr_init(&msi_dev_attr->attr); msi_dev_attr->attr.name = name; msi_dev_attr->attr.mode = S_IRUGO; msi_dev_attr->show = msi_mode_show; msi_attrs[count] = &msi_dev_attr->attr; ++count; } msi_irq_group = kzalloc(sizeof(*msi_irq_group), GFP_KERNEL); if (!msi_irq_group) goto error_attrs; msi_irq_group->name = "msi_irqs"; msi_irq_group->attrs = msi_attrs; msi_irq_groups = kzalloc(sizeof(void *) * 2, GFP_KERNEL); if (!msi_irq_groups) goto error_irq_group; msi_irq_groups[0] = msi_irq_group; ret = sysfs_create_groups(&pdev->dev.kobj, msi_irq_groups); if (ret) goto error_irq_groups; pdev->msi_irq_groups = msi_irq_groups; return 0; error_irq_groups: kfree(msi_irq_groups); error_irq_group: kfree(msi_irq_group); error_attrs: count = 0; msi_attr = msi_attrs[count]; while (msi_attr) { msi_dev_attr = container_of(msi_attr, struct device_attribute, attr); kfree(msi_attr->name); kfree(msi_dev_attr); ++count; msi_attr = msi_attrs[count]; } return ret; } /** * msi_capability_init - configure device's MSI capability structure * @dev: pointer to the pci_dev data structure of MSI device function * @nvec: number of interrupts to allocate * * Setup the MSI capability structure of the device with the requested * number of interrupts. A return value of zero indicates the successful * setup of an entry with the new MSI irq. A negative return value indicates * an error, and a positive return value indicates the number of interrupts * which could have been allocated. */ static int msi_capability_init(struct pci_dev *dev, int nvec) { struct msi_desc *entry; int ret; u16 control; unsigned mask; msi_set_enable(dev, 0); /* Disable MSI during set up */ pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control); /* MSI Entry Initialization */ entry = alloc_msi_entry(dev); if (!entry) return -ENOMEM; entry->msi_attrib.is_msix = 0; entry->msi_attrib.is_64 = !!(control & PCI_MSI_FLAGS_64BIT); entry->msi_attrib.entry_nr = 0; entry->msi_attrib.maskbit = !!(control & PCI_MSI_FLAGS_MASKBIT); entry->msi_attrib.default_irq = dev->irq; /* Save IOAPIC IRQ */ entry->msi_attrib.pos = dev->msi_cap; if (control & PCI_MSI_FLAGS_64BIT) entry->mask_pos = dev->msi_cap + PCI_MSI_MASK_64; else entry->mask_pos = dev->msi_cap + PCI_MSI_MASK_32; /* All MSIs are unmasked by default, Mask them all */ if (entry->msi_attrib.maskbit) pci_read_config_dword(dev, entry->mask_pos, &entry->masked); mask = msi_capable_mask(control); msi_mask_irq(entry, mask, mask); list_add_tail(&entry->list, &dev->msi_list); /* Configure MSI capability structure */ ret = arch_setup_msi_irqs(dev, nvec, PCI_CAP_ID_MSI); if (ret) { msi_mask_irq(entry, mask, ~mask); free_msi_irqs(dev); return ret; } ret = populate_msi_sysfs(dev); if (ret) { msi_mask_irq(entry, mask, ~mask); free_msi_irqs(dev); return ret; } /* Set MSI enabled bits */ pci_intx_for_msi(dev, 0); msi_set_enable(dev, 1); dev->msi_enabled = 1; dev->irq = entry->irq; return 0; } static void __iomem *msix_map_region(struct pci_dev *dev, unsigned nr_entries) { resource_size_t phys_addr; u32 table_offset; u8 bir; pci_read_config_dword(dev, dev->msix_cap + PCI_MSIX_TABLE, &table_offset); bir = (u8)(table_offset & PCI_MSIX_TABLE_BIR); table_offset &= PCI_MSIX_TABLE_OFFSET; phys_addr = pci_resource_start(dev, bir) + table_offset; return ioremap_nocache(phys_addr, nr_entries * PCI_MSIX_ENTRY_SIZE); } static int msix_setup_entries(struct pci_dev *dev, void __iomem *base, struct msix_entry *entries, int nvec) { struct msi_desc *entry; int i; for (i = 0; i < nvec; i++) { entry = alloc_msi_entry(dev); if (!entry) { if (!i) iounmap(base); else free_msi_irqs(dev); /* No enough memory. Don't try again */ return -ENOMEM; } entry->msi_attrib.is_msix = 1; entry->msi_attrib.is_64 = 1; entry->msi_attrib.entry_nr = entries[i].entry; entry->msi_attrib.default_irq = dev->irq; entry->msi_attrib.pos = dev->msix_cap; entry->mask_base = base; list_add_tail(&entry->list, &dev->msi_list); } return 0; } static void msix_program_entries(struct pci_dev *dev, struct msix_entry *entries) { struct msi_desc *entry; int i = 0; list_for_each_entry(entry, &dev->msi_list, list) { int offset = entries[i].entry * PCI_MSIX_ENTRY_SIZE + PCI_MSIX_ENTRY_VECTOR_CTRL; entries[i].vector = entry->irq; irq_set_msi_desc(entry->irq, entry); entry->masked = readl(entry->mask_base + offset); msix_mask_irq(entry, 1); i++; } } /** * msix_capability_init - configure device's MSI-X capability * @dev: pointer to the pci_dev data structure of MSI-X device function * @entries: pointer to an array of struct msix_entry entries * @nvec: number of @entries * * Setup the MSI-X capability structure of device function with a * single MSI-X irq. A return of zero indicates the successful setup of * requested MSI-X entries with allocated irqs or non-zero for otherwise. **/ static int msix_capability_init(struct pci_dev *dev, struct msix_entry *entries, int nvec) { int ret; u16 control; void __iomem *base; pci_read_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, &control); /* Ensure MSI-X is disabled while it is set up */ control &= ~PCI_MSIX_FLAGS_ENABLE; pci_write_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, control); /* Request & Map MSI-X table region */ base = msix_map_region(dev, msix_table_size(control)); if (!base) return -ENOMEM; ret = msix_setup_entries(dev, base, entries, nvec); if (ret) return ret; ret = arch_setup_msi_irqs(dev, nvec, PCI_CAP_ID_MSIX); if (ret) goto error; /* * Some devices require MSI-X to be enabled before we can touch the * MSI-X registers. We need to mask all the vectors to prevent * interrupts coming in before they're fully set up. */ control |= PCI_MSIX_FLAGS_MASKALL | PCI_MSIX_FLAGS_ENABLE; pci_write_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, control); msix_program_entries(dev, entries); ret = populate_msi_sysfs(dev); if (ret) { ret = 0; goto error; } /* Set MSI-X enabled bits and unmask the function */ pci_intx_for_msi(dev, 0); dev->msix_enabled = 1; control &= ~PCI_MSIX_FLAGS_MASKALL; pci_write_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, control); return 0; error: if (ret < 0) { /* * If we had some success, report the number of irqs * we succeeded in setting up. */ struct msi_desc *entry; int avail = 0; list_for_each_entry(entry, &dev->msi_list, list) { if (entry->irq != 0) avail++; } if (avail != 0) ret = avail; } free_msi_irqs(dev); return ret; } /** * pci_msi_check_device - check whether MSI may be enabled on a device * @dev: pointer to the pci_dev data structure of MSI device function * @nvec: how many MSIs have been requested ? * @type: are we checking for MSI or MSI-X ? * * Look at global flags, the device itself, and its parent buses * to determine if MSI/-X are supported for the device. If MSI/-X is * supported return 0, else return an error code. **/ static int pci_msi_check_device(struct pci_dev *dev, int nvec, int type) { struct pci_bus *bus; int ret; /* MSI must be globally enabled and supported by the device */ if (!pci_msi_enable || !dev || dev->no_msi) return -EINVAL; /* * You can't ask to have 0 or less MSIs configured. * a) it's stupid .. * b) the list manipulation code assumes nvec >= 1. */ if (nvec < 1) return -ERANGE; /* * Any bridge which does NOT route MSI transactions from its * secondary bus to its primary bus must set NO_MSI flag on * the secondary pci_bus. * We expect only arch-specific PCI host bus controller driver * or quirks for specific PCI bridges to be setting NO_MSI. */ for (bus = dev->bus; bus; bus = bus->parent) if (bus->bus_flags & PCI_BUS_FLAGS_NO_MSI) return -EINVAL; ret = arch_msi_check_device(dev, nvec, type); if (ret) return ret; return 0; } /** * pci_enable_msi_block - configure device's MSI capability structure * @dev: device to configure * @nvec: number of interrupts to configure * * Allocate IRQs for a device with the MSI capability. * This function returns a negative errno if an error occurs. If it * is unable to allocate the number of interrupts requested, it returns * the number of interrupts it might be able to allocate. If it successfully * allocates at least the number of interrupts requested, it returns 0 and * updates the @dev's irq member to the lowest new interrupt number; the * other interrupt numbers allocated to this device are consecutive. */ int pci_enable_msi_block(struct pci_dev *dev, unsigned int nvec) { int status, maxvec; u16 msgctl; if (!dev->msi_cap || dev->current_state != PCI_D0) return -EINVAL; pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &msgctl); maxvec = 1 << ((msgctl & PCI_MSI_FLAGS_QMASK) >> 1); if (nvec > maxvec) return maxvec; status = pci_msi_check_device(dev, nvec, PCI_CAP_ID_MSI); if (status) return status; WARN_ON(!!dev->msi_enabled); /* Check whether driver already requested MSI-X irqs */ if (dev->msix_enabled) { dev_info(&dev->dev, "can't enable MSI " "(MSI-X already enabled)\n"); return -EINVAL; } status = msi_capability_init(dev, nvec); return status; } EXPORT_SYMBOL(pci_enable_msi_block); int pci_enable_msi_block_auto(struct pci_dev *dev, unsigned int *maxvec) { int ret, nvec; u16 msgctl; if (!dev->msi_cap || dev->current_state != PCI_D0) return -EINVAL; pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &msgctl); ret = 1 << ((msgctl & PCI_MSI_FLAGS_QMASK) >> 1); if (maxvec) *maxvec = ret; do { nvec = ret; ret = pci_enable_msi_block(dev, nvec); } while (ret > 0); if (ret < 0) return ret; return nvec; } EXPORT_SYMBOL(pci_enable_msi_block_auto); void pci_msi_shutdown(struct pci_dev *dev) { struct msi_desc *desc; u32 mask; u16 ctrl; if (!pci_msi_enable || !dev || !dev->msi_enabled) return; BUG_ON(list_empty(&dev->msi_list)); desc = list_first_entry(&dev->msi_list, struct msi_desc, list); msi_set_enable(dev, 0); pci_intx_for_msi(dev, 1); dev->msi_enabled = 0; /* Return the device with MSI unmasked as initial states */ pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &ctrl); mask = msi_capable_mask(ctrl); /* Keep cached state to be restored */ arch_msi_mask_irq(desc, mask, ~mask); /* Restore dev->irq to its default pin-assertion irq */ dev->irq = desc->msi_attrib.default_irq; } void pci_disable_msi(struct pci_dev *dev) { if (!pci_msi_enable || !dev || !dev->msi_enabled) return; pci_msi_shutdown(dev); free_msi_irqs(dev); } EXPORT_SYMBOL(pci_disable_msi); /** * pci_msix_table_size - return the number of device's MSI-X table entries * @dev: pointer to the pci_dev data structure of MSI-X device function */ int pci_msix_table_size(struct pci_dev *dev) { u16 control; if (!dev->msix_cap) return 0; pci_read_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, &control); return msix_table_size(control); } /** * pci_enable_msix - configure device's MSI-X capability structure * @dev: pointer to the pci_dev data structure of MSI-X device function * @entries: pointer to an array of MSI-X entries * @nvec: number of MSI-X irqs requested for allocation by device driver * * Setup the MSI-X capability structure of device function with the number * of requested irqs upon its software driver call to request for * MSI-X mode enabled on its hardware device function. A return of zero * indicates the successful configuration of MSI-X capability structure * with new allocated MSI-X irqs. A return of < 0 indicates a failure. * Or a return of > 0 indicates that driver request is exceeding the number * of irqs or MSI-X vectors available. Driver should use the returned value to * re-send its request. **/ int pci_enable_msix(struct pci_dev *dev, struct msix_entry *entries, int nvec) { int status, nr_entries; int i, j; if (!entries || !dev->msix_cap || dev->current_state != PCI_D0) return -EINVAL; status = pci_msi_check_device(dev, nvec, PCI_CAP_ID_MSIX); if (status) return status; nr_entries = pci_msix_table_size(dev); if (nvec > nr_entries) return nr_entries; /* Check for any invalid entries */ for (i = 0; i < nvec; i++) { if (entries[i].entry >= nr_entries) return -EINVAL; /* invalid entry */ for (j = i + 1; j < nvec; j++) { if (entries[i].entry == entries[j].entry) return -EINVAL; /* duplicate entry */ } } WARN_ON(!!dev->msix_enabled); /* Check whether driver already requested for MSI irq */ if (dev->msi_enabled) { dev_info(&dev->dev, "can't enable MSI-X " "(MSI IRQ already assigned)\n"); return -EINVAL; } status = msix_capability_init(dev, entries, nvec); return status; } EXPORT_SYMBOL(pci_enable_msix); void pci_msix_shutdown(struct pci_dev *dev) { struct msi_desc *entry; if (!pci_msi_enable || !dev || !dev->msix_enabled) return; /* Return the device with MSI-X masked as initial states */ list_for_each_entry(entry, &dev->msi_list, list) { /* Keep cached states to be restored */ arch_msix_mask_irq(entry, 1); } msix_set_enable(dev, 0); pci_intx_for_msi(dev, 1); dev->msix_enabled = 0; } void pci_disable_msix(struct pci_dev *dev) { if (!pci_msi_enable || !dev || !dev->msix_enabled) return; pci_msix_shutdown(dev); free_msi_irqs(dev); } EXPORT_SYMBOL(pci_disable_msix); /** * msi_remove_pci_irq_vectors - reclaim MSI(X) irqs to unused state * @dev: pointer to the pci_dev data structure of MSI(X) device function * * Being called during hotplug remove, from which the device function * is hot-removed. All previous assigned MSI/MSI-X irqs, if * allocated for this device function, are reclaimed to unused state, * which may be used later on. **/ void msi_remove_pci_irq_vectors(struct pci_dev *dev) { if (!pci_msi_enable || !dev) return; if (dev->msi_enabled || dev->msix_enabled) free_msi_irqs(dev); } void pci_no_msi(void) { pci_msi_enable = 0; } /** * pci_msi_enabled - is MSI enabled? * * Returns true if MSI has not been disabled by the command-line option * pci=nomsi. **/ int pci_msi_enabled(void) { return pci_msi_enable; } EXPORT_SYMBOL(pci_msi_enabled); void pci_msi_init_pci_dev(struct pci_dev *dev) { INIT_LIST_HEAD(&dev->msi_list); /* Disable the msi hardware to avoid screaming interrupts * during boot. This is the power on reset default so * usually this should be a noop. */ dev->msi_cap = pci_find_capability(dev, PCI_CAP_ID_MSI); if (dev->msi_cap) msi_set_enable(dev, 0); dev->msix_cap = pci_find_capability(dev, PCI_CAP_ID_MSIX); if (dev->msix_cap) msix_set_enable(dev, 0); }