/** * OV519 driver * * Copyright (C) 2008 Jean-Francois Moine (http://moinejf.free.fr) * * This module is adapted from the ov51x-jpeg package, which itself * was adapted from the ov511 driver. * * Original copyright for the ov511 driver is: * * Copyright (c) 1999-2004 Mark W. McClelland * Support for OV519, OV8610 Copyright (c) 2003 Joerg Heckenbach * * ov51x-jpeg original copyright is: * * Copyright (c) 2004-2007 Romain Beauxis * Support for OV7670 sensors was contributed by Sam Skipsey * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #define MODULE_NAME "ov519" #include "gspca.h" MODULE_AUTHOR("Jean-Francois Moine "); MODULE_DESCRIPTION("OV519 USB Camera Driver"); MODULE_LICENSE("GPL"); /* global parameters */ static int frame_rate; /* Number of times to retry a failed I2C transaction. Increase this if you * are getting "Failed to read sensor ID..." */ static int i2c_detect_tries = 10; /* ov519 device descriptor */ struct sd { struct gspca_dev gspca_dev; /* !! must be the first item */ __u8 packet_nr; char bridge; #define BRIDGE_OV511 0 #define BRIDGE_OV511PLUS 1 #define BRIDGE_OV518 2 #define BRIDGE_OV518PLUS 3 #define BRIDGE_OV519 4 #define BRIDGE_MASK 7 char invert_led; #define BRIDGE_INVERT_LED 8 /* Determined by sensor type */ __u8 sif; __u8 brightness; __u8 contrast; __u8 colors; __u8 hflip; __u8 vflip; __u8 autobrightness; __u8 freq; __u8 stopped; /* Streaming is temporarily paused */ __u8 frame_rate; /* current Framerate */ __u8 clockdiv; /* clockdiv override */ char sensor; /* Type of image sensor chip (SEN_*) */ #define SEN_UNKNOWN 0 #define SEN_OV6620 1 #define SEN_OV6630 2 #define SEN_OV66308AF 3 #define SEN_OV7610 4 #define SEN_OV7620 5 #define SEN_OV7640 6 #define SEN_OV7670 7 #define SEN_OV76BE 8 #define SEN_OV8610 9 }; /* V4L2 controls supported by the driver */ static int sd_setbrightness(struct gspca_dev *gspca_dev, __s32 val); static int sd_getbrightness(struct gspca_dev *gspca_dev, __s32 *val); static int sd_setcontrast(struct gspca_dev *gspca_dev, __s32 val); static int sd_getcontrast(struct gspca_dev *gspca_dev, __s32 *val); static int sd_setcolors(struct gspca_dev *gspca_dev, __s32 val); static int sd_getcolors(struct gspca_dev *gspca_dev, __s32 *val); static int sd_sethflip(struct gspca_dev *gspca_dev, __s32 val); static int sd_gethflip(struct gspca_dev *gspca_dev, __s32 *val); static int sd_setvflip(struct gspca_dev *gspca_dev, __s32 val); static int sd_getvflip(struct gspca_dev *gspca_dev, __s32 *val); static int sd_setautobrightness(struct gspca_dev *gspca_dev, __s32 val); static int sd_getautobrightness(struct gspca_dev *gspca_dev, __s32 *val); static int sd_setfreq(struct gspca_dev *gspca_dev, __s32 val); static int sd_getfreq(struct gspca_dev *gspca_dev, __s32 *val); static void setbrightness(struct gspca_dev *gspca_dev); static void setcontrast(struct gspca_dev *gspca_dev); static void setcolors(struct gspca_dev *gspca_dev); static void setautobrightness(struct sd *sd); static void setfreq(struct sd *sd); static const struct ctrl sd_ctrls[] = { { { .id = V4L2_CID_BRIGHTNESS, .type = V4L2_CTRL_TYPE_INTEGER, .name = "Brightness", .minimum = 0, .maximum = 255, .step = 1, #define BRIGHTNESS_DEF 127 .default_value = BRIGHTNESS_DEF, }, .set = sd_setbrightness, .get = sd_getbrightness, }, { { .id = V4L2_CID_CONTRAST, .type = V4L2_CTRL_TYPE_INTEGER, .name = "Contrast", .minimum = 0, .maximum = 255, .step = 1, #define CONTRAST_DEF 127 .default_value = CONTRAST_DEF, }, .set = sd_setcontrast, .get = sd_getcontrast, }, { { .id = V4L2_CID_SATURATION, .type = V4L2_CTRL_TYPE_INTEGER, .name = "Color", .minimum = 0, .maximum = 255, .step = 1, #define COLOR_DEF 127 .default_value = COLOR_DEF, }, .set = sd_setcolors, .get = sd_getcolors, }, /* The flip controls work with ov7670 only */ #define HFLIP_IDX 3 { { .id = V4L2_CID_HFLIP, .type = V4L2_CTRL_TYPE_BOOLEAN, .name = "Mirror", .minimum = 0, .maximum = 1, .step = 1, #define HFLIP_DEF 0 .default_value = HFLIP_DEF, }, .set = sd_sethflip, .get = sd_gethflip, }, #define VFLIP_IDX 4 { { .id = V4L2_CID_VFLIP, .type = V4L2_CTRL_TYPE_BOOLEAN, .name = "Vflip", .minimum = 0, .maximum = 1, .step = 1, #define VFLIP_DEF 0 .default_value = VFLIP_DEF, }, .set = sd_setvflip, .get = sd_getvflip, }, #define AUTOBRIGHT_IDX 5 { { .id = V4L2_CID_AUTOBRIGHTNESS, .type = V4L2_CTRL_TYPE_BOOLEAN, .name = "Auto Brightness", .minimum = 0, .maximum = 1, .step = 1, #define AUTOBRIGHT_DEF 1 .default_value = AUTOBRIGHT_DEF, }, .set = sd_setautobrightness, .get = sd_getautobrightness, }, #define FREQ_IDX 6 { { .id = V4L2_CID_POWER_LINE_FREQUENCY, .type = V4L2_CTRL_TYPE_MENU, .name = "Light frequency filter", .minimum = 0, .maximum = 2, /* 0: 0, 1: 50Hz, 2:60Hz */ .step = 1, #define FREQ_DEF 0 .default_value = FREQ_DEF, }, .set = sd_setfreq, .get = sd_getfreq, }, #define OV7670_FREQ_IDX 7 { { .id = V4L2_CID_POWER_LINE_FREQUENCY, .type = V4L2_CTRL_TYPE_MENU, .name = "Light frequency filter", .minimum = 0, .maximum = 3, /* 0: 0, 1: 50Hz, 2:60Hz 3: Auto Hz */ .step = 1, #define OV7670_FREQ_DEF 3 .default_value = OV7670_FREQ_DEF, }, .set = sd_setfreq, .get = sd_getfreq, }, }; static const struct v4l2_pix_format ov519_vga_mode[] = { {320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE, .bytesperline = 320, .sizeimage = 320 * 240 * 3 / 8 + 590, .colorspace = V4L2_COLORSPACE_JPEG, .priv = 1}, {640, 480, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE, .bytesperline = 640, .sizeimage = 640 * 480 * 3 / 8 + 590, .colorspace = V4L2_COLORSPACE_JPEG, .priv = 0}, }; static const struct v4l2_pix_format ov519_sif_mode[] = { {160, 120, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE, .bytesperline = 160, .sizeimage = 160 * 120 * 3 / 8 + 590, .colorspace = V4L2_COLORSPACE_JPEG, .priv = 3}, {176, 144, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE, .bytesperline = 176, .sizeimage = 176 * 144 * 3 / 8 + 590, .colorspace = V4L2_COLORSPACE_JPEG, .priv = 1}, {320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE, .bytesperline = 320, .sizeimage = 320 * 240 * 3 / 8 + 590, .colorspace = V4L2_COLORSPACE_JPEG, .priv = 2}, {352, 288, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE, .bytesperline = 352, .sizeimage = 352 * 288 * 3 / 8 + 590, .colorspace = V4L2_COLORSPACE_JPEG, .priv = 0}, }; static const struct v4l2_pix_format ov518_vga_mode[] = { {320, 240, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE, .bytesperline = 320, .sizeimage = 320 * 240 * 3 / 8 + 590, .colorspace = V4L2_COLORSPACE_JPEG, .priv = 1}, {640, 480, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE, .bytesperline = 640, .sizeimage = 640 * 480 * 3 / 8 + 590, .colorspace = V4L2_COLORSPACE_JPEG, .priv = 0}, }; static const struct v4l2_pix_format ov518_sif_mode[] = { {160, 120, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE, .bytesperline = 160, .sizeimage = 40000, .colorspace = V4L2_COLORSPACE_JPEG, .priv = 3}, {176, 144, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE, .bytesperline = 176, .sizeimage = 40000, .colorspace = V4L2_COLORSPACE_JPEG, .priv = 1}, {320, 240, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE, .bytesperline = 320, .sizeimage = 320 * 240 * 3 / 8 + 590, .colorspace = V4L2_COLORSPACE_JPEG, .priv = 2}, {352, 288, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE, .bytesperline = 352, .sizeimage = 352 * 288 * 3 / 8 + 590, .colorspace = V4L2_COLORSPACE_JPEG, .priv = 0}, }; static const struct v4l2_pix_format ov511_vga_mode[] = { {320, 240, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE, .bytesperline = 320, .sizeimage = 320 * 240 * 3, .colorspace = V4L2_COLORSPACE_JPEG, .priv = 1}, {640, 480, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE, .bytesperline = 640, .sizeimage = 640 * 480 * 2, .colorspace = V4L2_COLORSPACE_JPEG, .priv = 0}, }; static const struct v4l2_pix_format ov511_sif_mode[] = { {160, 120, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE, .bytesperline = 160, .sizeimage = 40000, .colorspace = V4L2_COLORSPACE_JPEG, .priv = 3}, {176, 144, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE, .bytesperline = 176, .sizeimage = 40000, .colorspace = V4L2_COLORSPACE_JPEG, .priv = 1}, {320, 240, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE, .bytesperline = 320, .sizeimage = 320 * 240 * 3, .colorspace = V4L2_COLORSPACE_JPEG, .priv = 2}, {352, 288, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE, .bytesperline = 352, .sizeimage = 352 * 288 * 3, .colorspace = V4L2_COLORSPACE_JPEG, .priv = 0}, }; /* Registers common to OV511 / OV518 */ #define R51x_FIFO_PSIZE 0x30 /* 2 bytes wide w/ OV518(+) */ #define R51x_SYS_RESET 0x50 /* Reset type flags */ #define OV511_RESET_OMNICE 0x08 #define R51x_SYS_INIT 0x53 #define R51x_SYS_SNAP 0x52 #define R51x_SYS_CUST_ID 0x5F #define R51x_COMP_LUT_BEGIN 0x80 /* OV511 Camera interface register numbers */ #define R511_CAM_DELAY 0x10 #define R511_CAM_EDGE 0x11 #define R511_CAM_PXCNT 0x12 #define R511_CAM_LNCNT 0x13 #define R511_CAM_PXDIV 0x14 #define R511_CAM_LNDIV 0x15 #define R511_CAM_UV_EN 0x16 #define R511_CAM_LINE_MODE 0x17 #define R511_CAM_OPTS 0x18 #define R511_SNAP_FRAME 0x19 #define R511_SNAP_PXCNT 0x1A #define R511_SNAP_LNCNT 0x1B #define R511_SNAP_PXDIV 0x1C #define R511_SNAP_LNDIV 0x1D #define R511_SNAP_UV_EN 0x1E #define R511_SNAP_UV_EN 0x1E #define R511_SNAP_OPTS 0x1F #define R511_DRAM_FLOW_CTL 0x20 #define R511_FIFO_OPTS 0x31 #define R511_I2C_CTL 0x40 #define R511_SYS_LED_CTL 0x55 /* OV511+ only */ #define R511_COMP_EN 0x78 #define R511_COMP_LUT_EN 0x79 /* OV518 Camera interface register numbers */ #define R518_GPIO_OUT 0x56 /* OV518(+) only */ #define R518_GPIO_CTL 0x57 /* OV518(+) only */ /* OV519 Camera interface register numbers */ #define OV519_R10_H_SIZE 0x10 #define OV519_R11_V_SIZE 0x11 #define OV519_R12_X_OFFSETL 0x12 #define OV519_R13_X_OFFSETH 0x13 #define OV519_R14_Y_OFFSETL 0x14 #define OV519_R15_Y_OFFSETH 0x15 #define OV519_R16_DIVIDER 0x16 #define OV519_R20_DFR 0x20 #define OV519_R25_FORMAT 0x25 /* OV519 System Controller register numbers */ #define OV519_SYS_RESET1 0x51 #define OV519_SYS_EN_CLK1 0x54 #define OV519_GPIO_DATA_OUT0 0x71 #define OV519_GPIO_IO_CTRL0 0x72 #define OV511_ENDPOINT_ADDRESS 1 /* Isoc endpoint number */ /* I2C registers */ #define R51x_I2C_W_SID 0x41 #define R51x_I2C_SADDR_3 0x42 #define R51x_I2C_SADDR_2 0x43 #define R51x_I2C_R_SID 0x44 #define R51x_I2C_DATA 0x45 #define R518_I2C_CTL 0x47 /* OV518(+) only */ /* I2C ADDRESSES */ #define OV7xx0_SID 0x42 #define OV8xx0_SID 0xa0 #define OV6xx0_SID 0xc0 /* OV7610 registers */ #define OV7610_REG_GAIN 0x00 /* gain setting (5:0) */ #define OV7610_REG_BLUE 0x01 /* blue channel balance */ #define OV7610_REG_RED 0x02 /* red channel balance */ #define OV7610_REG_SAT 0x03 /* saturation */ #define OV8610_REG_HUE 0x04 /* 04 reserved */ #define OV7610_REG_CNT 0x05 /* Y contrast */ #define OV7610_REG_BRT 0x06 /* Y brightness */ #define OV7610_REG_COM_C 0x14 /* misc common regs */ #define OV7610_REG_ID_HIGH 0x1c /* manufacturer ID MSB */ #define OV7610_REG_ID_LOW 0x1d /* manufacturer ID LSB */ #define OV7610_REG_COM_I 0x29 /* misc settings */ /* OV7670 registers */ #define OV7670_REG_GAIN 0x00 /* Gain lower 8 bits (rest in vref) */ #define OV7670_REG_BLUE 0x01 /* blue gain */ #define OV7670_REG_RED 0x02 /* red gain */ #define OV7670_REG_VREF 0x03 /* Pieces of GAIN, VSTART, VSTOP */ #define OV7670_REG_COM1 0x04 /* Control 1 */ #define OV7670_REG_AECHH 0x07 /* AEC MS 5 bits */ #define OV7670_REG_COM3 0x0c /* Control 3 */ #define OV7670_REG_COM4 0x0d /* Control 4 */ #define OV7670_REG_COM5 0x0e /* All "reserved" */ #define OV7670_REG_COM6 0x0f /* Control 6 */ #define OV7670_REG_AECH 0x10 /* More bits of AEC value */ #define OV7670_REG_CLKRC 0x11 /* Clock control */ #define OV7670_REG_COM7 0x12 /* Control 7 */ #define OV7670_COM7_FMT_VGA 0x00 #define OV7670_COM7_YUV 0x00 /* YUV */ #define OV7670_COM7_FMT_QVGA 0x10 /* QVGA format */ #define OV7670_COM7_FMT_MASK 0x38 #define OV7670_COM7_RESET 0x80 /* Register reset */ #define OV7670_REG_COM8 0x13 /* Control 8 */ #define OV7670_COM8_AEC 0x01 /* Auto exposure enable */ #define OV7670_COM8_AWB 0x02 /* White balance enable */ #define OV7670_COM8_AGC 0x04 /* Auto gain enable */ #define OV7670_COM8_BFILT 0x20 /* Band filter enable */ #define OV7670_COM8_AECSTEP 0x40 /* Unlimited AEC step size */ #define OV7670_COM8_FASTAEC 0x80 /* Enable fast AGC/AEC */ #define OV7670_REG_COM9 0x14 /* Control 9 - gain ceiling */ #define OV7670_REG_COM10 0x15 /* Control 10 */ #define OV7670_REG_HSTART 0x17 /* Horiz start high bits */ #define OV7670_REG_HSTOP 0x18 /* Horiz stop high bits */ #define OV7670_REG_VSTART 0x19 /* Vert start high bits */ #define OV7670_REG_VSTOP 0x1a /* Vert stop high bits */ #define OV7670_REG_MVFP 0x1e /* Mirror / vflip */ #define OV7670_MVFP_VFLIP 0x10 /* vertical flip */ #define OV7670_MVFP_MIRROR 0x20 /* Mirror image */ #define OV7670_REG_AEW 0x24 /* AGC upper limit */ #define OV7670_REG_AEB 0x25 /* AGC lower limit */ #define OV7670_REG_VPT 0x26 /* AGC/AEC fast mode op region */ #define OV7670_REG_HREF 0x32 /* HREF pieces */ #define OV7670_REG_TSLB 0x3a /* lots of stuff */ #define OV7670_REG_COM11 0x3b /* Control 11 */ #define OV7670_COM11_EXP 0x02 #define OV7670_COM11_HZAUTO 0x10 /* Auto detect 50/60 Hz */ #define OV7670_REG_COM12 0x3c /* Control 12 */ #define OV7670_REG_COM13 0x3d /* Control 13 */ #define OV7670_COM13_GAMMA 0x80 /* Gamma enable */ #define OV7670_COM13_UVSAT 0x40 /* UV saturation auto adjustment */ #define OV7670_REG_COM14 0x3e /* Control 14 */ #define OV7670_REG_EDGE 0x3f /* Edge enhancement factor */ #define OV7670_REG_COM15 0x40 /* Control 15 */ #define OV7670_COM15_R00FF 0xc0 /* 00 to FF */ #define OV7670_REG_COM16 0x41 /* Control 16 */ #define OV7670_COM16_AWBGAIN 0x08 /* AWB gain enable */ #define OV7670_REG_BRIGHT 0x55 /* Brightness */ #define OV7670_REG_CONTRAS 0x56 /* Contrast control */ #define OV7670_REG_GFIX 0x69 /* Fix gain control */ #define OV7670_REG_RGB444 0x8c /* RGB 444 control */ #define OV7670_REG_HAECC1 0x9f /* Hist AEC/AGC control 1 */ #define OV7670_REG_HAECC2 0xa0 /* Hist AEC/AGC control 2 */ #define OV7670_REG_BD50MAX 0xa5 /* 50hz banding step limit */ #define OV7670_REG_HAECC3 0xa6 /* Hist AEC/AGC control 3 */ #define OV7670_REG_HAECC4 0xa7 /* Hist AEC/AGC control 4 */ #define OV7670_REG_HAECC5 0xa8 /* Hist AEC/AGC control 5 */ #define OV7670_REG_HAECC6 0xa9 /* Hist AEC/AGC control 6 */ #define OV7670_REG_HAECC7 0xaa /* Hist AEC/AGC control 7 */ #define OV7670_REG_BD60MAX 0xab /* 60hz banding step limit */ struct ov_regvals { __u8 reg; __u8 val; }; struct ov_i2c_regvals { __u8 reg; __u8 val; }; static const struct ov_i2c_regvals norm_6x20[] = { { 0x12, 0x80 }, /* reset */ { 0x11, 0x01 }, { 0x03, 0x60 }, { 0x05, 0x7f }, /* For when autoadjust is off */ { 0x07, 0xa8 }, /* The ratio of 0x0c and 0x0d controls the white point */ { 0x0c, 0x24 }, { 0x0d, 0x24 }, { 0x0f, 0x15 }, /* COMS */ { 0x10, 0x75 }, /* AEC Exposure time */ { 0x12, 0x24 }, /* Enable AGC */ { 0x14, 0x04 }, /* 0x16: 0x06 helps frame stability with moving objects */ { 0x16, 0x06 }, /* { 0x20, 0x30 }, * Aperture correction enable */ { 0x26, 0xb2 }, /* BLC enable */ /* 0x28: 0x05 Selects RGB format if RGB on */ { 0x28, 0x05 }, { 0x2a, 0x04 }, /* Disable framerate adjust */ /* { 0x2b, 0xac }, * Framerate; Set 2a[7] first */ { 0x2d, 0x99 }, { 0x33, 0xa0 }, /* Color Processing Parameter */ { 0x34, 0xd2 }, /* Max A/D range */ { 0x38, 0x8b }, { 0x39, 0x40 }, { 0x3c, 0x39 }, /* Enable AEC mode changing */ { 0x3c, 0x3c }, /* Change AEC mode */ { 0x3c, 0x24 }, /* Disable AEC mode changing */ { 0x3d, 0x80 }, /* These next two registers (0x4a, 0x4b) are undocumented. * They control the color balance */ { 0x4a, 0x80 }, { 0x4b, 0x80 }, { 0x4d, 0xd2 }, /* This reduces noise a bit */ { 0x4e, 0xc1 }, { 0x4f, 0x04 }, /* Do 50-53 have any effect? */ /* Toggle 0x12[2] off and on here? */ }; static const struct ov_i2c_regvals norm_6x30[] = { { 0x12, 0x80 }, /* Reset */ { 0x00, 0x1f }, /* Gain */ { 0x01, 0x99 }, /* Blue gain */ { 0x02, 0x7c }, /* Red gain */ { 0x03, 0xc0 }, /* Saturation */ { 0x05, 0x0a }, /* Contrast */ { 0x06, 0x95 }, /* Brightness */ { 0x07, 0x2d }, /* Sharpness */ { 0x0c, 0x20 }, { 0x0d, 0x20 }, { 0x0e, 0xa0 }, /* Was 0x20, bit7 enables a 2x gain which we need */ { 0x0f, 0x05 }, { 0x10, 0x9a }, { 0x11, 0x00 }, /* Pixel clock = fastest */ { 0x12, 0x24 }, /* Enable AGC and AWB */ { 0x13, 0x21 }, { 0x14, 0x80 }, { 0x15, 0x01 }, { 0x16, 0x03 }, { 0x17, 0x38 }, { 0x18, 0xea }, { 0x19, 0x04 }, { 0x1a, 0x93 }, { 0x1b, 0x00 }, { 0x1e, 0xc4 }, { 0x1f, 0x04 }, { 0x20, 0x20 }, { 0x21, 0x10 }, { 0x22, 0x88 }, { 0x23, 0xc0 }, /* Crystal circuit power level */ { 0x25, 0x9a }, /* Increase AEC black ratio */ { 0x26, 0xb2 }, /* BLC enable */ { 0x27, 0xa2 }, { 0x28, 0x00 }, { 0x29, 0x00 }, { 0x2a, 0x84 }, /* 60 Hz power */ { 0x2b, 0xa8 }, /* 60 Hz power */ { 0x2c, 0xa0 }, { 0x2d, 0x95 }, /* Enable auto-brightness */ { 0x2e, 0x88 }, { 0x33, 0x26 }, { 0x34, 0x03 }, { 0x36, 0x8f }, { 0x37, 0x80 }, { 0x38, 0x83 }, { 0x39, 0x80 }, { 0x3a, 0x0f }, { 0x3b, 0x3c }, { 0x3c, 0x1a }, { 0x3d, 0x80 }, { 0x3e, 0x80 }, { 0x3f, 0x0e }, { 0x40, 0x00 }, /* White bal */ { 0x41, 0x00 }, /* White bal */ { 0x42, 0x80 }, { 0x43, 0x3f }, /* White bal */ { 0x44, 0x80 }, { 0x45, 0x20 }, { 0x46, 0x20 }, { 0x47, 0x80 }, { 0x48, 0x7f }, { 0x49, 0x00 }, { 0x4a, 0x00 }, { 0x4b, 0x80 }, { 0x4c, 0xd0 }, { 0x4d, 0x10 }, /* U = 0.563u, V = 0.714v */ { 0x4e, 0x40 }, { 0x4f, 0x07 }, /* UV avg., col. killer: max */ { 0x50, 0xff }, { 0x54, 0x23 }, /* Max AGC gain: 18dB */ { 0x55, 0xff }, { 0x56, 0x12 }, { 0x57, 0x81 }, { 0x58, 0x75 }, { 0x59, 0x01 }, /* AGC dark current comp.: +1 */ { 0x5a, 0x2c }, { 0x5b, 0x0f }, /* AWB chrominance levels */ { 0x5c, 0x10 }, { 0x3d, 0x80 }, { 0x27, 0xa6 }, { 0x12, 0x20 }, /* Toggle AWB */ { 0x12, 0x24 }, }; /* Lawrence Glaister reports: * * Register 0x0f in the 7610 has the following effects: * * 0x85 (AEC method 1): Best overall, good contrast range * 0x45 (AEC method 2): Very overexposed * 0xa5 (spec sheet default): Ok, but the black level is * shifted resulting in loss of contrast * 0x05 (old driver setting): very overexposed, too much * contrast */ static const struct ov_i2c_regvals norm_7610[] = { { 0x10, 0xff }, { 0x16, 0x06 }, { 0x28, 0x24 }, { 0x2b, 0xac }, { 0x12, 0x00 }, { 0x38, 0x81 }, { 0x28, 0x24 }, /* 0c */ { 0x0f, 0x85 }, /* lg's setting */ { 0x15, 0x01 }, { 0x20, 0x1c }, { 0x23, 0x2a }, { 0x24, 0x10 }, { 0x25, 0x8a }, { 0x26, 0xa2 }, { 0x27, 0xc2 }, { 0x2a, 0x04 }, { 0x2c, 0xfe }, { 0x2d, 0x93 }, { 0x30, 0x71 }, { 0x31, 0x60 }, { 0x32, 0x26 }, { 0x33, 0x20 }, { 0x34, 0x48 }, { 0x12, 0x24 }, { 0x11, 0x01 }, { 0x0c, 0x24 }, { 0x0d, 0x24 }, }; static const struct ov_i2c_regvals norm_7620[] = { { 0x00, 0x00 }, /* gain */ { 0x01, 0x80 }, /* blue gain */ { 0x02, 0x80 }, /* red gain */ { 0x03, 0xc0 }, /* OV7670_REG_VREF */ { 0x06, 0x60 }, { 0x07, 0x00 }, { 0x0c, 0x24 }, { 0x0c, 0x24 }, { 0x0d, 0x24 }, { 0x11, 0x01 }, { 0x12, 0x24 }, { 0x13, 0x01 }, { 0x14, 0x84 }, { 0x15, 0x01 }, { 0x16, 0x03 }, { 0x17, 0x2f }, { 0x18, 0xcf }, { 0x19, 0x06 }, { 0x1a, 0xf5 }, { 0x1b, 0x00 }, { 0x20, 0x18 }, { 0x21, 0x80 }, { 0x22, 0x80 }, { 0x23, 0x00 }, { 0x26, 0xa2 }, { 0x27, 0xea }, { 0x28, 0x20 }, { 0x29, 0x00 }, { 0x2a, 0x10 }, { 0x2b, 0x00 }, { 0x2c, 0x88 }, { 0x2d, 0x91 }, { 0x2e, 0x80 }, { 0x2f, 0x44 }, { 0x60, 0x27 }, { 0x61, 0x02 }, { 0x62, 0x5f }, { 0x63, 0xd5 }, { 0x64, 0x57 }, { 0x65, 0x83 }, { 0x66, 0x55 }, { 0x67, 0x92 }, { 0x68, 0xcf }, { 0x69, 0x76 }, { 0x6a, 0x22 }, { 0x6b, 0x00 }, { 0x6c, 0x02 }, { 0x6d, 0x44 }, { 0x6e, 0x80 }, { 0x6f, 0x1d }, { 0x70, 0x8b }, { 0x71, 0x00 }, { 0x72, 0x14 }, { 0x73, 0x54 }, { 0x74, 0x00 }, { 0x75, 0x8e }, { 0x76, 0x00 }, { 0x77, 0xff }, { 0x78, 0x80 }, { 0x79, 0x80 }, { 0x7a, 0x80 }, { 0x7b, 0xe2 }, { 0x7c, 0x00 }, }; /* 7640 and 7648. The defaults should be OK for most registers. */ static const struct ov_i2c_regvals norm_7640[] = { { 0x12, 0x80 }, { 0x12, 0x14 }, }; /* 7670. Defaults taken from OmniVision provided data, * as provided by Jonathan Corbet of OLPC */ static const struct ov_i2c_regvals norm_7670[] = { { OV7670_REG_COM7, OV7670_COM7_RESET }, { OV7670_REG_TSLB, 0x04 }, /* OV */ { OV7670_REG_COM7, OV7670_COM7_FMT_VGA }, /* VGA */ { OV7670_REG_CLKRC, 0x01 }, /* * Set the hardware window. These values from OV don't entirely * make sense - hstop is less than hstart. But they work... */ { OV7670_REG_HSTART, 0x13 }, { OV7670_REG_HSTOP, 0x01 }, { OV7670_REG_HREF, 0xb6 }, { OV7670_REG_VSTART, 0x02 }, { OV7670_REG_VSTOP, 0x7a }, { OV7670_REG_VREF, 0x0a }, { OV7670_REG_COM3, 0x00 }, { OV7670_REG_COM14, 0x00 }, /* Mystery scaling numbers */ { 0x70, 0x3a }, { 0x71, 0x35 }, { 0x72, 0x11 }, { 0x73, 0xf0 }, { 0xa2, 0x02 }, /* { OV7670_REG_COM10, 0x0 }, */ /* Gamma curve values */ { 0x7a, 0x20 }, { 0x7b, 0x10 }, { 0x7c, 0x1e }, { 0x7d, 0x35 }, { 0x7e, 0x5a }, { 0x7f, 0x69 }, { 0x80, 0x76 }, { 0x81, 0x80 }, { 0x82, 0x88 }, { 0x83, 0x8f }, { 0x84, 0x96 }, { 0x85, 0xa3 }, { 0x86, 0xaf }, { 0x87, 0xc4 }, { 0x88, 0xd7 }, { 0x89, 0xe8 }, /* AGC and AEC parameters. Note we start by disabling those features, then turn them only after tweaking the values. */ { OV7670_REG_COM8, OV7670_COM8_FASTAEC | OV7670_COM8_AECSTEP | OV7670_COM8_BFILT }, { OV7670_REG_GAIN, 0x00 }, { OV7670_REG_AECH, 0x00 }, { OV7670_REG_COM4, 0x40 }, /* magic reserved bit */ { OV7670_REG_COM9, 0x18 }, /* 4x gain + magic rsvd bit */ { OV7670_REG_BD50MAX, 0x05 }, { OV7670_REG_BD60MAX, 0x07 }, { OV7670_REG_AEW, 0x95 }, { OV7670_REG_AEB, 0x33 }, { OV7670_REG_VPT, 0xe3 }, { OV7670_REG_HAECC1, 0x78 }, { OV7670_REG_HAECC2, 0x68 }, { 0xa1, 0x03 }, /* magic */ { OV7670_REG_HAECC3, 0xd8 }, { OV7670_REG_HAECC4, 0xd8 }, { OV7670_REG_HAECC5, 0xf0 }, { OV7670_REG_HAECC6, 0x90 }, { OV7670_REG_HAECC7, 0x94 }, { OV7670_REG_COM8, OV7670_COM8_FASTAEC | OV7670_COM8_AECSTEP | OV7670_COM8_BFILT | OV7670_COM8_AGC | OV7670_COM8_AEC }, /* Almost all of these are magic "reserved" values. */ { OV7670_REG_COM5, 0x61 }, { OV7670_REG_COM6, 0x4b }, { 0x16, 0x02 }, { OV7670_REG_MVFP, 0x07 }, { 0x21, 0x02 }, { 0x22, 0x91 }, { 0x29, 0x07 }, { 0x33, 0x0b }, { 0x35, 0x0b }, { 0x37, 0x1d }, { 0x38, 0x71 }, { 0x39, 0x2a }, { OV7670_REG_COM12, 0x78 }, { 0x4d, 0x40 }, { 0x4e, 0x20 }, { OV7670_REG_GFIX, 0x00 }, { 0x6b, 0x4a }, { 0x74, 0x10 }, { 0x8d, 0x4f }, { 0x8e, 0x00 }, { 0x8f, 0x00 }, { 0x90, 0x00 }, { 0x91, 0x00 }, { 0x96, 0x00 }, { 0x9a, 0x00 }, { 0xb0, 0x84 }, { 0xb1, 0x0c }, { 0xb2, 0x0e }, { 0xb3, 0x82 }, { 0xb8, 0x0a }, /* More reserved magic, some of which tweaks white balance */ { 0x43, 0x0a }, { 0x44, 0xf0 }, { 0x45, 0x34 }, { 0x46, 0x58 }, { 0x47, 0x28 }, { 0x48, 0x3a }, { 0x59, 0x88 }, { 0x5a, 0x88 }, { 0x5b, 0x44 }, { 0x5c, 0x67 }, { 0x5d, 0x49 }, { 0x5e, 0x0e }, { 0x6c, 0x0a }, { 0x6d, 0x55 }, { 0x6e, 0x11 }, { 0x6f, 0x9f }, /* "9e for advance AWB" */ { 0x6a, 0x40 }, { OV7670_REG_BLUE, 0x40 }, { OV7670_REG_RED, 0x60 }, { OV7670_REG_COM8, OV7670_COM8_FASTAEC | OV7670_COM8_AECSTEP | OV7670_COM8_BFILT | OV7670_COM8_AGC | OV7670_COM8_AEC | OV7670_COM8_AWB }, /* Matrix coefficients */ { 0x4f, 0x80 }, { 0x50, 0x80 }, { 0x51, 0x00 }, { 0x52, 0x22 }, { 0x53, 0x5e }, { 0x54, 0x80 }, { 0x58, 0x9e }, { OV7670_REG_COM16, OV7670_COM16_AWBGAIN }, { OV7670_REG_EDGE, 0x00 }, { 0x75, 0x05 }, { 0x76, 0xe1 }, { 0x4c, 0x00 }, { 0x77, 0x01 }, { OV7670_REG_COM13, OV7670_COM13_GAMMA | OV7670_COM13_UVSAT | 2}, /* was 3 */ { 0x4b, 0x09 }, { 0xc9, 0x60 }, { OV7670_REG_COM16, 0x38 }, { 0x56, 0x40 }, { 0x34, 0x11 }, { OV7670_REG_COM11, OV7670_COM11_EXP|OV7670_COM11_HZAUTO }, { 0xa4, 0x88 }, { 0x96, 0x00 }, { 0x97, 0x30 }, { 0x98, 0x20 }, { 0x99, 0x30 }, { 0x9a, 0x84 }, { 0x9b, 0x29 }, { 0x9c, 0x03 }, { 0x9d, 0x4c }, { 0x9e, 0x3f }, { 0x78, 0x04 }, /* Extra-weird stuff. Some sort of multiplexor register */ { 0x79, 0x01 }, { 0xc8, 0xf0 }, { 0x79, 0x0f }, { 0xc8, 0x00 }, { 0x79, 0x10 }, { 0xc8, 0x7e }, { 0x79, 0x0a }, { 0xc8, 0x80 }, { 0x79, 0x0b }, { 0xc8, 0x01 }, { 0x79, 0x0c }, { 0xc8, 0x0f }, { 0x79, 0x0d }, { 0xc8, 0x20 }, { 0x79, 0x09 }, { 0xc8, 0x80 }, { 0x79, 0x02 }, { 0xc8, 0xc0 }, { 0x79, 0x03 }, { 0xc8, 0x40 }, { 0x79, 0x05 }, { 0xc8, 0x30 }, { 0x79, 0x26 }, }; static const struct ov_i2c_regvals norm_8610[] = { { 0x12, 0x80 }, { 0x00, 0x00 }, { 0x01, 0x80 }, { 0x02, 0x80 }, { 0x03, 0xc0 }, { 0x04, 0x30 }, { 0x05, 0x30 }, /* was 0x10, new from windrv 090403 */ { 0x06, 0x70 }, /* was 0x80, new from windrv 090403 */ { 0x0a, 0x86 }, { 0x0b, 0xb0 }, { 0x0c, 0x20 }, { 0x0d, 0x20 }, { 0x11, 0x01 }, { 0x12, 0x25 }, { 0x13, 0x01 }, { 0x14, 0x04 }, { 0x15, 0x01 }, /* Lin and Win think different about UV order */ { 0x16, 0x03 }, { 0x17, 0x38 }, /* was 0x2f, new from windrv 090403 */ { 0x18, 0xea }, /* was 0xcf, new from windrv 090403 */ { 0x19, 0x02 }, /* was 0x06, new from windrv 090403 */ { 0x1a, 0xf5 }, { 0x1b, 0x00 }, { 0x20, 0xd0 }, /* was 0x90, new from windrv 090403 */ { 0x23, 0xc0 }, /* was 0x00, new from windrv 090403 */ { 0x24, 0x30 }, /* was 0x1d, new from windrv 090403 */ { 0x25, 0x50 }, /* was 0x57, new from windrv 090403 */ { 0x26, 0xa2 }, { 0x27, 0xea }, { 0x28, 0x00 }, { 0x29, 0x00 }, { 0x2a, 0x80 }, { 0x2b, 0xc8 }, /* was 0xcc, new from windrv 090403 */ { 0x2c, 0xac }, { 0x2d, 0x45 }, /* was 0xd5, new from windrv 090403 */ { 0x2e, 0x80 }, { 0x2f, 0x14 }, /* was 0x01, new from windrv 090403 */ { 0x4c, 0x00 }, { 0x4d, 0x30 }, /* was 0x10, new from windrv 090403 */ { 0x60, 0x02 }, /* was 0x01, new from windrv 090403 */ { 0x61, 0x00 }, /* was 0x09, new from windrv 090403 */ { 0x62, 0x5f }, /* was 0xd7, new from windrv 090403 */ { 0x63, 0xff }, { 0x64, 0x53 }, /* new windrv 090403 says 0x57, * maybe thats wrong */ { 0x65, 0x00 }, { 0x66, 0x55 }, { 0x67, 0xb0 }, { 0x68, 0xc0 }, /* was 0xaf, new from windrv 090403 */ { 0x69, 0x02 }, { 0x6a, 0x22 }, { 0x6b, 0x00 }, { 0x6c, 0x99 }, /* was 0x80, old windrv says 0x00, but * deleting bit7 colors the first images red */ { 0x6d, 0x11 }, /* was 0x00, new from windrv 090403 */ { 0x6e, 0x11 }, /* was 0x00, new from windrv 090403 */ { 0x6f, 0x01 }, { 0x70, 0x8b }, { 0x71, 0x00 }, { 0x72, 0x14 }, { 0x73, 0x54 }, { 0x74, 0x00 },/* 0x60? - was 0x00, new from windrv 090403 */ { 0x75, 0x0e }, { 0x76, 0x02 }, /* was 0x02, new from windrv 090403 */ { 0x77, 0xff }, { 0x78, 0x80 }, { 0x79, 0x80 }, { 0x7a, 0x80 }, { 0x7b, 0x10 }, /* was 0x13, new from windrv 090403 */ { 0x7c, 0x00 }, { 0x7d, 0x08 }, /* was 0x09, new from windrv 090403 */ { 0x7e, 0x08 }, /* was 0xc0, new from windrv 090403 */ { 0x7f, 0xfb }, { 0x80, 0x28 }, { 0x81, 0x00 }, { 0x82, 0x23 }, { 0x83, 0x0b }, { 0x84, 0x00 }, { 0x85, 0x62 }, /* was 0x61, new from windrv 090403 */ { 0x86, 0xc9 }, { 0x87, 0x00 }, { 0x88, 0x00 }, { 0x89, 0x01 }, { 0x12, 0x20 }, { 0x12, 0x25 }, /* was 0x24, new from windrv 090403 */ }; static unsigned char ov7670_abs_to_sm(unsigned char v) { if (v > 127) return v & 0x7f; return (128 - v) | 0x80; } /* Write a OV519 register */ static int reg_w(struct sd *sd, __u16 index, __u8 value) { int ret; int req = (sd->bridge <= BRIDGE_OV511PLUS) ? 2 : 1; sd->gspca_dev.usb_buf[0] = value; ret = usb_control_msg(sd->gspca_dev.dev, usb_sndctrlpipe(sd->gspca_dev.dev, 0), req, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 0, index, sd->gspca_dev.usb_buf, 1, 500); if (ret < 0) PDEBUG(D_ERR, "Write reg [%02x] %02x failed", index, value); return ret; } /* Read from a OV519 register */ /* returns: negative is error, pos or zero is data */ static int reg_r(struct sd *sd, __u16 index) { int ret; int req = (sd->bridge <= BRIDGE_OV511PLUS) ? 3 : 1; ret = usb_control_msg(sd->gspca_dev.dev, usb_rcvctrlpipe(sd->gspca_dev.dev, 0), req, USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 0, index, sd->gspca_dev.usb_buf, 1, 500); if (ret >= 0) ret = sd->gspca_dev.usb_buf[0]; else PDEBUG(D_ERR, "Read reg [0x%02x] failed", index); return ret; } /* Read 8 values from a OV519 register */ static int reg_r8(struct sd *sd, __u16 index) { int ret; ret = usb_control_msg(sd->gspca_dev.dev, usb_rcvctrlpipe(sd->gspca_dev.dev, 0), 1, /* REQ_IO */ USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 0, index, sd->gspca_dev.usb_buf, 8, 500); if (ret >= 0) ret = sd->gspca_dev.usb_buf[0]; else PDEBUG(D_ERR, "Read reg 8 [0x%02x] failed", index); return ret; } /* * Writes bits at positions specified by mask to an OV51x reg. Bits that are in * the same position as 1's in "mask" are cleared and set to "value". Bits * that are in the same position as 0's in "mask" are preserved, regardless * of their respective state in "value". */ static int reg_w_mask(struct sd *sd, __u16 index, __u8 value, __u8 mask) { int ret; __u8 oldval; if (mask != 0xff) { value &= mask; /* Enforce mask on value */ ret = reg_r(sd, index); if (ret < 0) return ret; oldval = ret & ~mask; /* Clear the masked bits */ value |= oldval; /* Set the desired bits */ } return reg_w(sd, index, value); } /* * Writes multiple (n) byte value to a single register. Only valid with certain * registers (0x30 and 0xc4 - 0xce). */ static int ov518_reg_w32(struct sd *sd, __u16 index, u32 value, int n) { int ret; *((u32 *)sd->gspca_dev.usb_buf) = __cpu_to_le32(value); ret = usb_control_msg(sd->gspca_dev.dev, usb_sndctrlpipe(sd->gspca_dev.dev, 0), 1 /* REG_IO */, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 0, index, sd->gspca_dev.usb_buf, n, 500); if (ret < 0) PDEBUG(D_ERR, "Write reg32 [%02x] %08x failed", index, value); return ret; } static int ov511_i2c_w(struct sd *sd, __u8 reg, __u8 value) { int rc, retries; PDEBUG(D_USBO, "i2c 0x%02x -> [0x%02x]", value, reg); /* Three byte write cycle */ for (retries = 6; ; ) { /* Select camera register */ rc = reg_w(sd, R51x_I2C_SADDR_3, reg); if (rc < 0) return rc; /* Write "value" to I2C data port of OV511 */ rc = reg_w(sd, R51x_I2C_DATA, value); if (rc < 0) return rc; /* Initiate 3-byte write cycle */ rc = reg_w(sd, R511_I2C_CTL, 0x01); if (rc < 0) return rc; do rc = reg_r(sd, R511_I2C_CTL); while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */ if (rc < 0) return rc; if ((rc & 2) == 0) /* Ack? */ break; if (--retries < 0) { PDEBUG(D_USBO, "i2c write retries exhausted"); return -1; } } return 0; } static int ov511_i2c_r(struct sd *sd, __u8 reg) { int rc, value, retries; /* Two byte write cycle */ for (retries = 6; ; ) { /* Select camera register */ rc = reg_w(sd, R51x_I2C_SADDR_2, reg); if (rc < 0) return rc; /* Initiate 2-byte write cycle */ rc = reg_w(sd, R511_I2C_CTL, 0x03); if (rc < 0) return rc; do rc = reg_r(sd, R511_I2C_CTL); while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */ if (rc < 0) return rc; if ((rc & 2) == 0) /* Ack? */ break; /* I2C abort */ reg_w(sd, R511_I2C_CTL, 0x10); if (--retries < 0) { PDEBUG(D_USBI, "i2c write retries exhausted"); return -1; } } /* Two byte read cycle */ for (retries = 6; ; ) { /* Initiate 2-byte read cycle */ rc = reg_w(sd, R511_I2C_CTL, 0x05); if (rc < 0) return rc; do rc = reg_r(sd, R511_I2C_CTL); while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */ if (rc < 0) return rc; if ((rc & 2) == 0) /* Ack? */ break; /* I2C abort */ rc = reg_w(sd, R511_I2C_CTL, 0x10); if (rc < 0) return rc; if (--retries < 0) { PDEBUG(D_USBI, "i2c read retries exhausted"); return -1; } } value = reg_r(sd, R51x_I2C_DATA); PDEBUG(D_USBI, "i2c [0x%02X] -> 0x%02X", reg, value); /* This is needed to make i2c_w() work */ rc = reg_w(sd, R511_I2C_CTL, 0x05); if (rc < 0) return rc; return value; } /* * The OV518 I2C I/O procedure is different, hence, this function. * This is normally only called from i2c_w(). Note that this function * always succeeds regardless of whether the sensor is present and working. */ static int ov518_i2c_w(struct sd *sd, __u8 reg, __u8 value) { int rc; PDEBUG(D_USBO, "i2c 0x%02x -> [0x%02x]", value, reg); /* Select camera register */ rc = reg_w(sd, R51x_I2C_SADDR_3, reg); if (rc < 0) return rc; /* Write "value" to I2C data port of OV511 */ rc = reg_w(sd, R51x_I2C_DATA, value); if (rc < 0) return rc; /* Initiate 3-byte write cycle */ rc = reg_w(sd, R518_I2C_CTL, 0x01); if (rc < 0) return rc; /* wait for write complete */ msleep(4); return reg_r8(sd, R518_I2C_CTL); } /* * returns: negative is error, pos or zero is data * * The OV518 I2C I/O procedure is different, hence, this function. * This is normally only called from i2c_r(). Note that this function * always succeeds regardless of whether the sensor is present and working. */ static int ov518_i2c_r(struct sd *sd, __u8 reg) { int rc, value; /* Select camera register */ rc = reg_w(sd, R51x_I2C_SADDR_2, reg); if (rc < 0) return rc; /* Initiate 2-byte write cycle */ rc = reg_w(sd, R518_I2C_CTL, 0x03); if (rc < 0) return rc; /* Initiate 2-byte read cycle */ rc = reg_w(sd, R518_I2C_CTL, 0x05); if (rc < 0) return rc; value = reg_r(sd, R51x_I2C_DATA); PDEBUG(D_USBI, "i2c [0x%02X] -> 0x%02X", reg, value); return value; } static int i2c_w(struct sd *sd, __u8 reg, __u8 value) { switch (sd->bridge) { case BRIDGE_OV511: case BRIDGE_OV511PLUS: return ov511_i2c_w(sd, reg, value); case BRIDGE_OV518: case BRIDGE_OV518PLUS: case BRIDGE_OV519: return ov518_i2c_w(sd, reg, value); } return -1; /* Should never happen */ } static int i2c_r(struct sd *sd, __u8 reg) { switch (sd->bridge) { case BRIDGE_OV511: case BRIDGE_OV511PLUS: return ov511_i2c_r(sd, reg); case BRIDGE_OV518: case BRIDGE_OV518PLUS: case BRIDGE_OV519: return ov518_i2c_r(sd, reg); } return -1; /* Should never happen */ } /* Writes bits at positions specified by mask to an I2C reg. Bits that are in * the same position as 1's in "mask" are cleared and set to "value". Bits * that are in the same position as 0's in "mask" are preserved, regardless * of their respective state in "value". */ static int i2c_w_mask(struct sd *sd, __u8 reg, __u8 value, __u8 mask) { int rc; __u8 oldval; value &= mask; /* Enforce mask on value */ rc = i2c_r(sd, reg); if (rc < 0) return rc; oldval = rc & ~mask; /* Clear the masked bits */ value |= oldval; /* Set the desired bits */ return i2c_w(sd, reg, value); } /* Temporarily stops OV511 from functioning. Must do this before changing * registers while the camera is streaming */ static inline int ov51x_stop(struct sd *sd) { PDEBUG(D_STREAM, "stopping"); sd->stopped = 1; switch (sd->bridge) { case BRIDGE_OV511: case BRIDGE_OV511PLUS: return reg_w(sd, R51x_SYS_RESET, 0x3d); case BRIDGE_OV518: case BRIDGE_OV518PLUS: return reg_w_mask(sd, R51x_SYS_RESET, 0x3a, 0x3a); case BRIDGE_OV519: return reg_w(sd, OV519_SYS_RESET1, 0x0f); } return 0; } /* Restarts OV511 after ov511_stop() is called. Has no effect if it is not * actually stopped (for performance). */ static inline int ov51x_restart(struct sd *sd) { int rc; PDEBUG(D_STREAM, "restarting"); if (!sd->stopped) return 0; sd->stopped = 0; /* Reinitialize the stream */ switch (sd->bridge) { case BRIDGE_OV511: case BRIDGE_OV511PLUS: return reg_w(sd, R51x_SYS_RESET, 0x00); case BRIDGE_OV518: case BRIDGE_OV518PLUS: rc = reg_w(sd, 0x2f, 0x80); if (rc < 0) return rc; return reg_w(sd, R51x_SYS_RESET, 0x00); case BRIDGE_OV519: return reg_w(sd, OV519_SYS_RESET1, 0x00); } return 0; } /* This does an initial reset of an OmniVision sensor and ensures that I2C * is synchronized. Returns <0 on failure. */ static int init_ov_sensor(struct sd *sd) { int i; /* Reset the sensor */ if (i2c_w(sd, 0x12, 0x80) < 0) return -EIO; /* Wait for it to initialize */ msleep(150); for (i = 0; i < i2c_detect_tries; i++) { if (i2c_r(sd, OV7610_REG_ID_HIGH) == 0x7f && i2c_r(sd, OV7610_REG_ID_LOW) == 0xa2) { PDEBUG(D_PROBE, "I2C synced in %d attempt(s)", i); return 0; } /* Reset the sensor */ if (i2c_w(sd, 0x12, 0x80) < 0) return -EIO; /* Wait for it to initialize */ msleep(150); /* Dummy read to sync I2C */ if (i2c_r(sd, 0x00) < 0) return -EIO; } return -EIO; } /* Set the read and write slave IDs. The "slave" argument is the write slave, * and the read slave will be set to (slave + 1). * This should not be called from outside the i2c I/O functions. * Sets I2C read and write slave IDs. Returns <0 for error */ static int ov51x_set_slave_ids(struct sd *sd, __u8 slave) { int rc; rc = reg_w(sd, R51x_I2C_W_SID, slave); if (rc < 0) return rc; return reg_w(sd, R51x_I2C_R_SID, slave + 1); } static int write_regvals(struct sd *sd, const struct ov_regvals *regvals, int n) { int rc; while (--n >= 0) { rc = reg_w(sd, regvals->reg, regvals->val); if (rc < 0) return rc; regvals++; } return 0; } static int write_i2c_regvals(struct sd *sd, const struct ov_i2c_regvals *regvals, int n) { int rc; while (--n >= 0) { rc = i2c_w(sd, regvals->reg, regvals->val); if (rc < 0) return rc; regvals++; } return 0; } /**************************************************************************** * * OV511 and sensor configuration * ***************************************************************************/ /* This initializes the OV8110, OV8610 sensor. The OV8110 uses * the same register settings as the OV8610, since they are very similar. */ static int ov8xx0_configure(struct sd *sd) { int rc; PDEBUG(D_PROBE, "starting ov8xx0 configuration"); /* Detect sensor (sub)type */ rc = i2c_r(sd, OV7610_REG_COM_I); if (rc < 0) { PDEBUG(D_ERR, "Error detecting sensor type"); return -1; } if ((rc & 3) == 1) { sd->sensor = SEN_OV8610; } else { PDEBUG(D_ERR, "Unknown image sensor version: %d", rc & 3); return -1; } /* Set sensor-specific vars */ /* sd->sif = 0; already done */ return 0; } /* This initializes the OV7610, OV7620, or OV76BE sensor. The OV76BE uses * the same register settings as the OV7610, since they are very similar. */ static int ov7xx0_configure(struct sd *sd) { int rc, high, low; PDEBUG(D_PROBE, "starting OV7xx0 configuration"); /* Detect sensor (sub)type */ rc = i2c_r(sd, OV7610_REG_COM_I); /* add OV7670 here * it appears to be wrongly detected as a 7610 by default */ if (rc < 0) { PDEBUG(D_ERR, "Error detecting sensor type"); return -1; } if ((rc & 3) == 3) { /* quick hack to make OV7670s work */ high = i2c_r(sd, 0x0a); low = i2c_r(sd, 0x0b); /* info("%x, %x", high, low); */ if (high == 0x76 && low == 0x73) { PDEBUG(D_PROBE, "Sensor is an OV7670"); sd->sensor = SEN_OV7670; } else { PDEBUG(D_PROBE, "Sensor is an OV7610"); sd->sensor = SEN_OV7610; } } else if ((rc & 3) == 1) { /* I don't know what's different about the 76BE yet. */ if (i2c_r(sd, 0x15) & 1) PDEBUG(D_PROBE, "Sensor is an OV7620AE"); else PDEBUG(D_PROBE, "Sensor is an OV76BE"); /* OV511+ will return all zero isoc data unless we * configure the sensor as a 7620. Someone needs to * find the exact reg. setting that causes this. */ sd->sensor = SEN_OV76BE; } else if ((rc & 3) == 0) { /* try to read product id registers */ high = i2c_r(sd, 0x0a); if (high < 0) { PDEBUG(D_ERR, "Error detecting camera chip PID"); return high; } low = i2c_r(sd, 0x0b); if (low < 0) { PDEBUG(D_ERR, "Error detecting camera chip VER"); return low; } if (high == 0x76) { switch (low) { case 0x30: PDEBUG(D_PROBE, "Sensor is an OV7630/OV7635"); PDEBUG(D_ERR, "7630 is not supported by this driver"); return -1; case 0x40: PDEBUG(D_PROBE, "Sensor is an OV7645"); sd->sensor = SEN_OV7640; /* FIXME */ break; case 0x45: PDEBUG(D_PROBE, "Sensor is an OV7645B"); sd->sensor = SEN_OV7640; /* FIXME */ break; case 0x48: PDEBUG(D_PROBE, "Sensor is an OV7648"); sd->sensor = SEN_OV7640; /* FIXME */ break; default: PDEBUG(D_PROBE, "Unknown sensor: 0x76%x", low); return -1; } } else { PDEBUG(D_PROBE, "Sensor is an OV7620"); sd->sensor = SEN_OV7620; } } else { PDEBUG(D_ERR, "Unknown image sensor version: %d", rc & 3); return -1; } /* Set sensor-specific vars */ /* sd->sif = 0; already done */ return 0; } /* This initializes the OV6620, OV6630, OV6630AE, or OV6630AF sensor. */ static int ov6xx0_configure(struct sd *sd) { int rc; PDEBUG(D_PROBE, "starting OV6xx0 configuration"); /* Detect sensor (sub)type */ rc = i2c_r(sd, OV7610_REG_COM_I); if (rc < 0) { PDEBUG(D_ERR, "Error detecting sensor type"); return -1; } /* Ugh. The first two bits are the version bits, but * the entire register value must be used. I guess OVT * underestimated how many variants they would make. */ switch (rc) { case 0x00: sd->sensor = SEN_OV6630; PDEBUG(D_ERR, "WARNING: Sensor is an OV66308. Your camera may have"); PDEBUG(D_ERR, "been misdetected in previous driver versions."); break; case 0x01: sd->sensor = SEN_OV6620; PDEBUG(D_PROBE, "Sensor is an OV6620"); break; case 0x02: sd->sensor = SEN_OV6630; PDEBUG(D_PROBE, "Sensor is an OV66308AE"); break; case 0x03: sd->sensor = SEN_OV66308AF; PDEBUG(D_PROBE, "Sensor is an OV66308AF"); break; case 0x90: sd->sensor = SEN_OV6630; PDEBUG(D_ERR, "WARNING: Sensor is an OV66307. Your camera may have"); PDEBUG(D_ERR, "been misdetected in previous driver versions."); break; default: PDEBUG(D_ERR, "FATAL: Unknown sensor version: 0x%02x", rc); return -1; } /* Set sensor-specific vars */ sd->sif = 1; return 0; } /* Turns on or off the LED. Only has an effect with OV511+/OV518(+)/OV519 */ static void ov51x_led_control(struct sd *sd, int on) { if (sd->invert_led) on = !on; switch (sd->bridge) { /* OV511 has no LED control */ case BRIDGE_OV511PLUS: reg_w(sd, R511_SYS_LED_CTL, on ? 1 : 0); break; case BRIDGE_OV518: case BRIDGE_OV518PLUS: reg_w_mask(sd, R518_GPIO_OUT, on ? 0x02 : 0x00, 0x02); break; case BRIDGE_OV519: reg_w_mask(sd, OV519_GPIO_DATA_OUT0, !on, 1); /* 0 / 1 */ break; } } static int ov51x_upload_quan_tables(struct sd *sd) { const unsigned char yQuanTable511[] = { 0, 1, 1, 2, 2, 3, 3, 4, 1, 1, 1, 2, 2, 3, 4, 4, 1, 1, 2, 2, 3, 4, 4, 4, 2, 2, 2, 3, 4, 4, 4, 4, 2, 2, 3, 4, 4, 5, 5, 5, 3, 3, 4, 4, 5, 5, 5, 5, 3, 4, 4, 4, 5, 5, 5, 5, 4, 4, 4, 4, 5, 5, 5, 5 }; const unsigned char uvQuanTable511[] = { 0, 2, 2, 3, 4, 4, 4, 4, 2, 2, 2, 4, 4, 4, 4, 4, 2, 2, 3, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 }; /* OV518 quantization tables are 8x4 (instead of 8x8) */ const unsigned char yQuanTable518[] = { 5, 4, 5, 6, 6, 7, 7, 7, 5, 5, 5, 5, 6, 7, 7, 7, 6, 6, 6, 6, 7, 7, 7, 8, 7, 7, 6, 7, 7, 7, 8, 8 }; const unsigned char uvQuanTable518[] = { 6, 6, 6, 7, 7, 7, 7, 7, 6, 6, 6, 7, 7, 7, 7, 7, 6, 6, 6, 7, 7, 7, 7, 8, 7, 7, 7, 7, 7, 7, 8, 8 }; const unsigned char *pYTable, *pUVTable; unsigned char val0, val1; int i, size, rc, reg = R51x_COMP_LUT_BEGIN; PDEBUG(D_PROBE, "Uploading quantization tables"); if (sd->bridge == BRIDGE_OV511 || sd->bridge == BRIDGE_OV511PLUS) { pYTable = yQuanTable511; pUVTable = uvQuanTable511; size = 32; } else { pYTable = yQuanTable518; pUVTable = uvQuanTable518; size = 16; } for (i = 0; i < size; i++) { val0 = *pYTable++; val1 = *pYTable++; val0 &= 0x0f; val1 &= 0x0f; val0 |= val1 << 4; rc = reg_w(sd, reg, val0); if (rc < 0) return rc; val0 = *pUVTable++; val1 = *pUVTable++; val0 &= 0x0f; val1 &= 0x0f; val0 |= val1 << 4; rc = reg_w(sd, reg + size, val0); if (rc < 0) return rc; reg++; } return 0; } /* This initializes the OV511/OV511+ and the sensor */ static int ov511_configure(struct gspca_dev *gspca_dev) { struct sd *sd = (struct sd *) gspca_dev; int rc; /* For 511 and 511+ */ const struct ov_regvals init_511[] = { { R51x_SYS_RESET, 0x7f }, { R51x_SYS_INIT, 0x01 }, { R51x_SYS_RESET, 0x7f }, { R51x_SYS_INIT, 0x01 }, { R51x_SYS_RESET, 0x3f }, { R51x_SYS_INIT, 0x01 }, { R51x_SYS_RESET, 0x3d }, }; const struct ov_regvals norm_511[] = { { R511_DRAM_FLOW_CTL, 0x01 }, { R51x_SYS_SNAP, 0x00 }, { R51x_SYS_SNAP, 0x02 }, { R51x_SYS_SNAP, 0x00 }, { R511_FIFO_OPTS, 0x1f }, { R511_COMP_EN, 0x00 }, { R511_COMP_LUT_EN, 0x03 }, }; const struct ov_regvals norm_511_p[] = { { R511_DRAM_FLOW_CTL, 0xff }, { R51x_SYS_SNAP, 0x00 }, { R51x_SYS_SNAP, 0x02 }, { R51x_SYS_SNAP, 0x00 }, { R511_FIFO_OPTS, 0xff }, { R511_COMP_EN, 0x00 }, { R511_COMP_LUT_EN, 0x03 }, }; const struct ov_regvals compress_511[] = { { 0x70, 0x1f }, { 0x71, 0x05 }, { 0x72, 0x06 }, { 0x73, 0x06 }, { 0x74, 0x14 }, { 0x75, 0x03 }, { 0x76, 0x04 }, { 0x77, 0x04 }, }; PDEBUG(D_PROBE, "Device custom id %x", reg_r(sd, R51x_SYS_CUST_ID)); rc = write_regvals(sd, init_511, ARRAY_SIZE(init_511)); if (rc < 0) return rc; switch (sd->bridge) { case BRIDGE_OV511: rc = write_regvals(sd, norm_511, ARRAY_SIZE(norm_511)); if (rc < 0) return rc; break; case BRIDGE_OV511PLUS: rc = write_regvals(sd, norm_511_p, ARRAY_SIZE(norm_511_p)); if (rc < 0) return rc; break; } /* Init compression */ rc = write_regvals(sd, compress_511, ARRAY_SIZE(compress_511)); if (rc < 0) return rc; rc = ov51x_upload_quan_tables(sd); if (rc < 0) { PDEBUG(D_ERR, "Error uploading quantization tables"); return rc; } return 0; } /* This initializes the OV518/OV518+ and the sensor */ static int ov518_configure(struct gspca_dev *gspca_dev) { struct sd *sd = (struct sd *) gspca_dev; int rc; /* For 518 and 518+ */ static struct ov_regvals init_518[] = { { R51x_SYS_RESET, 0x40 }, { R51x_SYS_INIT, 0xe1 }, { R51x_SYS_RESET, 0x3e }, { R51x_SYS_INIT, 0xe1 }, { R51x_SYS_RESET, 0x00 }, { R51x_SYS_INIT, 0xe1 }, { 0x46, 0x00 }, { 0x5d, 0x03 }, }; static struct ov_regvals norm_518[] = { { R51x_SYS_SNAP, 0x02 }, /* Reset */ { R51x_SYS_SNAP, 0x01 }, /* Enable */ { 0x31, 0x0f }, { 0x5d, 0x03 }, { 0x24, 0x9f }, { 0x25, 0x90 }, { 0x20, 0x00 }, { 0x51, 0x04 }, { 0x71, 0x19 }, { 0x2f, 0x80 }, }; static struct ov_regvals norm_518_p[] = { { R51x_SYS_SNAP, 0x02 }, /* Reset */ { R51x_SYS_SNAP, 0x01 }, /* Enable */ { 0x31, 0x0f }, { 0x5d, 0x03 }, { 0x24, 0x9f }, { 0x25, 0x90 }, { 0x20, 0x60 }, { 0x51, 0x02 }, { 0x71, 0x19 }, { 0x40, 0xff }, { 0x41, 0x42 }, { 0x46, 0x00 }, { 0x33, 0x04 }, { 0x21, 0x19 }, { 0x3f, 0x10 }, { 0x2f, 0x80 }, }; /* First 5 bits of custom ID reg are a revision ID on OV518 */ PDEBUG(D_PROBE, "Device revision %d", 0x1F & reg_r(sd, R51x_SYS_CUST_ID)); rc = write_regvals(sd, init_518, ARRAY_SIZE(init_518)); if (rc < 0) return rc; /* Set LED GPIO pin to output mode */ rc = reg_w_mask(sd, R518_GPIO_CTL, 0x00, 0x02); if (rc < 0) return rc; switch (sd->bridge) { case BRIDGE_OV518: rc = write_regvals(sd, norm_518, ARRAY_SIZE(norm_518)); if (rc < 0) return rc; break; case BRIDGE_OV518PLUS: rc = write_regvals(sd, norm_518_p, ARRAY_SIZE(norm_518_p)); if (rc < 0) return rc; break; } rc = ov51x_upload_quan_tables(sd); if (rc < 0) { PDEBUG(D_ERR, "Error uploading quantization tables"); return rc; } rc = reg_w(sd, 0x2f, 0x80); if (rc < 0) return rc; return 0; } static int ov519_configure(struct sd *sd) { static const struct ov_regvals init_519[] = { { 0x5a, 0x6d }, /* EnableSystem */ { 0x53, 0x9b }, { 0x54, 0xff }, /* set bit2 to enable jpeg */ { 0x5d, 0x03 }, { 0x49, 0x01 }, { 0x48, 0x00 }, /* Set LED pin to output mode. Bit 4 must be cleared or sensor * detection will fail. This deserves further investigation. */ { OV519_GPIO_IO_CTRL0, 0xee }, { 0x51, 0x0f }, /* SetUsbInit */ { 0x51, 0x00 }, { 0x22, 0x00 }, /* windows reads 0x55 at this point*/ }; return write_regvals(sd, init_519, ARRAY_SIZE(init_519)); } /* this function is called at probe time */ static int sd_config(struct gspca_dev *gspca_dev, const struct usb_device_id *id) { struct sd *sd = (struct sd *) gspca_dev; struct cam *cam; int ret = 0; sd->bridge = id->driver_info & BRIDGE_MASK; sd->invert_led = id->driver_info & BRIDGE_INVERT_LED; switch (sd->bridge) { case BRIDGE_OV511: case BRIDGE_OV511PLUS: ret = ov511_configure(gspca_dev); break; case BRIDGE_OV518: case BRIDGE_OV518PLUS: ret = ov518_configure(gspca_dev); break; case BRIDGE_OV519: ret = ov519_configure(sd); break; } if (ret) goto error; ov51x_led_control(sd, 0); /* turn LED off */ /* Test for 76xx */ if (ov51x_set_slave_ids(sd, OV7xx0_SID) < 0) goto error; /* The OV519 must be more aggressive about sensor detection since * I2C write will never fail if the sensor is not present. We have * to try to initialize the sensor to detect its presence */ if (init_ov_sensor(sd) >= 0) { if (ov7xx0_configure(sd) < 0) { PDEBUG(D_ERR, "Failed to configure OV7xx0"); goto error; } } else { /* Test for 6xx0 */ if (ov51x_set_slave_ids(sd, OV6xx0_SID) < 0) goto error; if (init_ov_sensor(sd) >= 0) { if (ov6xx0_configure(sd) < 0) { PDEBUG(D_ERR, "Failed to configure OV6xx0"); goto error; } } else { /* Test for 8xx0 */ if (ov51x_set_slave_ids(sd, OV8xx0_SID) < 0) goto error; if (init_ov_sensor(sd) < 0) { PDEBUG(D_ERR, "Can't determine sensor slave IDs"); goto error; } if (ov8xx0_configure(sd) < 0) { PDEBUG(D_ERR, "Failed to configure OV8xx0 sensor"); goto error; } } } cam = &gspca_dev->cam; switch (sd->bridge) { case BRIDGE_OV511: case BRIDGE_OV511PLUS: if (!sd->sif) { cam->cam_mode = ov511_vga_mode; cam->nmodes = ARRAY_SIZE(ov511_vga_mode); } else { cam->cam_mode = ov511_sif_mode; cam->nmodes = ARRAY_SIZE(ov511_sif_mode); } break; case BRIDGE_OV518: case BRIDGE_OV518PLUS: if (!sd->sif) { cam->cam_mode = ov518_vga_mode; cam->nmodes = ARRAY_SIZE(ov518_vga_mode); } else { cam->cam_mode = ov518_sif_mode; cam->nmodes = ARRAY_SIZE(ov518_sif_mode); } break; case BRIDGE_OV519: if (!sd->sif) { cam->cam_mode = ov519_vga_mode; cam->nmodes = ARRAY_SIZE(ov519_vga_mode); } else { cam->cam_mode = ov519_sif_mode; cam->nmodes = ARRAY_SIZE(ov519_sif_mode); } break; } sd->brightness = BRIGHTNESS_DEF; if (sd->sensor == SEN_OV6630 || sd->sensor == SEN_OV66308AF) sd->contrast = 200; /* The default is too low for the ov6630 */ else sd->contrast = CONTRAST_DEF; sd->colors = COLOR_DEF; sd->hflip = HFLIP_DEF; sd->vflip = VFLIP_DEF; sd->autobrightness = AUTOBRIGHT_DEF; if (sd->sensor == SEN_OV7670) { sd->freq = OV7670_FREQ_DEF; gspca_dev->ctrl_dis = 1 << FREQ_IDX; } else { sd->freq = FREQ_DEF; gspca_dev->ctrl_dis = (1 << HFLIP_IDX) | (1 << VFLIP_IDX) | (1 << OV7670_FREQ_IDX); } if (sd->sensor == SEN_OV7640 || sd->sensor == SEN_OV7670) gspca_dev->ctrl_dis |= 1 << AUTOBRIGHT_IDX; /* OV8610 Frequency filter control should work but needs testing */ if (sd->sensor == SEN_OV8610) gspca_dev->ctrl_dis |= 1 << FREQ_IDX; return 0; error: PDEBUG(D_ERR, "OV519 Config failed"); return -EBUSY; } /* this function is called at probe and resume time */ static int sd_init(struct gspca_dev *gspca_dev) { struct sd *sd = (struct sd *) gspca_dev; /* initialize the sensor */ switch (sd->sensor) { case SEN_OV6620: if (write_i2c_regvals(sd, norm_6x20, ARRAY_SIZE(norm_6x20))) return -EIO; break; case SEN_OV6630: case SEN_OV66308AF: if (write_i2c_regvals(sd, norm_6x30, ARRAY_SIZE(norm_6x30))) return -EIO; break; default: /* case SEN_OV7610: */ /* case SEN_OV76BE: */ if (write_i2c_regvals(sd, norm_7610, ARRAY_SIZE(norm_7610))) return -EIO; break; case SEN_OV7620: if (write_i2c_regvals(sd, norm_7620, ARRAY_SIZE(norm_7620))) return -EIO; break; case SEN_OV7640: if (write_i2c_regvals(sd, norm_7640, ARRAY_SIZE(norm_7640))) return -EIO; break; case SEN_OV7670: if (write_i2c_regvals(sd, norm_7670, ARRAY_SIZE(norm_7670))) return -EIO; break; case SEN_OV8610: if (write_i2c_regvals(sd, norm_8610, ARRAY_SIZE(norm_8610))) return -EIO; break; } return 0; } /* Set up the OV511/OV511+ with the given image parameters. * * Do not put any sensor-specific code in here (including I2C I/O functions) */ static int ov511_mode_init_regs(struct sd *sd) { int hsegs, vsegs, packet_size, fps, needed; int interlaced = 0; struct usb_host_interface *alt; struct usb_interface *intf; intf = usb_ifnum_to_if(sd->gspca_dev.dev, sd->gspca_dev.iface); alt = usb_altnum_to_altsetting(intf, sd->gspca_dev.alt); if (!alt) { PDEBUG(D_ERR, "Couldn't get altsetting"); return -EIO; } packet_size = le16_to_cpu(alt->endpoint[0].desc.wMaxPacketSize); reg_w(sd, R51x_FIFO_PSIZE, packet_size >> 5); reg_w(sd, R511_CAM_UV_EN, 0x01); reg_w(sd, R511_SNAP_UV_EN, 0x01); reg_w(sd, R511_SNAP_OPTS, 0x03); /* Here I'm assuming that snapshot size == image size. * I hope that's always true. --claudio */ hsegs = (sd->gspca_dev.width >> 3) - 1; vsegs = (sd->gspca_dev.height >> 3) - 1; reg_w(sd, R511_CAM_PXCNT, hsegs); reg_w(sd, R511_CAM_LNCNT, vsegs); reg_w(sd, R511_CAM_PXDIV, 0x00); reg_w(sd, R511_CAM_LNDIV, 0x00); /* YUV420, low pass filter on */ reg_w(sd, R511_CAM_OPTS, 0x03); /* Snapshot additions */ reg_w(sd, R511_SNAP_PXCNT, hsegs); reg_w(sd, R511_SNAP_LNCNT, vsegs); reg_w(sd, R511_SNAP_PXDIV, 0x00); reg_w(sd, R511_SNAP_LNDIV, 0x00); /******** Set the framerate ********/ if (frame_rate > 0) sd->frame_rate = frame_rate; switch (sd->sensor) { case SEN_OV6620: /* No framerate control, doesn't like higher rates yet */ sd->clockdiv = 3; break; /* Note once the FIXME's in mode_init_ov_sensor_regs() are fixed for more sensors we need to do this for them too */ case SEN_OV7620: case SEN_OV7640: if (sd->gspca_dev.width == 320) interlaced = 1; /* Fall through */ case SEN_OV6630: case SEN_OV76BE: case SEN_OV7610: case SEN_OV7670: switch (sd->frame_rate) { case 30: case 25: /* Not enough bandwidth to do 640x480 @ 30 fps */ if (sd->gspca_dev.width != 640) { sd->clockdiv = 0; break; } /* Fall through for 640x480 case */ default: /* case 20: */ /* case 15: */ sd->clockdiv = 1; break; case 10: sd->clockdiv = 2; break; case 5: sd->clockdiv = 5; break; } if (interlaced) { sd->clockdiv = (sd->clockdiv + 1) * 2 - 1; /* Higher then 10 does not work */ if (sd->clockdiv > 10) sd->clockdiv = 10; } break; case SEN_OV8610: /* No framerate control ?? */ sd->clockdiv = 0; break; } /* Check if we have enough bandwidth to disable compression */ fps = (interlaced ? 60 : 30) / (sd->clockdiv + 1) + 1; needed = fps * sd->gspca_dev.width * sd->gspca_dev.height * 3 / 2; /* 1400 is a conservative estimate of the max nr of isoc packets/sec */ if (needed > 1400 * packet_size) { /* Enable Y and UV quantization and compression */ reg_w(sd, R511_COMP_EN, 0x07); reg_w(sd, R511_COMP_LUT_EN, 0x03); } else { reg_w(sd, R511_COMP_EN, 0x06); reg_w(sd, R511_COMP_LUT_EN, 0x00); } reg_w(sd, R51x_SYS_RESET, OV511_RESET_OMNICE); reg_w(sd, R51x_SYS_RESET, 0); return 0; } /* Sets up the OV518/OV518+ with the given image parameters * * OV518 needs a completely different approach, until we can figure out what * the individual registers do. Also, only 15 FPS is supported now. * * Do not put any sensor-specific code in here (including I2C I/O functions) */ static int ov518_mode_init_regs(struct sd *sd) { int hsegs, vsegs; /******** Set the mode ********/ reg_w(sd, 0x2b, 0); reg_w(sd, 0x2c, 0); reg_w(sd, 0x2d, 0); reg_w(sd, 0x2e, 0); reg_w(sd, 0x3b, 0); reg_w(sd, 0x3c, 0); reg_w(sd, 0x3d, 0); reg_w(sd, 0x3e, 0); if (sd->bridge == BRIDGE_OV518) { /* Set 8-bit (YVYU) input format */ reg_w_mask(sd, 0x20, 0x08, 0x08); /* Set 12-bit (4:2:0) output format */ reg_w_mask(sd, 0x28, 0x80, 0xf0); reg_w_mask(sd, 0x38, 0x80, 0xf0); } else { reg_w(sd, 0x28, 0x80); reg_w(sd, 0x38, 0x80); } hsegs = sd->gspca_dev.width / 16; vsegs = sd->gspca_dev.height / 4; reg_w(sd, 0x29, hsegs); reg_w(sd, 0x2a, vsegs); reg_w(sd, 0x39, hsegs); reg_w(sd, 0x3a, vsegs); /* Windows driver does this here; who knows why */ reg_w(sd, 0x2f, 0x80); /******** Set the framerate (to 30 FPS) ********/ if (sd->bridge == BRIDGE_OV518PLUS) sd->clockdiv = 1; else sd->clockdiv = 0; /* Mode independent, but framerate dependent, regs */ reg_w(sd, 0x51, 0x04); /* Clock divider; lower==faster */ reg_w(sd, 0x22, 0x18); reg_w(sd, 0x23, 0xff); if (sd->bridge == BRIDGE_OV518PLUS) reg_w(sd, 0x21, 0x19); else reg_w(sd, 0x71, 0x17); /* Compression-related? */ /* FIXME: Sensor-specific */ /* Bit 5 is what matters here. Of course, it is "reserved" */ i2c_w(sd, 0x54, 0x23); reg_w(sd, 0x2f, 0x80); if (sd->bridge == BRIDGE_OV518PLUS) { reg_w(sd, 0x24, 0x94); reg_w(sd, 0x25, 0x90); ov518_reg_w32(sd, 0xc4, 400, 2); /* 190h */ ov518_reg_w32(sd, 0xc6, 540, 2); /* 21ch */ ov518_reg_w32(sd, 0xc7, 540, 2); /* 21ch */ ov518_reg_w32(sd, 0xc8, 108, 2); /* 6ch */ ov518_reg_w32(sd, 0xca, 131098, 3); /* 2001ah */ ov518_reg_w32(sd, 0xcb, 532, 2); /* 214h */ ov518_reg_w32(sd, 0xcc, 2400, 2); /* 960h */ ov518_reg_w32(sd, 0xcd, 32, 2); /* 20h */ ov518_reg_w32(sd, 0xce, 608, 2); /* 260h */ } else { reg_w(sd, 0x24, 0x9f); reg_w(sd, 0x25, 0x90); ov518_reg_w32(sd, 0xc4, 400, 2); /* 190h */ ov518_reg_w32(sd, 0xc6, 381, 2); /* 17dh */ ov518_reg_w32(sd, 0xc7, 381, 2); /* 17dh */ ov518_reg_w32(sd, 0xc8, 128, 2); /* 80h */ ov518_reg_w32(sd, 0xca, 183331, 3); /* 2cc23h */ ov518_reg_w32(sd, 0xcb, 746, 2); /* 2eah */ ov518_reg_w32(sd, 0xcc, 1750, 2); /* 6d6h */ ov518_reg_w32(sd, 0xcd, 45, 2); /* 2dh */ ov518_reg_w32(sd, 0xce, 851, 2); /* 353h */ } reg_w(sd, 0x2f, 0x80); return 0; } /* Sets up the OV519 with the given image parameters * * OV519 needs a completely different approach, until we can figure out what * the individual registers do. * * Do not put any sensor-specific code in here (including I2C I/O functions) */ static int ov519_mode_init_regs(struct sd *sd) { static const struct ov_regvals mode_init_519_ov7670[] = { { 0x5d, 0x03 }, /* Turn off suspend mode */ { 0x53, 0x9f }, /* was 9b in 1.65-1.08 */ { 0x54, 0x0f }, /* bit2 (jpeg enable) */ { 0xa2, 0x20 }, /* a2-a5 are undocumented */ { 0xa3, 0x18 }, { 0xa4, 0x04 }, { 0xa5, 0x28 }, { 0x37, 0x00 }, /* SetUsbInit */ { 0x55, 0x02 }, /* 4.096 Mhz audio clock */ /* Enable both fields, YUV Input, disable defect comp (why?) */ { 0x20, 0x0c }, { 0x21, 0x38 }, { 0x22, 0x1d }, { 0x17, 0x50 }, /* undocumented */ { 0x37, 0x00 }, /* undocumented */ { 0x40, 0xff }, /* I2C timeout counter */ { 0x46, 0x00 }, /* I2C clock prescaler */ { 0x59, 0x04 }, /* new from windrv 090403 */ { 0xff, 0x00 }, /* undocumented */ /* windows reads 0x55 at this point, why? */ }; static const struct ov_regvals mode_init_519[] = { { 0x5d, 0x03 }, /* Turn off suspend mode */ { 0x53, 0x9f }, /* was 9b in 1.65-1.08 */ { 0x54, 0x0f }, /* bit2 (jpeg enable) */ { 0xa2, 0x20 }, /* a2-a5 are undocumented */ { 0xa3, 0x18 }, { 0xa4, 0x04 }, { 0xa5, 0x28 }, { 0x37, 0x00 }, /* SetUsbInit */ { 0x55, 0x02 }, /* 4.096 Mhz audio clock */ /* Enable both fields, YUV Input, disable defect comp (why?) */ { 0x22, 0x1d }, { 0x17, 0x50 }, /* undocumented */ { 0x37, 0x00 }, /* undocumented */ { 0x40, 0xff }, /* I2C timeout counter */ { 0x46, 0x00 }, /* I2C clock prescaler */ { 0x59, 0x04 }, /* new from windrv 090403 */ { 0xff, 0x00 }, /* undocumented */ /* windows reads 0x55 at this point, why? */ }; /******** Set the mode ********/ if (sd->sensor != SEN_OV7670) { if (write_regvals(sd, mode_init_519, ARRAY_SIZE(mode_init_519))) return -EIO; if (sd->sensor == SEN_OV7640) { /* Select 8-bit input mode */ reg_w_mask(sd, OV519_R20_DFR, 0x10, 0x10); } } else { if (write_regvals(sd, mode_init_519_ov7670, ARRAY_SIZE(mode_init_519_ov7670))) return -EIO; } reg_w(sd, OV519_R10_H_SIZE, sd->gspca_dev.width >> 4); reg_w(sd, OV519_R11_V_SIZE, sd->gspca_dev.height >> 3); if (sd->sensor == SEN_OV7670 && sd->gspca_dev.cam.cam_mode[sd->gspca_dev.curr_mode].priv) reg_w(sd, OV519_R12_X_OFFSETL, 0x04); else reg_w(sd, OV519_R12_X_OFFSETL, 0x00); reg_w(sd, OV519_R13_X_OFFSETH, 0x00); reg_w(sd, OV519_R14_Y_OFFSETL, 0x00); reg_w(sd, OV519_R15_Y_OFFSETH, 0x00); reg_w(sd, OV519_R16_DIVIDER, 0x00); reg_w(sd, OV519_R25_FORMAT, 0x03); /* YUV422 */ reg_w(sd, 0x26, 0x00); /* Undocumented */ /******** Set the framerate ********/ if (frame_rate > 0) sd->frame_rate = frame_rate; /* FIXME: These are only valid at the max resolution. */ sd->clockdiv = 0; switch (sd->sensor) { case SEN_OV7640: switch (sd->frame_rate) { default: /* case 30: */ reg_w(sd, 0xa4, 0x0c); reg_w(sd, 0x23, 0xff); break; case 25: reg_w(sd, 0xa4, 0x0c); reg_w(sd, 0x23, 0x1f); break; case 20: reg_w(sd, 0xa4, 0x0c); reg_w(sd, 0x23, 0x1b); break; case 15: reg_w(sd, 0xa4, 0x04); reg_w(sd, 0x23, 0xff); sd->clockdiv = 1; break; case 10: reg_w(sd, 0xa4, 0x04); reg_w(sd, 0x23, 0x1f); sd->clockdiv = 1; break; case 5: reg_w(sd, 0xa4, 0x04); reg_w(sd, 0x23, 0x1b); sd->clockdiv = 1; break; } break; case SEN_OV8610: switch (sd->frame_rate) { default: /* 15 fps */ /* case 15: */ reg_w(sd, 0xa4, 0x06); reg_w(sd, 0x23, 0xff); break; case 10: reg_w(sd, 0xa4, 0x06); reg_w(sd, 0x23, 0x1f); break; case 5: reg_w(sd, 0xa4, 0x06); reg_w(sd, 0x23, 0x1b); break; } break; case SEN_OV7670: /* guesses, based on 7640 */ PDEBUG(D_STREAM, "Setting framerate to %d fps", (sd->frame_rate == 0) ? 15 : sd->frame_rate); reg_w(sd, 0xa4, 0x10); switch (sd->frame_rate) { case 30: reg_w(sd, 0x23, 0xff); break; case 20: reg_w(sd, 0x23, 0x1b); break; default: /* case 15: */ reg_w(sd, 0x23, 0xff); sd->clockdiv = 1; break; } break; } return 0; } static int mode_init_ov_sensor_regs(struct sd *sd) { struct gspca_dev *gspca_dev; int qvga; gspca_dev = &sd->gspca_dev; qvga = gspca_dev->cam.cam_mode[(int) gspca_dev->curr_mode].priv & 1; /******** Mode (VGA/QVGA) and sensor specific regs ********/ switch (sd->sensor) { case SEN_OV8610: /* For OV8610 qvga means qsvga */ i2c_w_mask(sd, OV7610_REG_COM_C, qvga ? (1 << 5) : 0, 1 << 5); break; case SEN_OV7610: i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20); break; case SEN_OV7620: /* i2c_w(sd, 0x2b, 0x00); */ i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20); i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20); i2c_w(sd, 0x24, qvga ? 0x20 : 0x3a); i2c_w(sd, 0x25, qvga ? 0x30 : 0x60); i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40); i2c_w_mask(sd, 0x67, qvga ? 0xf0 : 0x90, 0xf0); i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20); break; case SEN_OV76BE: /* i2c_w(sd, 0x2b, 0x00); */ i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20); break; case SEN_OV7640: /* i2c_w(sd, 0x2b, 0x00); */ i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20); i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20); /* i2c_w(sd, 0x24, qvga ? 0x20 : 0x3a); */ /* i2c_w(sd, 0x25, qvga ? 0x30 : 0x60); */ /* i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40); */ /* i2c_w_mask(sd, 0x67, qvga ? 0xf0 : 0x90, 0xf0); */ /* i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20); */ break; case SEN_OV7670: /* set COM7_FMT_VGA or COM7_FMT_QVGA * do we need to set anything else? * HSTART etc are set in set_ov_sensor_window itself */ i2c_w_mask(sd, OV7670_REG_COM7, qvga ? OV7670_COM7_FMT_QVGA : OV7670_COM7_FMT_VGA, OV7670_COM7_FMT_MASK); break; case SEN_OV6620: case SEN_OV6630: case SEN_OV66308AF: i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20); break; default: return -EINVAL; } /******** Palette-specific regs ********/ if (sd->sensor == SEN_OV7610 || sd->sensor == SEN_OV76BE) { /* not valid on the OV6620/OV7620/6630? */ i2c_w_mask(sd, 0x0e, 0x00, 0x40); } /* The OV518 needs special treatment. Although both the OV518 * and the OV6630 support a 16-bit video bus, only the 8 bit Y * bus is actually used. The UV bus is tied to ground. * Therefore, the OV6630 needs to be in 8-bit multiplexed * output mode */ /* OV7640 is 8-bit only */ if (sd->sensor != SEN_OV6630 && sd->sensor != SEN_OV66308AF && sd->sensor != SEN_OV7640) i2c_w_mask(sd, 0x13, 0x00, 0x20); /******** Clock programming ********/ /* The OV6620 needs special handling. This prevents the * severe banding that normally occurs */ if (sd->sensor == SEN_OV6620) { /* Clock down */ i2c_w(sd, 0x2a, 0x04); i2c_w(sd, 0x11, sd->clockdiv); i2c_w(sd, 0x2a, 0x84); /* This next setting is critical. It seems to improve * the gain or the contrast. The "reserved" bits seem * to have some effect in this case. */ i2c_w(sd, 0x2d, 0x85); } else { i2c_w(sd, 0x11, sd->clockdiv); } /******** Special Features ********/ /* no evidence this is possible with OV7670, either */ /* Test Pattern */ if (sd->sensor != SEN_OV7640 && sd->sensor != SEN_OV7670) i2c_w_mask(sd, 0x12, 0x00, 0x02); /* Enable auto white balance */ if (sd->sensor == SEN_OV7670) i2c_w_mask(sd, OV7670_REG_COM8, OV7670_COM8_AWB, OV7670_COM8_AWB); else i2c_w_mask(sd, 0x12, 0x04, 0x04); /* This will go away as soon as ov51x_mode_init_sensor_regs() */ /* is fully tested. */ /* 7620/6620/6630? don't have register 0x35, so play it safe */ if (sd->sensor == SEN_OV7610 || sd->sensor == SEN_OV76BE) { if (!qvga) i2c_w(sd, 0x35, 0x9e); else i2c_w(sd, 0x35, 0x1e); } return 0; } static void sethvflip(struct sd *sd) { if (sd->sensor != SEN_OV7670) return; if (sd->gspca_dev.streaming) ov51x_stop(sd); i2c_w_mask(sd, OV7670_REG_MVFP, OV7670_MVFP_MIRROR * sd->hflip | OV7670_MVFP_VFLIP * sd->vflip, OV7670_MVFP_MIRROR | OV7670_MVFP_VFLIP); if (sd->gspca_dev.streaming) ov51x_restart(sd); } static int set_ov_sensor_window(struct sd *sd) { struct gspca_dev *gspca_dev; int qvga, crop; int hwsbase, hwebase, vwsbase, vwebase, hwscale, vwscale; int ret, hstart, hstop, vstop, vstart; __u8 v; gspca_dev = &sd->gspca_dev; qvga = gspca_dev->cam.cam_mode[(int) gspca_dev->curr_mode].priv & 1; crop = gspca_dev->cam.cam_mode[(int) gspca_dev->curr_mode].priv & 2; /* The different sensor ICs handle setting up of window differently. * IF YOU SET IT WRONG, YOU WILL GET ALL ZERO ISOC DATA FROM OV51x!! */ switch (sd->sensor) { case SEN_OV8610: hwsbase = 0x1e; hwebase = 0x1e; vwsbase = 0x02; vwebase = 0x02; break; case SEN_OV7610: case SEN_OV76BE: hwsbase = 0x38; hwebase = 0x3a; vwsbase = vwebase = 0x05; break; case SEN_OV6620: case SEN_OV6630: case SEN_OV66308AF: hwsbase = 0x38; hwebase = 0x3a; vwsbase = 0x05; vwebase = 0x06; if (sd->sensor == SEN_OV66308AF && qvga) /* HDG: this fixes U and V getting swapped */ hwsbase++; if (crop) { hwsbase += 8; hwebase += 8; vwsbase += 11; vwebase += 11; } break; case SEN_OV7620: hwsbase = 0x2f; /* From 7620.SET (spec is wrong) */ hwebase = 0x2f; vwsbase = vwebase = 0x05; break; case SEN_OV7640: hwsbase = 0x1a; hwebase = 0x1a; vwsbase = vwebase = 0x03; break; case SEN_OV7670: /*handling of OV7670 hardware sensor start and stop values * is very odd, compared to the other OV sensors */ vwsbase = vwebase = hwebase = hwsbase = 0x00; break; default: return -EINVAL; } switch (sd->sensor) { case SEN_OV6620: case SEN_OV6630: case SEN_OV66308AF: if (qvga) { /* QCIF */ hwscale = 0; vwscale = 0; } else { /* CIF */ hwscale = 1; vwscale = 1; /* The datasheet says 0; * it's wrong */ } break; case SEN_OV8610: if (qvga) { /* QSVGA */ hwscale = 1; vwscale = 1; } else { /* SVGA */ hwscale = 2; vwscale = 2; } break; default: /* SEN_OV7xx0 */ if (qvga) { /* QVGA */ hwscale = 1; vwscale = 0; } else { /* VGA */ hwscale = 2; vwscale = 1; } } ret = mode_init_ov_sensor_regs(sd); if (ret < 0) return ret; if (sd->sensor == SEN_OV8610) { i2c_w_mask(sd, 0x2d, 0x05, 0x40); /* old 0x95, new 0x05 from windrv 090403 */ /* bits 5-7: reserved */ i2c_w_mask(sd, 0x28, 0x20, 0x20); /* bit 5: progressive mode on */ } /* The below is wrong for OV7670s because their window registers * only store the high bits in 0x17 to 0x1a */ /* SRH Use sd->max values instead of requested win values */ /* SCS Since we're sticking with only the max hardware widths * for a given mode */ /* I can hard code this for OV7670s */ /* Yes, these numbers do look odd, but they're tested and work! */ if (sd->sensor == SEN_OV7670) { if (qvga) { /* QVGA from ov7670.c by * Jonathan Corbet */ hstart = 164; hstop = 28; vstart = 14; vstop = 494; } else { /* VGA */ hstart = 158; hstop = 14; vstart = 10; vstop = 490; } /* OV7670 hardware window registers are split across * multiple locations */ i2c_w(sd, OV7670_REG_HSTART, hstart >> 3); i2c_w(sd, OV7670_REG_HSTOP, hstop >> 3); v = i2c_r(sd, OV7670_REG_HREF); v = (v & 0xc0) | ((hstop & 0x7) << 3) | (hstart & 0x07); msleep(10); /* need to sleep between read and write to * same reg! */ i2c_w(sd, OV7670_REG_HREF, v); i2c_w(sd, OV7670_REG_VSTART, vstart >> 2); i2c_w(sd, OV7670_REG_VSTOP, vstop >> 2); v = i2c_r(sd, OV7670_REG_VREF); v = (v & 0xc0) | ((vstop & 0x3) << 2) | (vstart & 0x03); msleep(10); /* need to sleep between read and write to * same reg! */ i2c_w(sd, OV7670_REG_VREF, v); } else { i2c_w(sd, 0x17, hwsbase); i2c_w(sd, 0x18, hwebase + (sd->gspca_dev.width >> hwscale)); i2c_w(sd, 0x19, vwsbase); i2c_w(sd, 0x1a, vwebase + (sd->gspca_dev.height >> vwscale)); } return 0; } /* -- start the camera -- */ static int sd_start(struct gspca_dev *gspca_dev) { struct sd *sd = (struct sd *) gspca_dev; int ret = 0; switch (sd->bridge) { case BRIDGE_OV511: case BRIDGE_OV511PLUS: ret = ov511_mode_init_regs(sd); break; case BRIDGE_OV518: case BRIDGE_OV518PLUS: ret = ov518_mode_init_regs(sd); break; case BRIDGE_OV519: ret = ov519_mode_init_regs(sd); break; } if (ret < 0) goto out; ret = set_ov_sensor_window(sd); if (ret < 0) goto out; setcontrast(gspca_dev); setbrightness(gspca_dev); setcolors(gspca_dev); sethvflip(sd); setautobrightness(sd); setfreq(sd); ret = ov51x_restart(sd); if (ret < 0) goto out; ov51x_led_control(sd, 1); return 0; out: PDEBUG(D_ERR, "camera start error:%d", ret); return ret; } static void sd_stopN(struct gspca_dev *gspca_dev) { struct sd *sd = (struct sd *) gspca_dev; ov51x_stop(sd); ov51x_led_control(sd, 0); } static void ov511_pkt_scan(struct gspca_dev *gspca_dev, struct gspca_frame *frame, /* target */ __u8 *in, /* isoc packet */ int len) /* iso packet length */ { struct sd *sd = (struct sd *) gspca_dev; /* SOF/EOF packets have 1st to 8th bytes zeroed and the 9th * byte non-zero. The EOF packet has image width/height in the * 10th and 11th bytes. The 9th byte is given as follows: * * bit 7: EOF * 6: compression enabled * 5: 422/420/400 modes * 4: 422/420/400 modes * 3: 1 * 2: snapshot button on * 1: snapshot frame * 0: even/odd field */ if (!(in[0] | in[1] | in[2] | in[3] | in[4] | in[5] | in[6] | in[7]) && (in[8] & 0x08)) { if (in[8] & 0x80) { /* Frame end */ if ((in[9] + 1) * 8 != gspca_dev->width || (in[10] + 1) * 8 != gspca_dev->height) { PDEBUG(D_ERR, "Invalid frame size, got: %dx%d," " requested: %dx%d\n", (in[9] + 1) * 8, (in[10] + 1) * 8, gspca_dev->width, gspca_dev->height); gspca_dev->last_packet_type = DISCARD_PACKET; return; } /* Add 11 byte footer to frame, might be usefull */ gspca_frame_add(gspca_dev, LAST_PACKET, frame, in, 11); return; } else { /* Frame start */ gspca_frame_add(gspca_dev, FIRST_PACKET, frame, in, 0); sd->packet_nr = 0; } } /* Ignore the packet number */ len--; /* intermediate packet */ gspca_frame_add(gspca_dev, INTER_PACKET, frame, in, len); } static void ov518_pkt_scan(struct gspca_dev *gspca_dev, struct gspca_frame *frame, /* target */ __u8 *data, /* isoc packet */ int len) /* iso packet length */ { struct sd *sd = (struct sd *) gspca_dev; /* A false positive here is likely, until OVT gives me * the definitive SOF/EOF format */ if ((!(data[0] | data[1] | data[2] | data[3] | data[5])) && data[6]) { gspca_frame_add(gspca_dev, LAST_PACKET, frame, data, 0); gspca_frame_add(gspca_dev, FIRST_PACKET, frame, data, 0); sd->packet_nr = 0; } if (gspca_dev->last_packet_type == DISCARD_PACKET) return; /* Does this device use packet numbers ? */ if (len & 7) { len--; if (sd->packet_nr == data[len]) sd->packet_nr++; /* The last few packets of the frame (which are all 0's except that they may contain part of the footer), are numbered 0 */ else if (sd->packet_nr == 0 || data[len]) { PDEBUG(D_ERR, "Invalid packet nr: %d (expect: %d)", (int)data[len], (int)sd->packet_nr); gspca_dev->last_packet_type = DISCARD_PACKET; return; } } /* intermediate packet */ gspca_frame_add(gspca_dev, INTER_PACKET, frame, data, len); } static void ov519_pkt_scan(struct gspca_dev *gspca_dev, struct gspca_frame *frame, /* target */ __u8 *data, /* isoc packet */ int len) /* iso packet length */ { /* Header of ov519 is 16 bytes: * Byte Value Description * 0 0xff magic * 1 0xff magic * 2 0xff magic * 3 0xXX 0x50 = SOF, 0x51 = EOF * 9 0xXX 0x01 initial frame without data, * 0x00 standard frame with image * 14 Lo in EOF: length of image data / 8 * 15 Hi */ if (data[0] == 0xff && data[1] == 0xff && data[2] == 0xff) { switch (data[3]) { case 0x50: /* start of frame */ #define HDRSZ 16 data += HDRSZ; len -= HDRSZ; #undef HDRSZ if (data[0] == 0xff || data[1] == 0xd8) gspca_frame_add(gspca_dev, FIRST_PACKET, frame, data, len); else gspca_dev->last_packet_type = DISCARD_PACKET; return; case 0x51: /* end of frame */ if (data[9] != 0) gspca_dev->last_packet_type = DISCARD_PACKET; gspca_frame_add(gspca_dev, LAST_PACKET, frame, data, 0); return; } } /* intermediate packet */ gspca_frame_add(gspca_dev, INTER_PACKET, frame, data, len); } static void sd_pkt_scan(struct gspca_dev *gspca_dev, struct gspca_frame *frame, /* target */ __u8 *data, /* isoc packet */ int len) /* iso packet length */ { struct sd *sd = (struct sd *) gspca_dev; switch (sd->bridge) { case BRIDGE_OV511: case BRIDGE_OV511PLUS: ov511_pkt_scan(gspca_dev, frame, data, len); break; case BRIDGE_OV518: case BRIDGE_OV518PLUS: ov518_pkt_scan(gspca_dev, frame, data, len); break; case BRIDGE_OV519: ov519_pkt_scan(gspca_dev, frame, data, len); break; } } /* -- management routines -- */ static void setbrightness(struct gspca_dev *gspca_dev) { struct sd *sd = (struct sd *) gspca_dev; int val; val = sd->brightness; switch (sd->sensor) { case SEN_OV8610: case SEN_OV7610: case SEN_OV76BE: case SEN_OV6620: case SEN_OV6630: case SEN_OV66308AF: case SEN_OV7640: i2c_w(sd, OV7610_REG_BRT, val); break; case SEN_OV7620: /* 7620 doesn't like manual changes when in auto mode */ if (!sd->autobrightness) i2c_w(sd, OV7610_REG_BRT, val); break; case SEN_OV7670: /*win trace * i2c_w_mask(sd, OV7670_REG_COM8, 0, OV7670_COM8_AEC); */ i2c_w(sd, OV7670_REG_BRIGHT, ov7670_abs_to_sm(val)); break; } } static void setcontrast(struct gspca_dev *gspca_dev) { struct sd *sd = (struct sd *) gspca_dev; int val; val = sd->contrast; switch (sd->sensor) { case SEN_OV7610: case SEN_OV6620: i2c_w(sd, OV7610_REG_CNT, val); break; case SEN_OV6630: case SEN_OV66308AF: i2c_w_mask(sd, OV7610_REG_CNT, val >> 4, 0x0f); break; case SEN_OV8610: { static const __u8 ctab[] = { 0x03, 0x09, 0x0b, 0x0f, 0x53, 0x6f, 0x35, 0x7f }; /* Use Y gamma control instead. Bit 0 enables it. */ i2c_w(sd, 0x64, ctab[val >> 5]); break; } case SEN_OV7620: { static const __u8 ctab[] = { 0x01, 0x05, 0x09, 0x11, 0x15, 0x35, 0x37, 0x57, 0x5b, 0xa5, 0xa7, 0xc7, 0xc9, 0xcf, 0xef, 0xff }; /* Use Y gamma control instead. Bit 0 enables it. */ i2c_w(sd, 0x64, ctab[val >> 4]); break; } case SEN_OV7640: /* Use gain control instead. */ i2c_w(sd, OV7610_REG_GAIN, val >> 2); break; case SEN_OV7670: /* check that this isn't just the same as ov7610 */ i2c_w(sd, OV7670_REG_CONTRAS, val >> 1); break; } } static void setcolors(struct gspca_dev *gspca_dev) { struct sd *sd = (struct sd *) gspca_dev; int val; val = sd->colors; switch (sd->sensor) { case SEN_OV8610: case SEN_OV7610: case SEN_OV76BE: case SEN_OV6620: case SEN_OV6630: case SEN_OV66308AF: i2c_w(sd, OV7610_REG_SAT, val); break; case SEN_OV7620: /* Use UV gamma control instead. Bits 0 & 7 are reserved. */ /* rc = ov_i2c_write(sd->dev, 0x62, (val >> 9) & 0x7e); if (rc < 0) goto out; */ i2c_w(sd, OV7610_REG_SAT, val); break; case SEN_OV7640: i2c_w(sd, OV7610_REG_SAT, val & 0xf0); break; case SEN_OV7670: /* supported later once I work out how to do it * transparently fail now! */ /* set REG_COM13 values for UV sat auto mode */ break; } } static void setautobrightness(struct sd *sd) { if (sd->sensor == SEN_OV7640 || sd->sensor == SEN_OV7670) return; i2c_w_mask(sd, 0x2d, sd->autobrightness ? 0x10 : 0x00, 0x10); } static void setfreq(struct sd *sd) { if (sd->sensor == SEN_OV7670) { switch (sd->freq) { case 0: /* Banding filter disabled */ i2c_w_mask(sd, OV7670_REG_COM8, 0, OV7670_COM8_BFILT); break; case 1: /* 50 hz */ i2c_w_mask(sd, OV7670_REG_COM8, OV7670_COM8_BFILT, OV7670_COM8_BFILT); i2c_w_mask(sd, OV7670_REG_COM11, 0x08, 0x18); break; case 2: /* 60 hz */ i2c_w_mask(sd, OV7670_REG_COM8, OV7670_COM8_BFILT, OV7670_COM8_BFILT); i2c_w_mask(sd, OV7670_REG_COM11, 0x00, 0x18); break; case 3: /* Auto hz */ i2c_w_mask(sd, OV7670_REG_COM8, OV7670_COM8_BFILT, OV7670_COM8_BFILT); i2c_w_mask(sd, OV7670_REG_COM11, OV7670_COM11_HZAUTO, 0x18); break; } } else { switch (sd->freq) { case 0: /* Banding filter disabled */ i2c_w_mask(sd, 0x2d, 0x00, 0x04); i2c_w_mask(sd, 0x2a, 0x00, 0x80); break; case 1: /* 50 hz (filter on and framerate adj) */ i2c_w_mask(sd, 0x2d, 0x04, 0x04); i2c_w_mask(sd, 0x2a, 0x80, 0x80); /* 20 fps -> 16.667 fps */ if (sd->sensor == SEN_OV6620 || sd->sensor == SEN_OV6630 || sd->sensor == SEN_OV66308AF) i2c_w(sd, 0x2b, 0x5e); else i2c_w(sd, 0x2b, 0xac); break; case 2: /* 60 hz (filter on, ...) */ i2c_w_mask(sd, 0x2d, 0x04, 0x04); if (sd->sensor == SEN_OV6620 || sd->sensor == SEN_OV6630 || sd->sensor == SEN_OV66308AF) { /* 20 fps -> 15 fps */ i2c_w_mask(sd, 0x2a, 0x80, 0x80); i2c_w(sd, 0x2b, 0xa8); } else { /* no framerate adj. */ i2c_w_mask(sd, 0x2a, 0x00, 0x80); } break; } } } static int sd_setbrightness(struct gspca_dev *gspca_dev, __s32 val) { struct sd *sd = (struct sd *) gspca_dev; sd->brightness = val; if (gspca_dev->streaming) setbrightness(gspca_dev); return 0; } static int sd_getbrightness(struct gspca_dev *gspca_dev, __s32 *val) { struct sd *sd = (struct sd *) gspca_dev; *val = sd->brightness; return 0; } static int sd_setcontrast(struct gspca_dev *gspca_dev, __s32 val) { struct sd *sd = (struct sd *) gspca_dev; sd->contrast = val; if (gspca_dev->streaming) setcontrast(gspca_dev); return 0; } static int sd_getcontrast(struct gspca_dev *gspca_dev, __s32 *val) { struct sd *sd = (struct sd *) gspca_dev; *val = sd->contrast; return 0; } static int sd_setcolors(struct gspca_dev *gspca_dev, __s32 val) { struct sd *sd = (struct sd *) gspca_dev; sd->colors = val; if (gspca_dev->streaming) setcolors(gspca_dev); return 0; } static int sd_getcolors(struct gspca_dev *gspca_dev, __s32 *val) { struct sd *sd = (struct sd *) gspca_dev; *val = sd->colors; return 0; } static int sd_sethflip(struct gspca_dev *gspca_dev, __s32 val) { struct sd *sd = (struct sd *) gspca_dev; sd->hflip = val; if (gspca_dev->streaming) sethvflip(sd); return 0; } static int sd_gethflip(struct gspca_dev *gspca_dev, __s32 *val) { struct sd *sd = (struct sd *) gspca_dev; *val = sd->hflip; return 0; } static int sd_setvflip(struct gspca_dev *gspca_dev, __s32 val) { struct sd *sd = (struct sd *) gspca_dev; sd->vflip = val; if (gspca_dev->streaming) sethvflip(sd); return 0; } static int sd_getvflip(struct gspca_dev *gspca_dev, __s32 *val) { struct sd *sd = (struct sd *) gspca_dev; *val = sd->vflip; return 0; } static int sd_setautobrightness(struct gspca_dev *gspca_dev, __s32 val) { struct sd *sd = (struct sd *) gspca_dev; sd->autobrightness = val; if (gspca_dev->streaming) setautobrightness(sd); return 0; } static int sd_getautobrightness(struct gspca_dev *gspca_dev, __s32 *val) { struct sd *sd = (struct sd *) gspca_dev; *val = sd->autobrightness; return 0; } static int sd_setfreq(struct gspca_dev *gspca_dev, __s32 val) { struct sd *sd = (struct sd *) gspca_dev; sd->freq = val; if (gspca_dev->streaming) setfreq(sd); return 0; } static int sd_getfreq(struct gspca_dev *gspca_dev, __s32 *val) { struct sd *sd = (struct sd *) gspca_dev; *val = sd->freq; return 0; } static int sd_querymenu(struct gspca_dev *gspca_dev, struct v4l2_querymenu *menu) { struct sd *sd = (struct sd *) gspca_dev; switch (menu->id) { case V4L2_CID_POWER_LINE_FREQUENCY: switch (menu->index) { case 0: /* V4L2_CID_POWER_LINE_FREQUENCY_DISABLED */ strcpy((char *) menu->name, "NoFliker"); return 0; case 1: /* V4L2_CID_POWER_LINE_FREQUENCY_50HZ */ strcpy((char *) menu->name, "50 Hz"); return 0; case 2: /* V4L2_CID_POWER_LINE_FREQUENCY_60HZ */ strcpy((char *) menu->name, "60 Hz"); return 0; case 3: if (sd->sensor != SEN_OV7670) return -EINVAL; strcpy((char *) menu->name, "Automatic"); return 0; } break; } return -EINVAL; } /* sub-driver description */ static const struct sd_desc sd_desc = { .name = MODULE_NAME, .ctrls = sd_ctrls, .nctrls = ARRAY_SIZE(sd_ctrls), .config = sd_config, .init = sd_init, .start = sd_start, .stopN = sd_stopN, .pkt_scan = sd_pkt_scan, .querymenu = sd_querymenu, }; /* -- module initialisation -- */ static const __devinitdata struct usb_device_id device_table[] = { {USB_DEVICE(0x041e, 0x4052), .driver_info = BRIDGE_OV519 }, {USB_DEVICE(0x041e, 0x405f), .driver_info = BRIDGE_OV519 }, {USB_DEVICE(0x041e, 0x4060), .driver_info = BRIDGE_OV519 }, {USB_DEVICE(0x041e, 0x4061), .driver_info = BRIDGE_OV519 }, {USB_DEVICE(0x041e, 0x4064), .driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED }, {USB_DEVICE(0x041e, 0x4068), .driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED }, {USB_DEVICE(0x045e, 0x028c), .driver_info = BRIDGE_OV519 }, {USB_DEVICE(0x054c, 0x0154), .driver_info = BRIDGE_OV519 }, {USB_DEVICE(0x054c, 0x0155), .driver_info = BRIDGE_OV519 }, {USB_DEVICE(0x05a9, 0x0511), .driver_info = BRIDGE_OV511 }, {USB_DEVICE(0x05a9, 0x0518), .driver_info = BRIDGE_OV518 }, {USB_DEVICE(0x05a9, 0x0519), .driver_info = BRIDGE_OV519 }, {USB_DEVICE(0x05a9, 0x0530), .driver_info = BRIDGE_OV519 }, {USB_DEVICE(0x05a9, 0x4519), .driver_info = BRIDGE_OV519 }, {USB_DEVICE(0x05a9, 0x8519), .driver_info = BRIDGE_OV519 }, {USB_DEVICE(0x05a9, 0xa511), .driver_info = BRIDGE_OV511PLUS }, {USB_DEVICE(0x05a9, 0xa518), .driver_info = BRIDGE_OV518PLUS }, {USB_DEVICE(0x0813, 0x0002), .driver_info = BRIDGE_OV511PLUS }, {} }; MODULE_DEVICE_TABLE(usb, device_table); /* -- device connect -- */ static int sd_probe(struct usb_interface *intf, const struct usb_device_id *id) { return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd), THIS_MODULE); } static struct usb_driver sd_driver = { .name = MODULE_NAME, .id_table = device_table, .probe = sd_probe, .disconnect = gspca_disconnect, #ifdef CONFIG_PM .suspend = gspca_suspend, .resume = gspca_resume, #endif }; /* -- module insert / remove -- */ static int __init sd_mod_init(void) { int ret; ret = usb_register(&sd_driver); if (ret < 0) return ret; PDEBUG(D_PROBE, "registered"); return 0; } static void __exit sd_mod_exit(void) { usb_deregister(&sd_driver); PDEBUG(D_PROBE, "deregistered"); } module_init(sd_mod_init); module_exit(sd_mod_exit); module_param(frame_rate, int, 0644); MODULE_PARM_DESC(frame_rate, "Frame rate (5, 10, 15, 20 or 30 fps)");