/* * Copyright (C) 2016 Netronome Systems, Inc. * * This software is dual licensed under the GNU General License Version 2, * June 1991 as shown in the file COPYING in the top-level directory of this * source tree or the BSD 2-Clause License provided below. You have the * option to license this software under the complete terms of either license. * * The BSD 2-Clause License: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * 1. Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * 2. Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #define pr_fmt(fmt) "NFP net bpf: " fmt #include #include #include #include #include #include "main.h" #include "../nfp_asm.h" /* --- NFP prog --- */ /* Foreach "multiple" entries macros provide pos and next pointers. * It's safe to modify the next pointers (but not pos). */ #define nfp_for_each_insn_walk2(nfp_prog, pos, next) \ for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \ next = list_next_entry(pos, l); \ &(nfp_prog)->insns != &pos->l && \ &(nfp_prog)->insns != &next->l; \ pos = nfp_meta_next(pos), \ next = nfp_meta_next(pos)) #define nfp_for_each_insn_walk3(nfp_prog, pos, next, next2) \ for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \ next = list_next_entry(pos, l), \ next2 = list_next_entry(next, l); \ &(nfp_prog)->insns != &pos->l && \ &(nfp_prog)->insns != &next->l && \ &(nfp_prog)->insns != &next2->l; \ pos = nfp_meta_next(pos), \ next = nfp_meta_next(pos), \ next2 = nfp_meta_next(next)) static bool nfp_meta_has_next(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return meta->l.next != &nfp_prog->insns; } static bool nfp_meta_has_prev(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return meta->l.prev != &nfp_prog->insns; } static void nfp_prog_free(struct nfp_prog *nfp_prog) { struct nfp_insn_meta *meta, *tmp; list_for_each_entry_safe(meta, tmp, &nfp_prog->insns, l) { list_del(&meta->l); kfree(meta); } kfree(nfp_prog); } static void nfp_prog_push(struct nfp_prog *nfp_prog, u64 insn) { if (nfp_prog->__prog_alloc_len == nfp_prog->prog_len) { nfp_prog->error = -ENOSPC; return; } nfp_prog->prog[nfp_prog->prog_len] = insn; nfp_prog->prog_len++; } static unsigned int nfp_prog_current_offset(struct nfp_prog *nfp_prog) { return nfp_prog->start_off + nfp_prog->prog_len; } static unsigned int nfp_prog_offset_to_index(struct nfp_prog *nfp_prog, unsigned int offset) { return offset - nfp_prog->start_off; } /* --- Emitters --- */ static void __emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer, u8 areg, u8 breg, u8 size, bool sync) { enum cmd_ctx_swap ctx; u64 insn; if (sync) ctx = CMD_CTX_SWAP; else ctx = CMD_CTX_NO_SWAP; insn = FIELD_PREP(OP_CMD_A_SRC, areg) | FIELD_PREP(OP_CMD_CTX, ctx) | FIELD_PREP(OP_CMD_B_SRC, breg) | FIELD_PREP(OP_CMD_TOKEN, cmd_tgt_act[op].token) | FIELD_PREP(OP_CMD_XFER, xfer) | FIELD_PREP(OP_CMD_CNT, size) | FIELD_PREP(OP_CMD_SIG, sync) | FIELD_PREP(OP_CMD_TGT_CMD, cmd_tgt_act[op].tgt_cmd) | FIELD_PREP(OP_CMD_MODE, mode); nfp_prog_push(nfp_prog, insn); } static void emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer, swreg lreg, swreg rreg, u8 size, bool sync) { struct nfp_insn_re_regs reg; int err; err = swreg_to_restricted(reg_none(), lreg, rreg, ®, false); if (err) { nfp_prog->error = err; return; } if (reg.swap) { pr_err("cmd can't swap arguments\n"); nfp_prog->error = -EFAULT; return; } if (reg.dst_lmextn || reg.src_lmextn) { pr_err("cmd can't use LMextn\n"); nfp_prog->error = -EFAULT; return; } __emit_cmd(nfp_prog, op, mode, xfer, reg.areg, reg.breg, size, sync); } static void __emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, enum br_ev_pip ev_pip, enum br_ctx_signal_state css, u16 addr, u8 defer) { u16 addr_lo, addr_hi; u64 insn; addr_lo = addr & (OP_BR_ADDR_LO >> __bf_shf(OP_BR_ADDR_LO)); addr_hi = addr != addr_lo; insn = OP_BR_BASE | FIELD_PREP(OP_BR_MASK, mask) | FIELD_PREP(OP_BR_EV_PIP, ev_pip) | FIELD_PREP(OP_BR_CSS, css) | FIELD_PREP(OP_BR_DEFBR, defer) | FIELD_PREP(OP_BR_ADDR_LO, addr_lo) | FIELD_PREP(OP_BR_ADDR_HI, addr_hi); nfp_prog_push(nfp_prog, insn); } static void emit_br_def(struct nfp_prog *nfp_prog, u16 addr, u8 defer) { if (defer > 2) { pr_err("BUG: branch defer out of bounds %d\n", defer); nfp_prog->error = -EFAULT; return; } __emit_br(nfp_prog, BR_UNC, BR_EV_PIP_UNCOND, BR_CSS_NONE, addr, defer); } static void emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer) { __emit_br(nfp_prog, mask, mask != BR_UNC ? BR_EV_PIP_COND : BR_EV_PIP_UNCOND, BR_CSS_NONE, addr, defer); } static void __emit_br_byte(struct nfp_prog *nfp_prog, u8 areg, u8 breg, bool imm8, u8 byte, bool equal, u16 addr, u8 defer, bool src_lmextn) { u16 addr_lo, addr_hi; u64 insn; addr_lo = addr & (OP_BB_ADDR_LO >> __bf_shf(OP_BB_ADDR_LO)); addr_hi = addr != addr_lo; insn = OP_BBYTE_BASE | FIELD_PREP(OP_BB_A_SRC, areg) | FIELD_PREP(OP_BB_BYTE, byte) | FIELD_PREP(OP_BB_B_SRC, breg) | FIELD_PREP(OP_BB_I8, imm8) | FIELD_PREP(OP_BB_EQ, equal) | FIELD_PREP(OP_BB_DEFBR, defer) | FIELD_PREP(OP_BB_ADDR_LO, addr_lo) | FIELD_PREP(OP_BB_ADDR_HI, addr_hi) | FIELD_PREP(OP_BB_SRC_LMEXTN, src_lmextn); nfp_prog_push(nfp_prog, insn); } static void emit_br_byte_neq(struct nfp_prog *nfp_prog, swreg src, u8 imm, u8 byte, u16 addr, u8 defer) { struct nfp_insn_re_regs reg; int err; err = swreg_to_restricted(reg_none(), src, reg_imm(imm), ®, true); if (err) { nfp_prog->error = err; return; } __emit_br_byte(nfp_prog, reg.areg, reg.breg, reg.i8, byte, false, addr, defer, reg.src_lmextn); } static void __emit_immed(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 imm_hi, enum immed_width width, bool invert, enum immed_shift shift, bool wr_both, bool dst_lmextn, bool src_lmextn) { u64 insn; insn = OP_IMMED_BASE | FIELD_PREP(OP_IMMED_A_SRC, areg) | FIELD_PREP(OP_IMMED_B_SRC, breg) | FIELD_PREP(OP_IMMED_IMM, imm_hi) | FIELD_PREP(OP_IMMED_WIDTH, width) | FIELD_PREP(OP_IMMED_INV, invert) | FIELD_PREP(OP_IMMED_SHIFT, shift) | FIELD_PREP(OP_IMMED_WR_AB, wr_both) | FIELD_PREP(OP_IMMED_SRC_LMEXTN, src_lmextn) | FIELD_PREP(OP_IMMED_DST_LMEXTN, dst_lmextn); nfp_prog_push(nfp_prog, insn); } static void emit_immed(struct nfp_prog *nfp_prog, swreg dst, u16 imm, enum immed_width width, bool invert, enum immed_shift shift) { struct nfp_insn_ur_regs reg; int err; if (swreg_type(dst) == NN_REG_IMM) { nfp_prog->error = -EFAULT; return; } err = swreg_to_unrestricted(dst, dst, reg_imm(imm & 0xff), ®); if (err) { nfp_prog->error = err; return; } __emit_immed(nfp_prog, reg.areg, reg.breg, imm >> 8, width, invert, shift, reg.wr_both, reg.dst_lmextn, reg.src_lmextn); } static void __emit_shf(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab, enum shf_sc sc, u8 shift, u16 areg, enum shf_op op, u16 breg, bool i8, bool sw, bool wr_both, bool dst_lmextn, bool src_lmextn) { u64 insn; if (!FIELD_FIT(OP_SHF_SHIFT, shift)) { nfp_prog->error = -EFAULT; return; } if (sc == SHF_SC_L_SHF) shift = 32 - shift; insn = OP_SHF_BASE | FIELD_PREP(OP_SHF_A_SRC, areg) | FIELD_PREP(OP_SHF_SC, sc) | FIELD_PREP(OP_SHF_B_SRC, breg) | FIELD_PREP(OP_SHF_I8, i8) | FIELD_PREP(OP_SHF_SW, sw) | FIELD_PREP(OP_SHF_DST, dst) | FIELD_PREP(OP_SHF_SHIFT, shift) | FIELD_PREP(OP_SHF_OP, op) | FIELD_PREP(OP_SHF_DST_AB, dst_ab) | FIELD_PREP(OP_SHF_WR_AB, wr_both) | FIELD_PREP(OP_SHF_SRC_LMEXTN, src_lmextn) | FIELD_PREP(OP_SHF_DST_LMEXTN, dst_lmextn); nfp_prog_push(nfp_prog, insn); } static void emit_shf(struct nfp_prog *nfp_prog, swreg dst, swreg lreg, enum shf_op op, swreg rreg, enum shf_sc sc, u8 shift) { struct nfp_insn_re_regs reg; int err; err = swreg_to_restricted(dst, lreg, rreg, ®, true); if (err) { nfp_prog->error = err; return; } __emit_shf(nfp_prog, reg.dst, reg.dst_ab, sc, shift, reg.areg, op, reg.breg, reg.i8, reg.swap, reg.wr_both, reg.dst_lmextn, reg.src_lmextn); } static void __emit_alu(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab, u16 areg, enum alu_op op, u16 breg, bool swap, bool wr_both, bool dst_lmextn, bool src_lmextn) { u64 insn; insn = OP_ALU_BASE | FIELD_PREP(OP_ALU_A_SRC, areg) | FIELD_PREP(OP_ALU_B_SRC, breg) | FIELD_PREP(OP_ALU_DST, dst) | FIELD_PREP(OP_ALU_SW, swap) | FIELD_PREP(OP_ALU_OP, op) | FIELD_PREP(OP_ALU_DST_AB, dst_ab) | FIELD_PREP(OP_ALU_WR_AB, wr_both) | FIELD_PREP(OP_ALU_SRC_LMEXTN, src_lmextn) | FIELD_PREP(OP_ALU_DST_LMEXTN, dst_lmextn); nfp_prog_push(nfp_prog, insn); } static void emit_alu(struct nfp_prog *nfp_prog, swreg dst, swreg lreg, enum alu_op op, swreg rreg) { struct nfp_insn_ur_regs reg; int err; err = swreg_to_unrestricted(dst, lreg, rreg, ®); if (err) { nfp_prog->error = err; return; } __emit_alu(nfp_prog, reg.dst, reg.dst_ab, reg.areg, op, reg.breg, reg.swap, reg.wr_both, reg.dst_lmextn, reg.src_lmextn); } static void __emit_ld_field(struct nfp_prog *nfp_prog, enum shf_sc sc, u8 areg, u8 bmask, u8 breg, u8 shift, bool imm8, bool zero, bool swap, bool wr_both, bool dst_lmextn, bool src_lmextn) { u64 insn; insn = OP_LDF_BASE | FIELD_PREP(OP_LDF_A_SRC, areg) | FIELD_PREP(OP_LDF_SC, sc) | FIELD_PREP(OP_LDF_B_SRC, breg) | FIELD_PREP(OP_LDF_I8, imm8) | FIELD_PREP(OP_LDF_SW, swap) | FIELD_PREP(OP_LDF_ZF, zero) | FIELD_PREP(OP_LDF_BMASK, bmask) | FIELD_PREP(OP_LDF_SHF, shift) | FIELD_PREP(OP_LDF_WR_AB, wr_both) | FIELD_PREP(OP_LDF_SRC_LMEXTN, src_lmextn) | FIELD_PREP(OP_LDF_DST_LMEXTN, dst_lmextn); nfp_prog_push(nfp_prog, insn); } static void emit_ld_field_any(struct nfp_prog *nfp_prog, enum shf_sc sc, u8 shift, swreg dst, u8 bmask, swreg src, bool zero) { struct nfp_insn_re_regs reg; int err; err = swreg_to_restricted(reg_none(), dst, src, ®, true); if (err) { nfp_prog->error = err; return; } __emit_ld_field(nfp_prog, sc, reg.areg, bmask, reg.breg, shift, reg.i8, zero, reg.swap, reg.wr_both, reg.dst_lmextn, reg.src_lmextn); } static void emit_ld_field(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src, enum shf_sc sc, u8 shift) { emit_ld_field_any(nfp_prog, sc, shift, dst, bmask, src, false); } /* --- Wrappers --- */ static bool pack_immed(u32 imm, u16 *val, enum immed_shift *shift) { if (!(imm & 0xffff0000)) { *val = imm; *shift = IMMED_SHIFT_0B; } else if (!(imm & 0xff0000ff)) { *val = imm >> 8; *shift = IMMED_SHIFT_1B; } else if (!(imm & 0x0000ffff)) { *val = imm >> 16; *shift = IMMED_SHIFT_2B; } else { return false; } return true; } static void wrp_immed(struct nfp_prog *nfp_prog, swreg dst, u32 imm) { enum immed_shift shift; u16 val; if (pack_immed(imm, &val, &shift)) { emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, false, shift); } else if (pack_immed(~imm, &val, &shift)) { emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, true, shift); } else { emit_immed(nfp_prog, dst, imm & 0xffff, IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B); emit_immed(nfp_prog, dst, imm >> 16, IMMED_WIDTH_WORD, false, IMMED_SHIFT_2B); } } /* ur_load_imm_any() - encode immediate or use tmp register (unrestricted) * If the @imm is small enough encode it directly in operand and return * otherwise load @imm to a spare register and return its encoding. */ static swreg ur_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg) { if (FIELD_FIT(UR_REG_IMM_MAX, imm)) return reg_imm(imm); wrp_immed(nfp_prog, tmp_reg, imm); return tmp_reg; } /* re_load_imm_any() - encode immediate or use tmp register (restricted) * If the @imm is small enough encode it directly in operand and return * otherwise load @imm to a spare register and return its encoding. */ static swreg re_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg) { if (FIELD_FIT(RE_REG_IMM_MAX, imm)) return reg_imm(imm); wrp_immed(nfp_prog, tmp_reg, imm); return tmp_reg; } static void wrp_br_special(struct nfp_prog *nfp_prog, enum br_mask mask, enum br_special special) { emit_br(nfp_prog, mask, 0, 0); nfp_prog->prog[nfp_prog->prog_len - 1] |= FIELD_PREP(OP_BR_SPECIAL, special); } static void wrp_reg_mov(struct nfp_prog *nfp_prog, u16 dst, u16 src) { emit_alu(nfp_prog, reg_both(dst), reg_none(), ALU_OP_NONE, reg_b(src)); } static int construct_data_ind_ld(struct nfp_prog *nfp_prog, u16 offset, u16 src, bool src_valid, u8 size) { unsigned int i; u16 shift, sz; swreg tmp_reg; /* We load the value from the address indicated in @offset and then * shift out the data we don't need. Note: this is big endian! */ sz = size < 4 ? 4 : size; shift = size < 4 ? 4 - size : 0; if (src_valid) { /* Calculate the true offset (src_reg + imm) */ tmp_reg = ur_load_imm_any(nfp_prog, offset, imm_b(nfp_prog)); emit_alu(nfp_prog, imm_both(nfp_prog), reg_a(src), ALU_OP_ADD, tmp_reg); /* Check packet length (size guaranteed to fit b/c it's u8) */ emit_alu(nfp_prog, imm_a(nfp_prog), imm_a(nfp_prog), ALU_OP_ADD, reg_imm(size)); emit_alu(nfp_prog, reg_none(), plen_reg(nfp_prog), ALU_OP_SUB, imm_a(nfp_prog)); wrp_br_special(nfp_prog, BR_BLO, OP_BR_GO_ABORT); /* Load data */ emit_cmd(nfp_prog, CMD_TGT_READ8, CMD_MODE_32b, 0, pptr_reg(nfp_prog), imm_b(nfp_prog), sz - 1, true); } else { /* Check packet length */ tmp_reg = ur_load_imm_any(nfp_prog, offset + size, imm_a(nfp_prog)); emit_alu(nfp_prog, reg_none(), plen_reg(nfp_prog), ALU_OP_SUB, tmp_reg); wrp_br_special(nfp_prog, BR_BLO, OP_BR_GO_ABORT); /* Load data */ tmp_reg = re_load_imm_any(nfp_prog, offset, imm_b(nfp_prog)); emit_cmd(nfp_prog, CMD_TGT_READ8, CMD_MODE_32b, 0, pptr_reg(nfp_prog), tmp_reg, sz - 1, true); } i = 0; if (shift) emit_shf(nfp_prog, reg_both(0), reg_none(), SHF_OP_NONE, reg_xfer(0), SHF_SC_R_SHF, shift * 8); else for (; i * 4 < size; i++) emit_alu(nfp_prog, reg_both(i), reg_none(), ALU_OP_NONE, reg_xfer(i)); if (i < 2) wrp_immed(nfp_prog, reg_both(1), 0); return 0; } static int construct_data_ld(struct nfp_prog *nfp_prog, u16 offset, u8 size) { return construct_data_ind_ld(nfp_prog, offset, 0, false, size); } static void wrp_alu_imm(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u32 imm) { swreg tmp_reg; if (alu_op == ALU_OP_AND) { if (!imm) wrp_immed(nfp_prog, reg_both(dst), 0); if (!imm || !~imm) return; } if (alu_op == ALU_OP_OR) { if (!~imm) wrp_immed(nfp_prog, reg_both(dst), ~0U); if (!imm || !~imm) return; } if (alu_op == ALU_OP_XOR) { if (!~imm) emit_alu(nfp_prog, reg_both(dst), reg_none(), ALU_OP_NEG, reg_b(dst)); if (!imm || !~imm) return; } tmp_reg = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog)); emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, tmp_reg); } static int wrp_alu64_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, enum alu_op alu_op, bool skip) { const struct bpf_insn *insn = &meta->insn; u64 imm = insn->imm; /* sign extend */ if (skip) { meta->skip = true; return 0; } wrp_alu_imm(nfp_prog, insn->dst_reg * 2, alu_op, imm & ~0U); wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, alu_op, imm >> 32); return 0; } static int wrp_alu64_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, enum alu_op alu_op) { u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2; emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src)); emit_alu(nfp_prog, reg_both(dst + 1), reg_a(dst + 1), alu_op, reg_b(src + 1)); return 0; } static int wrp_alu32_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, enum alu_op alu_op, bool skip) { const struct bpf_insn *insn = &meta->insn; if (skip) { meta->skip = true; return 0; } wrp_alu_imm(nfp_prog, insn->dst_reg * 2, alu_op, insn->imm); wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0); return 0; } static int wrp_alu32_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, enum alu_op alu_op) { u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2; emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src)); wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0); return 0; } static void wrp_test_reg_one(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u8 src, enum br_mask br_mask, u16 off) { emit_alu(nfp_prog, reg_none(), reg_a(dst), alu_op, reg_b(src)); emit_br(nfp_prog, br_mask, off, 0); } static int wrp_test_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, enum alu_op alu_op, enum br_mask br_mask) { const struct bpf_insn *insn = &meta->insn; if (insn->off < 0) /* TODO */ return -EOPNOTSUPP; wrp_test_reg_one(nfp_prog, insn->dst_reg * 2, alu_op, insn->src_reg * 2, br_mask, insn->off); wrp_test_reg_one(nfp_prog, insn->dst_reg * 2 + 1, alu_op, insn->src_reg * 2 + 1, br_mask, insn->off); return 0; } static int wrp_cmp_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, enum br_mask br_mask, bool swap) { const struct bpf_insn *insn = &meta->insn; u64 imm = insn->imm; /* sign extend */ u8 reg = insn->dst_reg * 2; swreg tmp_reg; if (insn->off < 0) /* TODO */ return -EOPNOTSUPP; tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog)); if (!swap) emit_alu(nfp_prog, reg_none(), reg_a(reg), ALU_OP_SUB, tmp_reg); else emit_alu(nfp_prog, reg_none(), tmp_reg, ALU_OP_SUB, reg_a(reg)); tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog)); if (!swap) emit_alu(nfp_prog, reg_none(), reg_a(reg + 1), ALU_OP_SUB_C, tmp_reg); else emit_alu(nfp_prog, reg_none(), tmp_reg, ALU_OP_SUB_C, reg_a(reg + 1)); emit_br(nfp_prog, br_mask, insn->off, 0); return 0; } static int wrp_cmp_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, enum br_mask br_mask, bool swap) { const struct bpf_insn *insn = &meta->insn; u8 areg = insn->src_reg * 2, breg = insn->dst_reg * 2; if (insn->off < 0) /* TODO */ return -EOPNOTSUPP; if (swap) { areg ^= breg; breg ^= areg; areg ^= breg; } emit_alu(nfp_prog, reg_none(), reg_a(areg), ALU_OP_SUB, reg_b(breg)); emit_alu(nfp_prog, reg_none(), reg_a(areg + 1), ALU_OP_SUB_C, reg_b(breg + 1)); emit_br(nfp_prog, br_mask, insn->off, 0); return 0; } /* --- Callbacks --- */ static int mov_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { const struct bpf_insn *insn = &meta->insn; wrp_reg_mov(nfp_prog, insn->dst_reg * 2, insn->src_reg * 2); wrp_reg_mov(nfp_prog, insn->dst_reg * 2 + 1, insn->src_reg * 2 + 1); return 0; } static int mov_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { u64 imm = meta->insn.imm; /* sign extend */ wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2), imm & ~0U); wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), imm >> 32); return 0; } static int xor_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return wrp_alu64_reg(nfp_prog, meta, ALU_OP_XOR); } static int xor_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return wrp_alu64_imm(nfp_prog, meta, ALU_OP_XOR, !meta->insn.imm); } static int and_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return wrp_alu64_reg(nfp_prog, meta, ALU_OP_AND); } static int and_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return wrp_alu64_imm(nfp_prog, meta, ALU_OP_AND, !~meta->insn.imm); } static int or_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return wrp_alu64_reg(nfp_prog, meta, ALU_OP_OR); } static int or_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return wrp_alu64_imm(nfp_prog, meta, ALU_OP_OR, !meta->insn.imm); } static int add_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { const struct bpf_insn *insn = &meta->insn; emit_alu(nfp_prog, reg_both(insn->dst_reg * 2), reg_a(insn->dst_reg * 2), ALU_OP_ADD, reg_b(insn->src_reg * 2)); emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1), reg_a(insn->dst_reg * 2 + 1), ALU_OP_ADD_C, reg_b(insn->src_reg * 2 + 1)); return 0; } static int add_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { const struct bpf_insn *insn = &meta->insn; u64 imm = insn->imm; /* sign extend */ wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_ADD, imm & ~0U); wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_ADD_C, imm >> 32); return 0; } static int sub_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { const struct bpf_insn *insn = &meta->insn; emit_alu(nfp_prog, reg_both(insn->dst_reg * 2), reg_a(insn->dst_reg * 2), ALU_OP_SUB, reg_b(insn->src_reg * 2)); emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1), reg_a(insn->dst_reg * 2 + 1), ALU_OP_SUB_C, reg_b(insn->src_reg * 2 + 1)); return 0; } static int sub_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { const struct bpf_insn *insn = &meta->insn; u64 imm = insn->imm; /* sign extend */ wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_SUB, imm & ~0U); wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_SUB_C, imm >> 32); return 0; } static int shl_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { const struct bpf_insn *insn = &meta->insn; u8 dst = insn->dst_reg * 2; if (insn->imm < 32) { emit_shf(nfp_prog, reg_both(dst + 1), reg_a(dst + 1), SHF_OP_NONE, reg_b(dst), SHF_SC_R_DSHF, 32 - insn->imm); emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE, reg_b(dst), SHF_SC_L_SHF, insn->imm); } else if (insn->imm == 32) { wrp_reg_mov(nfp_prog, dst + 1, dst); wrp_immed(nfp_prog, reg_both(dst), 0); } else if (insn->imm > 32) { emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE, reg_b(dst), SHF_SC_L_SHF, insn->imm - 32); wrp_immed(nfp_prog, reg_both(dst), 0); } return 0; } static int shr_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { const struct bpf_insn *insn = &meta->insn; u8 dst = insn->dst_reg * 2; if (insn->imm < 32) { emit_shf(nfp_prog, reg_both(dst), reg_a(dst + 1), SHF_OP_NONE, reg_b(dst), SHF_SC_R_DSHF, insn->imm); emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE, reg_b(dst + 1), SHF_SC_R_SHF, insn->imm); } else if (insn->imm == 32) { wrp_reg_mov(nfp_prog, dst, dst + 1); wrp_immed(nfp_prog, reg_both(dst + 1), 0); } else if (insn->imm > 32) { emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE, reg_b(dst + 1), SHF_SC_R_SHF, insn->imm - 32); wrp_immed(nfp_prog, reg_both(dst + 1), 0); } return 0; } static int mov_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { const struct bpf_insn *insn = &meta->insn; wrp_reg_mov(nfp_prog, insn->dst_reg * 2, insn->src_reg * 2); wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0); return 0; } static int mov_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { const struct bpf_insn *insn = &meta->insn; wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2), insn->imm); wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0); return 0; } static int xor_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return wrp_alu32_reg(nfp_prog, meta, ALU_OP_XOR); } static int xor_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return wrp_alu32_imm(nfp_prog, meta, ALU_OP_XOR, !~meta->insn.imm); } static int and_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return wrp_alu32_reg(nfp_prog, meta, ALU_OP_AND); } static int and_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return wrp_alu32_imm(nfp_prog, meta, ALU_OP_AND, !~meta->insn.imm); } static int or_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return wrp_alu32_reg(nfp_prog, meta, ALU_OP_OR); } static int or_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return wrp_alu32_imm(nfp_prog, meta, ALU_OP_OR, !meta->insn.imm); } static int add_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return wrp_alu32_reg(nfp_prog, meta, ALU_OP_ADD); } static int add_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return wrp_alu32_imm(nfp_prog, meta, ALU_OP_ADD, !meta->insn.imm); } static int sub_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return wrp_alu32_reg(nfp_prog, meta, ALU_OP_SUB); } static int sub_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return wrp_alu32_imm(nfp_prog, meta, ALU_OP_SUB, !meta->insn.imm); } static int shl_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { const struct bpf_insn *insn = &meta->insn; if (!insn->imm) return 1; /* TODO: zero shift means indirect */ emit_shf(nfp_prog, reg_both(insn->dst_reg * 2), reg_none(), SHF_OP_NONE, reg_b(insn->dst_reg * 2), SHF_SC_L_SHF, insn->imm); wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0); return 0; } static int imm_ld8_part2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { wrp_immed(nfp_prog, reg_both(nfp_meta_prev(meta)->insn.dst_reg * 2 + 1), meta->insn.imm); return 0; } static int imm_ld8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { const struct bpf_insn *insn = &meta->insn; meta->double_cb = imm_ld8_part2; wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2), insn->imm); return 0; } static int data_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return construct_data_ld(nfp_prog, meta->insn.imm, 1); } static int data_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return construct_data_ld(nfp_prog, meta->insn.imm, 2); } static int data_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return construct_data_ld(nfp_prog, meta->insn.imm, 4); } static int data_ind_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return construct_data_ind_ld(nfp_prog, meta->insn.imm, meta->insn.src_reg * 2, true, 1); } static int data_ind_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return construct_data_ind_ld(nfp_prog, meta->insn.imm, meta->insn.src_reg * 2, true, 2); } static int data_ind_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return construct_data_ind_ld(nfp_prog, meta->insn.imm, meta->insn.src_reg * 2, true, 4); } static int mem_ldx4_skb(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { if (meta->insn.off == offsetof(struct sk_buff, len)) emit_alu(nfp_prog, reg_both(meta->insn.dst_reg * 2), reg_none(), ALU_OP_NONE, plen_reg(nfp_prog)); else return -EOPNOTSUPP; return 0; } static int mem_ldx4_xdp(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { swreg dst = reg_both(meta->insn.dst_reg * 2); if (meta->insn.off != offsetof(struct xdp_md, data) && meta->insn.off != offsetof(struct xdp_md, data_end)) return -EOPNOTSUPP; emit_alu(nfp_prog, dst, reg_none(), ALU_OP_NONE, pptr_reg(nfp_prog)); if (meta->insn.off == offsetof(struct xdp_md, data)) return 0; emit_alu(nfp_prog, dst, dst, ALU_OP_ADD, plen_reg(nfp_prog)); return 0; } static int mem_ldx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { int ret; if (nfp_prog->act == NN_ACT_XDP) ret = mem_ldx4_xdp(nfp_prog, meta); else ret = mem_ldx4_skb(nfp_prog, meta); wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0); return ret; } static int mem_stx4_skb(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return -EOPNOTSUPP; } static int mem_stx4_xdp(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return -EOPNOTSUPP; } static int mem_stx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { if (nfp_prog->act == NN_ACT_XDP) return mem_stx4_xdp(nfp_prog, meta); return mem_stx4_skb(nfp_prog, meta); } static int jump(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { if (meta->insn.off < 0) /* TODO */ return -EOPNOTSUPP; emit_br(nfp_prog, BR_UNC, meta->insn.off, 0); return 0; } static int jeq_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { const struct bpf_insn *insn = &meta->insn; u64 imm = insn->imm; /* sign extend */ swreg or1, or2, tmp_reg; or1 = reg_a(insn->dst_reg * 2); or2 = reg_b(insn->dst_reg * 2 + 1); if (insn->off < 0) /* TODO */ return -EOPNOTSUPP; if (imm & ~0U) { tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog)); emit_alu(nfp_prog, imm_a(nfp_prog), reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg); or1 = imm_a(nfp_prog); } if (imm >> 32) { tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog)); emit_alu(nfp_prog, imm_b(nfp_prog), reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg); or2 = imm_b(nfp_prog); } emit_alu(nfp_prog, reg_none(), or1, ALU_OP_OR, or2); emit_br(nfp_prog, BR_BEQ, insn->off, 0); return 0; } static int jgt_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return wrp_cmp_imm(nfp_prog, meta, BR_BLO, false); } static int jge_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return wrp_cmp_imm(nfp_prog, meta, BR_BHS, true); } static int jlt_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return wrp_cmp_imm(nfp_prog, meta, BR_BHS, false); } static int jle_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return wrp_cmp_imm(nfp_prog, meta, BR_BLO, true); } static int jset_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { const struct bpf_insn *insn = &meta->insn; u64 imm = insn->imm; /* sign extend */ swreg tmp_reg; if (insn->off < 0) /* TODO */ return -EOPNOTSUPP; if (!imm) { meta->skip = true; return 0; } if (imm & ~0U) { tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog)); emit_alu(nfp_prog, reg_none(), reg_a(insn->dst_reg * 2), ALU_OP_AND, tmp_reg); emit_br(nfp_prog, BR_BNE, insn->off, 0); } if (imm >> 32) { tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog)); emit_alu(nfp_prog, reg_none(), reg_a(insn->dst_reg * 2 + 1), ALU_OP_AND, tmp_reg); emit_br(nfp_prog, BR_BNE, insn->off, 0); } return 0; } static int jne_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { const struct bpf_insn *insn = &meta->insn; u64 imm = insn->imm; /* sign extend */ swreg tmp_reg; if (insn->off < 0) /* TODO */ return -EOPNOTSUPP; if (!imm) { emit_alu(nfp_prog, reg_none(), reg_a(insn->dst_reg * 2), ALU_OP_OR, reg_b(insn->dst_reg * 2 + 1)); emit_br(nfp_prog, BR_BNE, insn->off, 0); } tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog)); emit_alu(nfp_prog, reg_none(), reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg); emit_br(nfp_prog, BR_BNE, insn->off, 0); tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog)); emit_alu(nfp_prog, reg_none(), reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg); emit_br(nfp_prog, BR_BNE, insn->off, 0); return 0; } static int jeq_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { const struct bpf_insn *insn = &meta->insn; if (insn->off < 0) /* TODO */ return -EOPNOTSUPP; emit_alu(nfp_prog, imm_a(nfp_prog), reg_a(insn->dst_reg * 2), ALU_OP_XOR, reg_b(insn->src_reg * 2)); emit_alu(nfp_prog, imm_b(nfp_prog), reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, reg_b(insn->src_reg * 2 + 1)); emit_alu(nfp_prog, reg_none(), imm_a(nfp_prog), ALU_OP_OR, imm_b(nfp_prog)); emit_br(nfp_prog, BR_BEQ, insn->off, 0); return 0; } static int jgt_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return wrp_cmp_reg(nfp_prog, meta, BR_BLO, false); } static int jge_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return wrp_cmp_reg(nfp_prog, meta, BR_BHS, true); } static int jlt_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return wrp_cmp_reg(nfp_prog, meta, BR_BHS, false); } static int jle_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return wrp_cmp_reg(nfp_prog, meta, BR_BLO, true); } static int jset_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return wrp_test_reg(nfp_prog, meta, ALU_OP_AND, BR_BNE); } static int jne_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return wrp_test_reg(nfp_prog, meta, ALU_OP_XOR, BR_BNE); } static int goto_out(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { wrp_br_special(nfp_prog, BR_UNC, OP_BR_GO_OUT); return 0; } static const instr_cb_t instr_cb[256] = { [BPF_ALU64 | BPF_MOV | BPF_X] = mov_reg64, [BPF_ALU64 | BPF_MOV | BPF_K] = mov_imm64, [BPF_ALU64 | BPF_XOR | BPF_X] = xor_reg64, [BPF_ALU64 | BPF_XOR | BPF_K] = xor_imm64, [BPF_ALU64 | BPF_AND | BPF_X] = and_reg64, [BPF_ALU64 | BPF_AND | BPF_K] = and_imm64, [BPF_ALU64 | BPF_OR | BPF_X] = or_reg64, [BPF_ALU64 | BPF_OR | BPF_K] = or_imm64, [BPF_ALU64 | BPF_ADD | BPF_X] = add_reg64, [BPF_ALU64 | BPF_ADD | BPF_K] = add_imm64, [BPF_ALU64 | BPF_SUB | BPF_X] = sub_reg64, [BPF_ALU64 | BPF_SUB | BPF_K] = sub_imm64, [BPF_ALU64 | BPF_LSH | BPF_K] = shl_imm64, [BPF_ALU64 | BPF_RSH | BPF_K] = shr_imm64, [BPF_ALU | BPF_MOV | BPF_X] = mov_reg, [BPF_ALU | BPF_MOV | BPF_K] = mov_imm, [BPF_ALU | BPF_XOR | BPF_X] = xor_reg, [BPF_ALU | BPF_XOR | BPF_K] = xor_imm, [BPF_ALU | BPF_AND | BPF_X] = and_reg, [BPF_ALU | BPF_AND | BPF_K] = and_imm, [BPF_ALU | BPF_OR | BPF_X] = or_reg, [BPF_ALU | BPF_OR | BPF_K] = or_imm, [BPF_ALU | BPF_ADD | BPF_X] = add_reg, [BPF_ALU | BPF_ADD | BPF_K] = add_imm, [BPF_ALU | BPF_SUB | BPF_X] = sub_reg, [BPF_ALU | BPF_SUB | BPF_K] = sub_imm, [BPF_ALU | BPF_LSH | BPF_K] = shl_imm, [BPF_LD | BPF_IMM | BPF_DW] = imm_ld8, [BPF_LD | BPF_ABS | BPF_B] = data_ld1, [BPF_LD | BPF_ABS | BPF_H] = data_ld2, [BPF_LD | BPF_ABS | BPF_W] = data_ld4, [BPF_LD | BPF_IND | BPF_B] = data_ind_ld1, [BPF_LD | BPF_IND | BPF_H] = data_ind_ld2, [BPF_LD | BPF_IND | BPF_W] = data_ind_ld4, [BPF_LDX | BPF_MEM | BPF_W] = mem_ldx4, [BPF_STX | BPF_MEM | BPF_W] = mem_stx4, [BPF_JMP | BPF_JA | BPF_K] = jump, [BPF_JMP | BPF_JEQ | BPF_K] = jeq_imm, [BPF_JMP | BPF_JGT | BPF_K] = jgt_imm, [BPF_JMP | BPF_JGE | BPF_K] = jge_imm, [BPF_JMP | BPF_JLT | BPF_K] = jlt_imm, [BPF_JMP | BPF_JLE | BPF_K] = jle_imm, [BPF_JMP | BPF_JSET | BPF_K] = jset_imm, [BPF_JMP | BPF_JNE | BPF_K] = jne_imm, [BPF_JMP | BPF_JEQ | BPF_X] = jeq_reg, [BPF_JMP | BPF_JGT | BPF_X] = jgt_reg, [BPF_JMP | BPF_JGE | BPF_X] = jge_reg, [BPF_JMP | BPF_JLT | BPF_X] = jlt_reg, [BPF_JMP | BPF_JLE | BPF_X] = jle_reg, [BPF_JMP | BPF_JSET | BPF_X] = jset_reg, [BPF_JMP | BPF_JNE | BPF_X] = jne_reg, [BPF_JMP | BPF_EXIT] = goto_out, }; /* --- Misc code --- */ static void br_set_offset(u64 *instr, u16 offset) { u16 addr_lo, addr_hi; addr_lo = offset & (OP_BR_ADDR_LO >> __bf_shf(OP_BR_ADDR_LO)); addr_hi = offset != addr_lo; *instr &= ~(OP_BR_ADDR_HI | OP_BR_ADDR_LO); *instr |= FIELD_PREP(OP_BR_ADDR_HI, addr_hi); *instr |= FIELD_PREP(OP_BR_ADDR_LO, addr_lo); } /* --- Assembler logic --- */ static int nfp_fixup_branches(struct nfp_prog *nfp_prog) { struct nfp_insn_meta *meta, *next; u32 off, br_idx; u32 idx; nfp_for_each_insn_walk2(nfp_prog, meta, next) { if (meta->skip) continue; if (BPF_CLASS(meta->insn.code) != BPF_JMP) continue; br_idx = nfp_prog_offset_to_index(nfp_prog, next->off) - 1; if (!nfp_is_br(nfp_prog->prog[br_idx])) { pr_err("Fixup found block not ending in branch %d %02x %016llx!!\n", br_idx, meta->insn.code, nfp_prog->prog[br_idx]); return -ELOOP; } /* Leave special branches for later */ if (FIELD_GET(OP_BR_SPECIAL, nfp_prog->prog[br_idx])) continue; /* Find the target offset in assembler realm */ off = meta->insn.off; if (!off) { pr_err("Fixup found zero offset!!\n"); return -ELOOP; } while (off && nfp_meta_has_next(nfp_prog, next)) { next = nfp_meta_next(next); off--; } if (off) { pr_err("Fixup found too large jump!! %d\n", off); return -ELOOP; } if (next->skip) { pr_err("Branch landing on removed instruction!!\n"); return -ELOOP; } for (idx = nfp_prog_offset_to_index(nfp_prog, meta->off); idx <= br_idx; idx++) { if (!nfp_is_br(nfp_prog->prog[idx])) continue; br_set_offset(&nfp_prog->prog[idx], next->off); } } /* Fixup 'goto out's separately, they can be scattered around */ for (br_idx = 0; br_idx < nfp_prog->prog_len; br_idx++) { enum br_special special; if ((nfp_prog->prog[br_idx] & OP_BR_BASE_MASK) != OP_BR_BASE) continue; special = FIELD_GET(OP_BR_SPECIAL, nfp_prog->prog[br_idx]); switch (special) { case OP_BR_NORMAL: break; case OP_BR_GO_OUT: br_set_offset(&nfp_prog->prog[br_idx], nfp_prog->tgt_out); break; case OP_BR_GO_ABORT: br_set_offset(&nfp_prog->prog[br_idx], nfp_prog->tgt_abort); break; } nfp_prog->prog[br_idx] &= ~OP_BR_SPECIAL; } return 0; } static void nfp_intro(struct nfp_prog *nfp_prog) { wrp_immed(nfp_prog, plen_reg(nfp_prog), GENMASK(13, 0)); emit_alu(nfp_prog, plen_reg(nfp_prog), plen_reg(nfp_prog), ALU_OP_AND, pv_len(nfp_prog)); } static void nfp_outro_tc_legacy(struct nfp_prog *nfp_prog) { const u8 act2code[] = { [NN_ACT_TC_DROP] = 0x22, [NN_ACT_TC_REDIR] = 0x24 }; /* Target for aborts */ nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog); wrp_immed(nfp_prog, reg_both(0), 0); /* Target for normal exits */ nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog); /* Legacy TC mode: * 0 0x11 -> pass, count as stat0 * -1 drop 0x22 -> drop, count as stat1 * redir 0x24 -> redir, count as stat1 * ife mark 0x21 -> pass, count as stat1 * ife + tx 0x24 -> redir, count as stat1 */ emit_br_byte_neq(nfp_prog, reg_b(0), 0xff, 0, nfp_prog->tgt_done, 2); emit_alu(nfp_prog, reg_a(0), reg_none(), ALU_OP_NONE, NFP_BPF_ABI_FLAGS); emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x11), SHF_SC_L_SHF, 16); emit_br(nfp_prog, BR_UNC, nfp_prog->tgt_done, 1); emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(act2code[nfp_prog->act]), SHF_SC_L_SHF, 16); } static void nfp_outro_tc_da(struct nfp_prog *nfp_prog) { /* TC direct-action mode: * 0,1 ok NOT SUPPORTED[1] * 2 drop 0x22 -> drop, count as stat1 * 4,5 nuke 0x02 -> drop * 7 redir 0x44 -> redir, count as stat2 * * unspec 0x11 -> pass, count as stat0 * * [1] We can't support OK and RECLASSIFY because we can't tell TC * the exact decision made. We are forced to support UNSPEC * to handle aborts so that's the only one we handle for passing * packets up the stack. */ /* Target for aborts */ nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog); emit_br_def(nfp_prog, nfp_prog->tgt_done, 2); emit_alu(nfp_prog, reg_a(0), reg_none(), ALU_OP_NONE, NFP_BPF_ABI_FLAGS); emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x11), SHF_SC_L_SHF, 16); /* Target for normal exits */ nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog); /* if R0 > 7 jump to abort */ emit_alu(nfp_prog, reg_none(), reg_imm(7), ALU_OP_SUB, reg_b(0)); emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0); emit_alu(nfp_prog, reg_a(0), reg_none(), ALU_OP_NONE, NFP_BPF_ABI_FLAGS); wrp_immed(nfp_prog, reg_b(2), 0x41221211); wrp_immed(nfp_prog, reg_b(3), 0x41001211); emit_shf(nfp_prog, reg_a(1), reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 2); emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0)); emit_shf(nfp_prog, reg_a(2), reg_imm(0xf), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0); emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0)); emit_shf(nfp_prog, reg_b(2), reg_imm(0xf), SHF_OP_AND, reg_b(3), SHF_SC_R_SHF, 0); emit_br_def(nfp_prog, nfp_prog->tgt_done, 2); emit_shf(nfp_prog, reg_b(2), reg_a(2), SHF_OP_OR, reg_b(2), SHF_SC_L_SHF, 4); emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16); } static void nfp_outro_xdp(struct nfp_prog *nfp_prog) { /* XDP return codes: * 0 aborted 0x82 -> drop, count as stat3 * 1 drop 0x22 -> drop, count as stat1 * 2 pass 0x11 -> pass, count as stat0 * 3 tx 0x44 -> redir, count as stat2 * * unknown 0x82 -> drop, count as stat3 */ /* Target for aborts */ nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog); emit_br_def(nfp_prog, nfp_prog->tgt_done, 2); emit_alu(nfp_prog, reg_a(0), reg_none(), ALU_OP_NONE, NFP_BPF_ABI_FLAGS); emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x82), SHF_SC_L_SHF, 16); /* Target for normal exits */ nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog); /* if R0 > 3 jump to abort */ emit_alu(nfp_prog, reg_none(), reg_imm(3), ALU_OP_SUB, reg_b(0)); emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0); wrp_immed(nfp_prog, reg_b(2), 0x44112282); emit_shf(nfp_prog, reg_a(1), reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 3); emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0)); emit_shf(nfp_prog, reg_b(2), reg_imm(0xff), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0); emit_br_def(nfp_prog, nfp_prog->tgt_done, 2); emit_alu(nfp_prog, reg_a(0), reg_none(), ALU_OP_NONE, NFP_BPF_ABI_FLAGS); emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16); } static void nfp_outro(struct nfp_prog *nfp_prog) { switch (nfp_prog->act) { case NN_ACT_DIRECT: nfp_outro_tc_da(nfp_prog); break; case NN_ACT_TC_DROP: case NN_ACT_TC_REDIR: nfp_outro_tc_legacy(nfp_prog); break; case NN_ACT_XDP: nfp_outro_xdp(nfp_prog); break; } } static int nfp_translate(struct nfp_prog *nfp_prog) { struct nfp_insn_meta *meta; int err; nfp_intro(nfp_prog); if (nfp_prog->error) return nfp_prog->error; list_for_each_entry(meta, &nfp_prog->insns, l) { instr_cb_t cb = instr_cb[meta->insn.code]; meta->off = nfp_prog_current_offset(nfp_prog); if (meta->skip) { nfp_prog->n_translated++; continue; } if (nfp_meta_has_prev(nfp_prog, meta) && nfp_meta_prev(meta)->double_cb) cb = nfp_meta_prev(meta)->double_cb; if (!cb) return -ENOENT; err = cb(nfp_prog, meta); if (err) return err; nfp_prog->n_translated++; } nfp_outro(nfp_prog); if (nfp_prog->error) return nfp_prog->error; return nfp_fixup_branches(nfp_prog); } static int nfp_prog_prepare(struct nfp_prog *nfp_prog, const struct bpf_insn *prog, unsigned int cnt) { unsigned int i; for (i = 0; i < cnt; i++) { struct nfp_insn_meta *meta; meta = kzalloc(sizeof(*meta), GFP_KERNEL); if (!meta) return -ENOMEM; meta->insn = prog[i]; meta->n = i; list_add_tail(&meta->l, &nfp_prog->insns); } return 0; } /* --- Optimizations --- */ static void nfp_bpf_opt_reg_init(struct nfp_prog *nfp_prog) { struct nfp_insn_meta *meta; list_for_each_entry(meta, &nfp_prog->insns, l) { struct bpf_insn insn = meta->insn; /* Programs converted from cBPF start with register xoring */ if (insn.code == (BPF_ALU64 | BPF_XOR | BPF_X) && insn.src_reg == insn.dst_reg) continue; /* Programs start with R6 = R1 but we ignore the skb pointer */ if (insn.code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn.src_reg == 1 && insn.dst_reg == 6) meta->skip = true; /* Return as soon as something doesn't match */ if (!meta->skip) return; } } /* Remove masking after load since our load guarantees this is not needed */ static void nfp_bpf_opt_ld_mask(struct nfp_prog *nfp_prog) { struct nfp_insn_meta *meta1, *meta2; const s32 exp_mask[] = { [BPF_B] = 0x000000ffU, [BPF_H] = 0x0000ffffU, [BPF_W] = 0xffffffffU, }; nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) { struct bpf_insn insn, next; insn = meta1->insn; next = meta2->insn; if (BPF_CLASS(insn.code) != BPF_LD) continue; if (BPF_MODE(insn.code) != BPF_ABS && BPF_MODE(insn.code) != BPF_IND) continue; if (next.code != (BPF_ALU64 | BPF_AND | BPF_K)) continue; if (!exp_mask[BPF_SIZE(insn.code)]) continue; if (exp_mask[BPF_SIZE(insn.code)] != next.imm) continue; if (next.src_reg || next.dst_reg) continue; meta2->skip = true; } } static void nfp_bpf_opt_ld_shift(struct nfp_prog *nfp_prog) { struct nfp_insn_meta *meta1, *meta2, *meta3; nfp_for_each_insn_walk3(nfp_prog, meta1, meta2, meta3) { struct bpf_insn insn, next1, next2; insn = meta1->insn; next1 = meta2->insn; next2 = meta3->insn; if (BPF_CLASS(insn.code) != BPF_LD) continue; if (BPF_MODE(insn.code) != BPF_ABS && BPF_MODE(insn.code) != BPF_IND) continue; if (BPF_SIZE(insn.code) != BPF_W) continue; if (!(next1.code == (BPF_LSH | BPF_K | BPF_ALU64) && next2.code == (BPF_RSH | BPF_K | BPF_ALU64)) && !(next1.code == (BPF_RSH | BPF_K | BPF_ALU64) && next2.code == (BPF_LSH | BPF_K | BPF_ALU64))) continue; if (next1.src_reg || next1.dst_reg || next2.src_reg || next2.dst_reg) continue; if (next1.imm != 0x20 || next2.imm != 0x20) continue; meta2->skip = true; meta3->skip = true; } } static int nfp_bpf_optimize(struct nfp_prog *nfp_prog) { nfp_bpf_opt_reg_init(nfp_prog); nfp_bpf_opt_ld_mask(nfp_prog); nfp_bpf_opt_ld_shift(nfp_prog); return 0; } /** * nfp_bpf_jit() - translate BPF code into NFP assembly * @filter: kernel BPF filter struct * @prog_mem: memory to store assembler instructions * @act: action attached to this eBPF program * @prog_start: offset of the first instruction when loaded * @prog_done: where to jump on exit * @prog_sz: size of @prog_mem in instructions * @res: achieved parameters of translation results */ int nfp_bpf_jit(struct bpf_prog *filter, void *prog_mem, enum nfp_bpf_action_type act, unsigned int prog_start, unsigned int prog_done, unsigned int prog_sz, struct nfp_bpf_result *res) { struct nfp_prog *nfp_prog; int ret; nfp_prog = kzalloc(sizeof(*nfp_prog), GFP_KERNEL); if (!nfp_prog) return -ENOMEM; INIT_LIST_HEAD(&nfp_prog->insns); nfp_prog->act = act; nfp_prog->start_off = prog_start; nfp_prog->tgt_done = prog_done; ret = nfp_prog_prepare(nfp_prog, filter->insnsi, filter->len); if (ret) goto out; ret = nfp_prog_verify(nfp_prog, filter); if (ret) goto out; ret = nfp_bpf_optimize(nfp_prog); if (ret) goto out; nfp_prog->num_regs = MAX_BPF_REG; nfp_prog->regs_per_thread = 32; nfp_prog->prog = prog_mem; nfp_prog->__prog_alloc_len = prog_sz; ret = nfp_translate(nfp_prog); if (ret) { pr_err("Translation failed with error %d (translated: %u)\n", ret, nfp_prog->n_translated); ret = -EINVAL; } res->n_instr = nfp_prog->prog_len; res->dense_mode = false; out: nfp_prog_free(nfp_prog); return ret; }