/* * Driver for the Micron P320 SSD * Copyright (C) 2011 Micron Technology, Inc. * * Portions of this code were derived from works subjected to the * following copyright: * Copyright (C) 2009 Integrated Device Technology, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include <../drivers/ata/ahci.h> #include #include #include #include "mtip32xx.h" #define HW_CMD_SLOT_SZ (MTIP_MAX_COMMAND_SLOTS * 32) /* DMA region containing RX Fis, Identify, RLE10, and SMART buffers */ #define AHCI_RX_FIS_SZ 0x100 #define AHCI_RX_FIS_OFFSET 0x0 #define AHCI_IDFY_SZ ATA_SECT_SIZE #define AHCI_IDFY_OFFSET 0x400 #define AHCI_SECTBUF_SZ ATA_SECT_SIZE #define AHCI_SECTBUF_OFFSET 0x800 #define AHCI_SMARTBUF_SZ ATA_SECT_SIZE #define AHCI_SMARTBUF_OFFSET 0xC00 /* 0x100 + 0x200 + 0x200 + 0x200 is smaller than 4k but we pad it out */ #define BLOCK_DMA_ALLOC_SZ 4096 /* DMA region containing command table (should be 8192 bytes) */ #define AHCI_CMD_SLOT_SZ sizeof(struct mtip_cmd_hdr) #define AHCI_CMD_TBL_SZ (MTIP_MAX_COMMAND_SLOTS * AHCI_CMD_SLOT_SZ) #define AHCI_CMD_TBL_OFFSET 0x0 /* DMA region per command (contains header and SGL) */ #define AHCI_CMD_TBL_HDR_SZ 0x80 #define AHCI_CMD_TBL_HDR_OFFSET 0x0 #define AHCI_CMD_TBL_SGL_SZ (MTIP_MAX_SG * sizeof(struct mtip_cmd_sg)) #define AHCI_CMD_TBL_SGL_OFFSET AHCI_CMD_TBL_HDR_SZ #define CMD_DMA_ALLOC_SZ (AHCI_CMD_TBL_SGL_SZ + AHCI_CMD_TBL_HDR_SZ) #define HOST_CAP_NZDMA (1 << 19) #define HOST_HSORG 0xFC #define HSORG_DISABLE_SLOTGRP_INTR (1<<24) #define HSORG_DISABLE_SLOTGRP_PXIS (1<<16) #define HSORG_HWREV 0xFF00 #define HSORG_STYLE 0x8 #define HSORG_SLOTGROUPS 0x7 #define PORT_COMMAND_ISSUE 0x38 #define PORT_SDBV 0x7C #define PORT_OFFSET 0x100 #define PORT_MEM_SIZE 0x80 #define PORT_IRQ_ERR \ (PORT_IRQ_HBUS_ERR | PORT_IRQ_IF_ERR | PORT_IRQ_CONNECT | \ PORT_IRQ_PHYRDY | PORT_IRQ_UNK_FIS | PORT_IRQ_BAD_PMP | \ PORT_IRQ_TF_ERR | PORT_IRQ_HBUS_DATA_ERR | PORT_IRQ_IF_NONFATAL | \ PORT_IRQ_OVERFLOW) #define PORT_IRQ_LEGACY \ (PORT_IRQ_PIOS_FIS | PORT_IRQ_D2H_REG_FIS) #define PORT_IRQ_HANDLED \ (PORT_IRQ_SDB_FIS | PORT_IRQ_LEGACY | \ PORT_IRQ_TF_ERR | PORT_IRQ_IF_ERR | \ PORT_IRQ_CONNECT | PORT_IRQ_PHYRDY) #define DEF_PORT_IRQ \ (PORT_IRQ_ERR | PORT_IRQ_LEGACY | PORT_IRQ_SDB_FIS) /* product numbers */ #define MTIP_PRODUCT_UNKNOWN 0x00 #define MTIP_PRODUCT_ASICFPGA 0x11 /* Device instance number, incremented each time a device is probed. */ static int instance; static struct list_head online_list; static struct list_head removing_list; static spinlock_t dev_lock; /* * Global variable used to hold the major block device number * allocated in mtip_init(). */ static int mtip_major; static struct dentry *dfs_parent; static struct dentry *dfs_device_status; static u32 cpu_use[NR_CPUS]; static DEFINE_SPINLOCK(rssd_index_lock); static DEFINE_IDA(rssd_index_ida); static int mtip_block_initialize(struct driver_data *dd); #ifdef CONFIG_COMPAT struct mtip_compat_ide_task_request_s { __u8 io_ports[8]; __u8 hob_ports[8]; ide_reg_valid_t out_flags; ide_reg_valid_t in_flags; int data_phase; int req_cmd; compat_ulong_t out_size; compat_ulong_t in_size; }; #endif /* * This function check_for_surprise_removal is called * while card is removed from the system and it will * read the vendor id from the configration space * * @pdev Pointer to the pci_dev structure. * * return value * true if device removed, else false */ static bool mtip_check_surprise_removal(struct pci_dev *pdev) { u16 vendor_id = 0; struct driver_data *dd = pci_get_drvdata(pdev); if (dd->sr) return true; /* Read the vendorID from the configuration space */ pci_read_config_word(pdev, 0x00, &vendor_id); if (vendor_id == 0xFFFF) { dd->sr = true; if (dd->queue) set_bit(QUEUE_FLAG_DEAD, &dd->queue->queue_flags); else dev_warn(&dd->pdev->dev, "%s: dd->queue is NULL\n", __func__); return true; /* device removed */ } return false; /* device present */ } static struct mtip_cmd *mtip_get_int_command(struct driver_data *dd) { struct request *rq; if (mtip_check_surprise_removal(dd->pdev)) return NULL; rq = blk_mq_alloc_request(dd->queue, 0, BLK_MQ_REQ_RESERVED); if (IS_ERR(rq)) return NULL; return blk_mq_rq_to_pdu(rq); } static void mtip_put_int_command(struct driver_data *dd, struct mtip_cmd *cmd) { blk_put_request(blk_mq_rq_from_pdu(cmd)); } /* * Once we add support for one hctx per mtip group, this will change a bit */ static struct request *mtip_rq_from_tag(struct driver_data *dd, unsigned int tag) { struct blk_mq_hw_ctx *hctx = dd->queue->queue_hw_ctx[0]; return blk_mq_tag_to_rq(hctx->tags, tag); } static struct mtip_cmd *mtip_cmd_from_tag(struct driver_data *dd, unsigned int tag) { struct request *rq = mtip_rq_from_tag(dd, tag); return blk_mq_rq_to_pdu(rq); } /* * IO completion function. * * This completion function is called by the driver ISR when a * command that was issued by the kernel completes. It first calls the * asynchronous completion function which normally calls back into the block * layer passing the asynchronous callback data, then unmaps the * scatter list associated with the completed command, and finally * clears the allocated bit associated with the completed command. * * @port Pointer to the port data structure. * @tag Tag of the command. * @data Pointer to driver_data. * @status Completion status. * * return value * None */ static void mtip_async_complete(struct mtip_port *port, int tag, struct mtip_cmd *cmd, int status) { struct driver_data *dd = port->dd; struct request *rq; if (unlikely(!dd) || unlikely(!port)) return; if (unlikely(status == PORT_IRQ_TF_ERR)) { dev_warn(&port->dd->pdev->dev, "Command tag %d failed due to TFE\n", tag); } rq = mtip_rq_from_tag(dd, tag); blk_mq_complete_request(rq, status); } /* * Reset the HBA (without sleeping) * * @dd Pointer to the driver data structure. * * return value * 0 The reset was successful. * -1 The HBA Reset bit did not clear. */ static int mtip_hba_reset(struct driver_data *dd) { unsigned long timeout; /* Set the reset bit */ writel(HOST_RESET, dd->mmio + HOST_CTL); /* Flush */ readl(dd->mmio + HOST_CTL); /* * Spin for up to 10 seconds waiting for reset acknowledgement. Spec * is 1 sec but in LUN failure conditions, up to 10 secs are required */ timeout = jiffies + msecs_to_jiffies(10000); do { mdelay(10); if (test_bit(MTIP_DDF_REMOVE_PENDING_BIT, &dd->dd_flag)) return -1; } while ((readl(dd->mmio + HOST_CTL) & HOST_RESET) && time_before(jiffies, timeout)); if (readl(dd->mmio + HOST_CTL) & HOST_RESET) return -1; return 0; } /* * Issue a command to the hardware. * * Set the appropriate bit in the s_active and Command Issue hardware * registers, causing hardware command processing to begin. * * @port Pointer to the port structure. * @tag The tag of the command to be issued. * * return value * None */ static inline void mtip_issue_ncq_command(struct mtip_port *port, int tag) { int group = tag >> 5; /* guard SACT and CI registers */ spin_lock(&port->cmd_issue_lock[group]); writel((1 << MTIP_TAG_BIT(tag)), port->s_active[MTIP_TAG_INDEX(tag)]); writel((1 << MTIP_TAG_BIT(tag)), port->cmd_issue[MTIP_TAG_INDEX(tag)]); spin_unlock(&port->cmd_issue_lock[group]); } /* * Enable/disable the reception of FIS * * @port Pointer to the port data structure * @enable 1 to enable, 0 to disable * * return value * Previous state: 1 enabled, 0 disabled */ static int mtip_enable_fis(struct mtip_port *port, int enable) { u32 tmp; /* enable FIS reception */ tmp = readl(port->mmio + PORT_CMD); if (enable) writel(tmp | PORT_CMD_FIS_RX, port->mmio + PORT_CMD); else writel(tmp & ~PORT_CMD_FIS_RX, port->mmio + PORT_CMD); /* Flush */ readl(port->mmio + PORT_CMD); return (((tmp & PORT_CMD_FIS_RX) == PORT_CMD_FIS_RX)); } /* * Enable/disable the DMA engine * * @port Pointer to the port data structure * @enable 1 to enable, 0 to disable * * return value * Previous state: 1 enabled, 0 disabled. */ static int mtip_enable_engine(struct mtip_port *port, int enable) { u32 tmp; /* enable FIS reception */ tmp = readl(port->mmio + PORT_CMD); if (enable) writel(tmp | PORT_CMD_START, port->mmio + PORT_CMD); else writel(tmp & ~PORT_CMD_START, port->mmio + PORT_CMD); readl(port->mmio + PORT_CMD); return (((tmp & PORT_CMD_START) == PORT_CMD_START)); } /* * Enables the port DMA engine and FIS reception. * * return value * None */ static inline void mtip_start_port(struct mtip_port *port) { /* Enable FIS reception */ mtip_enable_fis(port, 1); /* Enable the DMA engine */ mtip_enable_engine(port, 1); } /* * Deinitialize a port by disabling port interrupts, the DMA engine, * and FIS reception. * * @port Pointer to the port structure * * return value * None */ static inline void mtip_deinit_port(struct mtip_port *port) { /* Disable interrupts on this port */ writel(0, port->mmio + PORT_IRQ_MASK); /* Disable the DMA engine */ mtip_enable_engine(port, 0); /* Disable FIS reception */ mtip_enable_fis(port, 0); } /* * Initialize a port. * * This function deinitializes the port by calling mtip_deinit_port() and * then initializes it by setting the command header and RX FIS addresses, * clearing the SError register and any pending port interrupts before * re-enabling the default set of port interrupts. * * @port Pointer to the port structure. * * return value * None */ static void mtip_init_port(struct mtip_port *port) { int i; mtip_deinit_port(port); /* Program the command list base and FIS base addresses */ if (readl(port->dd->mmio + HOST_CAP) & HOST_CAP_64) { writel((port->command_list_dma >> 16) >> 16, port->mmio + PORT_LST_ADDR_HI); writel((port->rxfis_dma >> 16) >> 16, port->mmio + PORT_FIS_ADDR_HI); } writel(port->command_list_dma & 0xFFFFFFFF, port->mmio + PORT_LST_ADDR); writel(port->rxfis_dma & 0xFFFFFFFF, port->mmio + PORT_FIS_ADDR); /* Clear SError */ writel(readl(port->mmio + PORT_SCR_ERR), port->mmio + PORT_SCR_ERR); /* reset the completed registers.*/ for (i = 0; i < port->dd->slot_groups; i++) writel(0xFFFFFFFF, port->completed[i]); /* Clear any pending interrupts for this port */ writel(readl(port->mmio + PORT_IRQ_STAT), port->mmio + PORT_IRQ_STAT); /* Clear any pending interrupts on the HBA. */ writel(readl(port->dd->mmio + HOST_IRQ_STAT), port->dd->mmio + HOST_IRQ_STAT); /* Enable port interrupts */ writel(DEF_PORT_IRQ, port->mmio + PORT_IRQ_MASK); } /* * Restart a port * * @port Pointer to the port data structure. * * return value * None */ static void mtip_restart_port(struct mtip_port *port) { unsigned long timeout; /* Disable the DMA engine */ mtip_enable_engine(port, 0); /* Chip quirk: wait up to 500ms for PxCMD.CR == 0 */ timeout = jiffies + msecs_to_jiffies(500); while ((readl(port->mmio + PORT_CMD) & PORT_CMD_LIST_ON) && time_before(jiffies, timeout)) ; if (test_bit(MTIP_DDF_REMOVE_PENDING_BIT, &port->dd->dd_flag)) return; /* * Chip quirk: escalate to hba reset if * PxCMD.CR not clear after 500 ms */ if (readl(port->mmio + PORT_CMD) & PORT_CMD_LIST_ON) { dev_warn(&port->dd->pdev->dev, "PxCMD.CR not clear, escalating reset\n"); if (mtip_hba_reset(port->dd)) dev_err(&port->dd->pdev->dev, "HBA reset escalation failed.\n"); /* 30 ms delay before com reset to quiesce chip */ mdelay(30); } dev_warn(&port->dd->pdev->dev, "Issuing COM reset\n"); /* Set PxSCTL.DET */ writel(readl(port->mmio + PORT_SCR_CTL) | 1, port->mmio + PORT_SCR_CTL); readl(port->mmio + PORT_SCR_CTL); /* Wait 1 ms to quiesce chip function */ timeout = jiffies + msecs_to_jiffies(1); while (time_before(jiffies, timeout)) ; if (test_bit(MTIP_DDF_REMOVE_PENDING_BIT, &port->dd->dd_flag)) return; /* Clear PxSCTL.DET */ writel(readl(port->mmio + PORT_SCR_CTL) & ~1, port->mmio + PORT_SCR_CTL); readl(port->mmio + PORT_SCR_CTL); /* Wait 500 ms for bit 0 of PORT_SCR_STS to be set */ timeout = jiffies + msecs_to_jiffies(500); while (((readl(port->mmio + PORT_SCR_STAT) & 0x01) == 0) && time_before(jiffies, timeout)) ; if (test_bit(MTIP_DDF_REMOVE_PENDING_BIT, &port->dd->dd_flag)) return; if ((readl(port->mmio + PORT_SCR_STAT) & 0x01) == 0) dev_warn(&port->dd->pdev->dev, "COM reset failed\n"); mtip_init_port(port); mtip_start_port(port); } static int mtip_device_reset(struct driver_data *dd) { int rv = 0; if (mtip_check_surprise_removal(dd->pdev)) return 0; if (mtip_hba_reset(dd) < 0) rv = -EFAULT; mdelay(1); mtip_init_port(dd->port); mtip_start_port(dd->port); /* Enable interrupts on the HBA. */ writel(readl(dd->mmio + HOST_CTL) | HOST_IRQ_EN, dd->mmio + HOST_CTL); return rv; } /* * Helper function for tag logging */ static void print_tags(struct driver_data *dd, char *msg, unsigned long *tagbits, int cnt) { unsigned char tagmap[128]; int group, tagmap_len = 0; memset(tagmap, 0, sizeof(tagmap)); for (group = SLOTBITS_IN_LONGS; group > 0; group--) tagmap_len += sprintf(tagmap + tagmap_len, "%016lX ", tagbits[group-1]); dev_warn(&dd->pdev->dev, "%d command(s) %s: tagmap [%s]", cnt, msg, tagmap); } /* * Internal command completion callback function. * * This function is normally called by the driver ISR when an internal * command completed. This function signals the command completion by * calling complete(). * * @port Pointer to the port data structure. * @tag Tag of the command that has completed. * @data Pointer to a completion structure. * @status Completion status. * * return value * None */ static void mtip_completion(struct mtip_port *port, int tag, struct mtip_cmd *command, int status) { struct completion *waiting = command->comp_data; if (unlikely(status == PORT_IRQ_TF_ERR)) dev_warn(&port->dd->pdev->dev, "Internal command %d completed with TFE\n", tag); command->comp_func = NULL; command->comp_data = NULL; complete(waiting); } static void mtip_null_completion(struct mtip_port *port, int tag, struct mtip_cmd *command, int status) { } static int mtip_read_log_page(struct mtip_port *port, u8 page, u16 *buffer, dma_addr_t buffer_dma, unsigned int sectors); static int mtip_get_smart_attr(struct mtip_port *port, unsigned int id, struct smart_attr *attrib); /* * Handle an error. * * @dd Pointer to the DRIVER_DATA structure. * * return value * None */ static void mtip_handle_tfe(struct driver_data *dd) { int group, tag, bit, reissue, rv; struct mtip_port *port; struct mtip_cmd *cmd; u32 completed; struct host_to_dev_fis *fis; unsigned long tagaccum[SLOTBITS_IN_LONGS]; unsigned int cmd_cnt = 0; unsigned char *buf; char *fail_reason = NULL; int fail_all_ncq_write = 0, fail_all_ncq_cmds = 0; dev_warn(&dd->pdev->dev, "Taskfile error\n"); port = dd->port; if (test_bit(MTIP_PF_IC_ACTIVE_BIT, &port->flags)) { cmd = mtip_cmd_from_tag(dd, MTIP_TAG_INTERNAL); dbg_printk(MTIP_DRV_NAME " TFE for the internal command\n"); if (cmd->comp_data && cmd->comp_func) { cmd->comp_func(port, MTIP_TAG_INTERNAL, cmd, PORT_IRQ_TF_ERR); } return; } /* clear the tag accumulator */ memset(tagaccum, 0, SLOTBITS_IN_LONGS * sizeof(long)); /* Loop through all the groups */ for (group = 0; group < dd->slot_groups; group++) { completed = readl(port->completed[group]); dev_warn(&dd->pdev->dev, "g=%u, comp=%x\n", group, completed); /* clear completed status register in the hardware.*/ writel(completed, port->completed[group]); /* Process successfully completed commands */ for (bit = 0; bit < 32 && completed; bit++) { if (!(completed & (1<comp_func)) { set_bit(tag, tagaccum); cmd_cnt++; cmd->comp_func(port, tag, cmd, 0); } else { dev_err(&port->dd->pdev->dev, "Missing completion func for tag %d", tag); if (mtip_check_surprise_removal(dd->pdev)) { /* don't proceed further */ return; } } } } print_tags(dd, "completed (TFE)", tagaccum, cmd_cnt); /* Restart the port */ mdelay(20); mtip_restart_port(port); /* Trying to determine the cause of the error */ rv = mtip_read_log_page(dd->port, ATA_LOG_SATA_NCQ, dd->port->log_buf, dd->port->log_buf_dma, 1); if (rv) { dev_warn(&dd->pdev->dev, "Error in READ LOG EXT (10h) command\n"); /* non-critical error, don't fail the load */ } else { buf = (unsigned char *)dd->port->log_buf; if (buf[259] & 0x1) { dev_info(&dd->pdev->dev, "Write protect bit is set.\n"); set_bit(MTIP_DDF_WRITE_PROTECT_BIT, &dd->dd_flag); fail_all_ncq_write = 1; fail_reason = "write protect"; } if (buf[288] == 0xF7) { dev_info(&dd->pdev->dev, "Exceeded Tmax, drive in thermal shutdown.\n"); set_bit(MTIP_DDF_OVER_TEMP_BIT, &dd->dd_flag); fail_all_ncq_cmds = 1; fail_reason = "thermal shutdown"; } if (buf[288] == 0xBF) { set_bit(MTIP_DDF_REBUILD_FAILED_BIT, &dd->dd_flag); dev_info(&dd->pdev->dev, "Drive indicates rebuild has failed. Secure erase required.\n"); fail_all_ncq_cmds = 1; fail_reason = "rebuild failed"; } } /* clear the tag accumulator */ memset(tagaccum, 0, SLOTBITS_IN_LONGS * sizeof(long)); /* Loop through all the groups */ for (group = 0; group < dd->slot_groups; group++) { for (bit = 0; bit < 32; bit++) { reissue = 1; tag = (group << 5) + bit; cmd = mtip_cmd_from_tag(dd, tag); fis = (struct host_to_dev_fis *)cmd->command; /* Should re-issue? */ if (tag == MTIP_TAG_INTERNAL || fis->command == ATA_CMD_SET_FEATURES) reissue = 0; else { if (fail_all_ncq_cmds || (fail_all_ncq_write && fis->command == ATA_CMD_FPDMA_WRITE)) { dev_warn(&dd->pdev->dev, " Fail: %s w/tag %d [%s].\n", fis->command == ATA_CMD_FPDMA_WRITE ? "write" : "read", tag, fail_reason != NULL ? fail_reason : "unknown"); if (cmd->comp_func) { cmd->comp_func(port, tag, cmd, -ENODATA); } continue; } } /* * First check if this command has * exceeded its retries. */ if (reissue && (cmd->retries-- > 0)) { set_bit(tag, tagaccum); /* Re-issue the command. */ mtip_issue_ncq_command(port, tag); continue; } /* Retire a command that will not be reissued */ dev_warn(&port->dd->pdev->dev, "retiring tag %d\n", tag); if (cmd->comp_func) cmd->comp_func(port, tag, cmd, PORT_IRQ_TF_ERR); else dev_warn(&port->dd->pdev->dev, "Bad completion for tag %d\n", tag); } } print_tags(dd, "reissued (TFE)", tagaccum, cmd_cnt); } /* * Handle a set device bits interrupt */ static inline void mtip_workq_sdbfx(struct mtip_port *port, int group, u32 completed) { struct driver_data *dd = port->dd; int tag, bit; struct mtip_cmd *command; if (!completed) { WARN_ON_ONCE(!completed); return; } /* clear completed status register in the hardware.*/ writel(completed, port->completed[group]); /* Process completed commands. */ for (bit = 0; (bit < 32) && completed; bit++) { if (completed & 0x01) { tag = (group << 5) | bit; /* skip internal command slot. */ if (unlikely(tag == MTIP_TAG_INTERNAL)) continue; command = mtip_cmd_from_tag(dd, tag); if (likely(command->comp_func)) command->comp_func(port, tag, command, 0); else { dev_dbg(&dd->pdev->dev, "Null completion for tag %d", tag); if (mtip_check_surprise_removal( dd->pdev)) { return; } } } completed >>= 1; } /* If last, re-enable interrupts */ if (atomic_dec_return(&dd->irq_workers_active) == 0) writel(0xffffffff, dd->mmio + HOST_IRQ_STAT); } /* * Process legacy pio and d2h interrupts */ static inline void mtip_process_legacy(struct driver_data *dd, u32 port_stat) { struct mtip_port *port = dd->port; struct mtip_cmd *cmd = mtip_cmd_from_tag(dd, MTIP_TAG_INTERNAL); if (test_bit(MTIP_PF_IC_ACTIVE_BIT, &port->flags) && (cmd != NULL) && !(readl(port->cmd_issue[MTIP_TAG_INTERNAL]) & (1 << MTIP_TAG_INTERNAL))) { if (cmd->comp_func) { cmd->comp_func(port, MTIP_TAG_INTERNAL, cmd, 0); return; } } return; } /* * Demux and handle errors */ static inline void mtip_process_errors(struct driver_data *dd, u32 port_stat) { if (unlikely(port_stat & PORT_IRQ_CONNECT)) { dev_warn(&dd->pdev->dev, "Clearing PxSERR.DIAG.x\n"); writel((1 << 26), dd->port->mmio + PORT_SCR_ERR); } if (unlikely(port_stat & PORT_IRQ_PHYRDY)) { dev_warn(&dd->pdev->dev, "Clearing PxSERR.DIAG.n\n"); writel((1 << 16), dd->port->mmio + PORT_SCR_ERR); } if (unlikely(port_stat & ~PORT_IRQ_HANDLED)) { dev_warn(&dd->pdev->dev, "Port stat errors %x unhandled\n", (port_stat & ~PORT_IRQ_HANDLED)); if (mtip_check_surprise_removal(dd->pdev)) return; } if (likely(port_stat & (PORT_IRQ_TF_ERR | PORT_IRQ_IF_ERR))) { set_bit(MTIP_PF_EH_ACTIVE_BIT, &dd->port->flags); wake_up_interruptible(&dd->port->svc_wait); } } static inline irqreturn_t mtip_handle_irq(struct driver_data *data) { struct driver_data *dd = (struct driver_data *) data; struct mtip_port *port = dd->port; u32 hba_stat, port_stat; int rv = IRQ_NONE; int do_irq_enable = 1, i, workers; struct mtip_work *twork; hba_stat = readl(dd->mmio + HOST_IRQ_STAT); if (hba_stat) { rv = IRQ_HANDLED; /* Acknowledge the interrupt status on the port.*/ port_stat = readl(port->mmio + PORT_IRQ_STAT); if (unlikely(port_stat == 0xFFFFFFFF)) { mtip_check_surprise_removal(dd->pdev); return IRQ_HANDLED; } writel(port_stat, port->mmio + PORT_IRQ_STAT); /* Demux port status */ if (likely(port_stat & PORT_IRQ_SDB_FIS)) { do_irq_enable = 0; WARN_ON_ONCE(atomic_read(&dd->irq_workers_active) != 0); /* Start at 1: group zero is always local? */ for (i = 0, workers = 0; i < MTIP_MAX_SLOT_GROUPS; i++) { twork = &dd->work[i]; twork->completed = readl(port->completed[i]); if (twork->completed) workers++; } atomic_set(&dd->irq_workers_active, workers); if (workers) { for (i = 1; i < MTIP_MAX_SLOT_GROUPS; i++) { twork = &dd->work[i]; if (twork->completed) queue_work_on( twork->cpu_binding, dd->isr_workq, &twork->work); } if (likely(dd->work[0].completed)) mtip_workq_sdbfx(port, 0, dd->work[0].completed); } else { /* * Chip quirk: SDB interrupt but nothing * to complete */ do_irq_enable = 1; } } if (unlikely(port_stat & PORT_IRQ_ERR)) { if (unlikely(mtip_check_surprise_removal(dd->pdev))) { /* don't proceed further */ return IRQ_HANDLED; } if (test_bit(MTIP_DDF_REMOVE_PENDING_BIT, &dd->dd_flag)) return rv; mtip_process_errors(dd, port_stat & PORT_IRQ_ERR); } if (unlikely(port_stat & PORT_IRQ_LEGACY)) mtip_process_legacy(dd, port_stat & PORT_IRQ_LEGACY); } /* acknowledge interrupt */ if (unlikely(do_irq_enable)) writel(hba_stat, dd->mmio + HOST_IRQ_STAT); return rv; } /* * HBA interrupt subroutine. * * @irq IRQ number. * @instance Pointer to the driver data structure. * * return value * IRQ_HANDLED A HBA interrupt was pending and handled. * IRQ_NONE This interrupt was not for the HBA. */ static irqreturn_t mtip_irq_handler(int irq, void *instance) { struct driver_data *dd = instance; return mtip_handle_irq(dd); } static void mtip_issue_non_ncq_command(struct mtip_port *port, int tag) { writel(1 << MTIP_TAG_BIT(tag), port->cmd_issue[MTIP_TAG_INDEX(tag)]); } static bool mtip_pause_ncq(struct mtip_port *port, struct host_to_dev_fis *fis) { struct host_to_dev_fis *reply; unsigned long task_file_data; reply = port->rxfis + RX_FIS_D2H_REG; task_file_data = readl(port->mmio+PORT_TFDATA); if ((task_file_data & 1)) return false; if (fis->command == ATA_CMD_SEC_ERASE_PREP) { port->ic_pause_timer = jiffies; return true; } else if ((fis->command == ATA_CMD_DOWNLOAD_MICRO) && (fis->features == 0x03)) { set_bit(MTIP_PF_DM_ACTIVE_BIT, &port->flags); port->ic_pause_timer = jiffies; return true; } else if ((fis->command == ATA_CMD_SEC_ERASE_UNIT) || ((fis->command == 0xFC) && (fis->features == 0x27 || fis->features == 0x72 || fis->features == 0x62 || fis->features == 0x26))) { clear_bit(MTIP_DDF_SEC_LOCK_BIT, &port->dd->dd_flag); clear_bit(MTIP_DDF_REBUILD_FAILED_BIT, &port->dd->dd_flag); /* Com reset after secure erase or lowlevel format */ mtip_restart_port(port); clear_bit(MTIP_PF_SE_ACTIVE_BIT, &port->flags); return false; } return false; } /* * Wait for port to quiesce * * @port Pointer to port data structure * @timeout Max duration to wait (ms) * @atomic gfp_t flag to indicate blockable context or not * * return value * 0 Success * -EBUSY Commands still active */ static int mtip_quiesce_io(struct mtip_port *port, unsigned long timeout, gfp_t atomic) { unsigned long to; unsigned int n; unsigned int active = 1; blk_mq_stop_hw_queues(port->dd->queue); to = jiffies + msecs_to_jiffies(timeout); do { if (test_bit(MTIP_PF_SVC_THD_ACTIVE_BIT, &port->flags) && test_bit(MTIP_PF_ISSUE_CMDS_BIT, &port->flags) && atomic == GFP_KERNEL) { msleep(20); continue; /* svc thd is actively issuing commands */ } if (atomic == GFP_KERNEL) msleep(100); else { cpu_relax(); udelay(100); } if (mtip_check_surprise_removal(port->dd->pdev)) goto err_fault; /* * Ignore s_active bit 0 of array element 0. * This bit will always be set */ active = readl(port->s_active[0]) & 0xFFFFFFFE; for (n = 1; n < port->dd->slot_groups; n++) active |= readl(port->s_active[n]); if (!active) break; } while (time_before(jiffies, to)); blk_mq_start_stopped_hw_queues(port->dd->queue, true); return active ? -EBUSY : 0; err_fault: blk_mq_start_stopped_hw_queues(port->dd->queue, true); return -EFAULT; } /* * Execute an internal command and wait for the completion. * * @port Pointer to the port data structure. * @fis Pointer to the FIS that describes the command. * @fis_len Length in WORDS of the FIS. * @buffer DMA accessible for command data. * @buf_len Length, in bytes, of the data buffer. * @opts Command header options, excluding the FIS length * and the number of PRD entries. * @timeout Time in ms to wait for the command to complete. * * return value * 0 Command completed successfully. * -EFAULT The buffer address is not correctly aligned. * -EBUSY Internal command or other IO in progress. * -EAGAIN Time out waiting for command to complete. */ static int mtip_exec_internal_command(struct mtip_port *port, struct host_to_dev_fis *fis, int fis_len, dma_addr_t buffer, int buf_len, u32 opts, gfp_t atomic, unsigned long timeout) { struct mtip_cmd_sg *command_sg; DECLARE_COMPLETION_ONSTACK(wait); struct mtip_cmd *int_cmd; struct driver_data *dd = port->dd; int rv = 0; unsigned long start; /* Make sure the buffer is 8 byte aligned. This is asic specific. */ if (buffer & 0x00000007) { dev_err(&dd->pdev->dev, "SG buffer is not 8 byte aligned\n"); return -EFAULT; } int_cmd = mtip_get_int_command(dd); if (!int_cmd) { dbg_printk(MTIP_DRV_NAME "Unable to allocate tag for PIO cmd\n"); return -EFAULT; } set_bit(MTIP_PF_IC_ACTIVE_BIT, &port->flags); if (fis->command == ATA_CMD_SEC_ERASE_PREP) set_bit(MTIP_PF_SE_ACTIVE_BIT, &port->flags); clear_bit(MTIP_PF_DM_ACTIVE_BIT, &port->flags); if (atomic == GFP_KERNEL) { if (fis->command != ATA_CMD_STANDBYNOW1) { /* wait for io to complete if non atomic */ if (mtip_quiesce_io(port, MTIP_QUIESCE_IO_TIMEOUT_MS, atomic) < 0) { dev_warn(&dd->pdev->dev, "Failed to quiesce IO\n"); mtip_put_int_command(dd, int_cmd); clear_bit(MTIP_PF_IC_ACTIVE_BIT, &port->flags); wake_up_interruptible(&port->svc_wait); return -EBUSY; } } /* Set the completion function and data for the command. */ int_cmd->comp_data = &wait; int_cmd->comp_func = mtip_completion; } else { /* Clear completion - we're going to poll */ int_cmd->comp_data = NULL; int_cmd->comp_func = mtip_null_completion; } /* Copy the command to the command table */ memcpy(int_cmd->command, fis, fis_len*4); /* Populate the SG list */ int_cmd->command_header->opts = __force_bit2int cpu_to_le32(opts | fis_len); if (buf_len) { command_sg = int_cmd->command + AHCI_CMD_TBL_HDR_SZ; command_sg->info = __force_bit2int cpu_to_le32((buf_len-1) & 0x3FFFFF); command_sg->dba = __force_bit2int cpu_to_le32(buffer & 0xFFFFFFFF); command_sg->dba_upper = __force_bit2int cpu_to_le32((buffer >> 16) >> 16); int_cmd->command_header->opts |= __force_bit2int cpu_to_le32((1 << 16)); } /* Populate the command header */ int_cmd->command_header->byte_count = 0; start = jiffies; /* Issue the command to the hardware */ mtip_issue_non_ncq_command(port, MTIP_TAG_INTERNAL); if (atomic == GFP_KERNEL) { /* Wait for the command to complete or timeout. */ if ((rv = wait_for_completion_interruptible_timeout( &wait, msecs_to_jiffies(timeout))) <= 0) { if (rv == -ERESTARTSYS) { /* interrupted */ dev_err(&dd->pdev->dev, "Internal command [%02X] was interrupted after %u ms\n", fis->command, jiffies_to_msecs(jiffies - start)); rv = -EINTR; goto exec_ic_exit; } else if (rv == 0) /* timeout */ dev_err(&dd->pdev->dev, "Internal command did not complete [%02X] within timeout of %lu ms\n", fis->command, timeout); else dev_err(&dd->pdev->dev, "Internal command [%02X] wait returned code [%d] after %lu ms - unhandled\n", fis->command, rv, timeout); if (mtip_check_surprise_removal(dd->pdev) || test_bit(MTIP_DDF_REMOVE_PENDING_BIT, &dd->dd_flag)) { dev_err(&dd->pdev->dev, "Internal command [%02X] wait returned due to SR\n", fis->command); rv = -ENXIO; goto exec_ic_exit; } mtip_device_reset(dd); /* recover from timeout issue */ rv = -EAGAIN; goto exec_ic_exit; } } else { u32 hba_stat, port_stat; /* Spin for checking if command still outstanding */ timeout = jiffies + msecs_to_jiffies(timeout); while ((readl(port->cmd_issue[MTIP_TAG_INTERNAL]) & (1 << MTIP_TAG_INTERNAL)) && time_before(jiffies, timeout)) { if (mtip_check_surprise_removal(dd->pdev)) { rv = -ENXIO; goto exec_ic_exit; } if ((fis->command != ATA_CMD_STANDBYNOW1) && test_bit(MTIP_DDF_REMOVE_PENDING_BIT, &dd->dd_flag)) { rv = -ENXIO; goto exec_ic_exit; } port_stat = readl(port->mmio + PORT_IRQ_STAT); if (!port_stat) continue; if (port_stat & PORT_IRQ_ERR) { dev_err(&dd->pdev->dev, "Internal command [%02X] failed\n", fis->command); mtip_device_reset(dd); rv = -EIO; goto exec_ic_exit; } else { writel(port_stat, port->mmio + PORT_IRQ_STAT); hba_stat = readl(dd->mmio + HOST_IRQ_STAT); if (hba_stat) writel(hba_stat, dd->mmio + HOST_IRQ_STAT); } break; } } if (readl(port->cmd_issue[MTIP_TAG_INTERNAL]) & (1 << MTIP_TAG_INTERNAL)) { rv = -ENXIO; if (!test_bit(MTIP_DDF_REMOVE_PENDING_BIT, &dd->dd_flag)) { mtip_device_reset(dd); rv = -EAGAIN; } } exec_ic_exit: /* Clear the allocated and active bits for the internal command. */ mtip_put_int_command(dd, int_cmd); clear_bit(MTIP_PF_IC_ACTIVE_BIT, &port->flags); if (rv >= 0 && mtip_pause_ncq(port, fis)) { /* NCQ paused */ return rv; } wake_up_interruptible(&port->svc_wait); return rv; } /* * Byte-swap ATA ID strings. * * ATA identify data contains strings in byte-swapped 16-bit words. * They must be swapped (on all architectures) to be usable as C strings. * This function swaps bytes in-place. * * @buf The buffer location of the string * @len The number of bytes to swap * * return value * None */ static inline void ata_swap_string(u16 *buf, unsigned int len) { int i; for (i = 0; i < (len/2); i++) be16_to_cpus(&buf[i]); } static void mtip_set_timeout(struct driver_data *dd, struct host_to_dev_fis *fis, unsigned int *timeout, u8 erasemode) { switch (fis->command) { case ATA_CMD_DOWNLOAD_MICRO: *timeout = 120000; /* 2 minutes */ break; case ATA_CMD_SEC_ERASE_UNIT: case 0xFC: if (erasemode) *timeout = ((*(dd->port->identify + 90) * 2) * 60000); else *timeout = ((*(dd->port->identify + 89) * 2) * 60000); break; case ATA_CMD_STANDBYNOW1: *timeout = 120000; /* 2 minutes */ break; case 0xF7: case 0xFA: *timeout = 60000; /* 60 seconds */ break; case ATA_CMD_SMART: *timeout = 15000; /* 15 seconds */ break; default: *timeout = MTIP_IOCTL_CMD_TIMEOUT_MS; break; } } /* * Request the device identity information. * * If a user space buffer is not specified, i.e. is NULL, the * identify information is still read from the drive and placed * into the identify data buffer (@e port->identify) in the * port data structure. * When the identify buffer contains valid identify information @e * port->identify_valid is non-zero. * * @port Pointer to the port structure. * @user_buffer A user space buffer where the identify data should be * copied. * * return value * 0 Command completed successfully. * -EFAULT An error occurred while coping data to the user buffer. * -1 Command failed. */ static int mtip_get_identify(struct mtip_port *port, void __user *user_buffer) { int rv = 0; struct host_to_dev_fis fis; if (test_bit(MTIP_DDF_REMOVE_PENDING_BIT, &port->dd->dd_flag)) return -EFAULT; /* Build the FIS. */ memset(&fis, 0, sizeof(struct host_to_dev_fis)); fis.type = 0x27; fis.opts = 1 << 7; fis.command = ATA_CMD_ID_ATA; /* Set the identify information as invalid. */ port->identify_valid = 0; /* Clear the identify information. */ memset(port->identify, 0, sizeof(u16) * ATA_ID_WORDS); /* Execute the command. */ if (mtip_exec_internal_command(port, &fis, 5, port->identify_dma, sizeof(u16) * ATA_ID_WORDS, 0, GFP_KERNEL, MTIP_INT_CMD_TIMEOUT_MS) < 0) { rv = -1; goto out; } /* * Perform any necessary byte-swapping. Yes, the kernel does in fact * perform field-sensitive swapping on the string fields. * See the kernel use of ata_id_string() for proof of this. */ #ifdef __LITTLE_ENDIAN ata_swap_string(port->identify + 27, 40); /* model string*/ ata_swap_string(port->identify + 23, 8); /* firmware string*/ ata_swap_string(port->identify + 10, 20); /* serial# string*/ #else { int i; for (i = 0; i < ATA_ID_WORDS; i++) port->identify[i] = le16_to_cpu(port->identify[i]); } #endif /* Check security locked state */ if (port->identify[128] & 0x4) set_bit(MTIP_DDF_SEC_LOCK_BIT, &port->dd->dd_flag); else clear_bit(MTIP_DDF_SEC_LOCK_BIT, &port->dd->dd_flag); #ifdef MTIP_TRIM /* Disabling TRIM support temporarily */ /* Demux ID.DRAT & ID.RZAT to determine trim support */ if (port->identify[69] & (1 << 14) && port->identify[69] & (1 << 5)) port->dd->trim_supp = true; else #endif port->dd->trim_supp = false; /* Set the identify buffer as valid. */ port->identify_valid = 1; if (user_buffer) { if (copy_to_user( user_buffer, port->identify, ATA_ID_WORDS * sizeof(u16))) { rv = -EFAULT; goto out; } } out: return rv; } /* * Issue a standby immediate command to the device. * * @port Pointer to the port structure. * * return value * 0 Command was executed successfully. * -1 An error occurred while executing the command. */ static int mtip_standby_immediate(struct mtip_port *port) { int rv; struct host_to_dev_fis fis; unsigned long start; unsigned int timeout; /* Build the FIS. */ memset(&fis, 0, sizeof(struct host_to_dev_fis)); fis.type = 0x27; fis.opts = 1 << 7; fis.command = ATA_CMD_STANDBYNOW1; mtip_set_timeout(port->dd, &fis, &timeout, 0); start = jiffies; rv = mtip_exec_internal_command(port, &fis, 5, 0, 0, 0, GFP_ATOMIC, timeout); dbg_printk(MTIP_DRV_NAME "Time taken to complete standby cmd: %d ms\n", jiffies_to_msecs(jiffies - start)); if (rv) dev_warn(&port->dd->pdev->dev, "STANDBY IMMEDIATE command failed.\n"); return rv; } /* * Issue a READ LOG EXT command to the device. * * @port pointer to the port structure. * @page page number to fetch * @buffer pointer to buffer * @buffer_dma dma address corresponding to @buffer * @sectors page length to fetch, in sectors * * return value * @rv return value from mtip_exec_internal_command() */ static int mtip_read_log_page(struct mtip_port *port, u8 page, u16 *buffer, dma_addr_t buffer_dma, unsigned int sectors) { struct host_to_dev_fis fis; memset(&fis, 0, sizeof(struct host_to_dev_fis)); fis.type = 0x27; fis.opts = 1 << 7; fis.command = ATA_CMD_READ_LOG_EXT; fis.sect_count = sectors & 0xFF; fis.sect_cnt_ex = (sectors >> 8) & 0xFF; fis.lba_low = page; fis.lba_mid = 0; fis.device = ATA_DEVICE_OBS; memset(buffer, 0, sectors * ATA_SECT_SIZE); return mtip_exec_internal_command(port, &fis, 5, buffer_dma, sectors * ATA_SECT_SIZE, 0, GFP_ATOMIC, MTIP_INT_CMD_TIMEOUT_MS); } /* * Issue a SMART READ DATA command to the device. * * @port pointer to the port structure. * @buffer pointer to buffer * @buffer_dma dma address corresponding to @buffer * * return value * @rv return value from mtip_exec_internal_command() */ static int mtip_get_smart_data(struct mtip_port *port, u8 *buffer, dma_addr_t buffer_dma) { struct host_to_dev_fis fis; memset(&fis, 0, sizeof(struct host_to_dev_fis)); fis.type = 0x27; fis.opts = 1 << 7; fis.command = ATA_CMD_SMART; fis.features = 0xD0; fis.sect_count = 1; fis.lba_mid = 0x4F; fis.lba_hi = 0xC2; fis.device = ATA_DEVICE_OBS; return mtip_exec_internal_command(port, &fis, 5, buffer_dma, ATA_SECT_SIZE, 0, GFP_ATOMIC, 15000); } /* * Get the value of a smart attribute * * @port pointer to the port structure * @id attribute number * @attrib pointer to return attrib information corresponding to @id * * return value * -EINVAL NULL buffer passed or unsupported attribute @id. * -EPERM Identify data not valid, SMART not supported or not enabled */ static int mtip_get_smart_attr(struct mtip_port *port, unsigned int id, struct smart_attr *attrib) { int rv, i; struct smart_attr *pattr; if (!attrib) return -EINVAL; if (!port->identify_valid) { dev_warn(&port->dd->pdev->dev, "IDENTIFY DATA not valid\n"); return -EPERM; } if (!(port->identify[82] & 0x1)) { dev_warn(&port->dd->pdev->dev, "SMART not supported\n"); return -EPERM; } if (!(port->identify[85] & 0x1)) { dev_warn(&port->dd->pdev->dev, "SMART not enabled\n"); return -EPERM; } memset(port->smart_buf, 0, ATA_SECT_SIZE); rv = mtip_get_smart_data(port, port->smart_buf, port->smart_buf_dma); if (rv) { dev_warn(&port->dd->pdev->dev, "Failed to ge SMART data\n"); return rv; } pattr = (struct smart_attr *)(port->smart_buf + 2); for (i = 0; i < 29; i++, pattr++) if (pattr->attr_id == id) { memcpy(attrib, pattr, sizeof(struct smart_attr)); break; } if (i == 29) { dev_warn(&port->dd->pdev->dev, "Query for invalid SMART attribute ID\n"); rv = -EINVAL; } return rv; } /* * Trim unused sectors * * @dd pointer to driver_data structure * @lba starting lba * @len # of 512b sectors to trim * * return value * -ENOMEM Out of dma memory * -EINVAL Invalid parameters passed in, trim not supported * -EIO Error submitting trim request to hw */ static int mtip_send_trim(struct driver_data *dd, unsigned int lba, unsigned int len) { int i, rv = 0; u64 tlba, tlen, sect_left; struct mtip_trim_entry *buf; dma_addr_t dma_addr; struct host_to_dev_fis fis; if (!len || dd->trim_supp == false) return -EINVAL; /* Trim request too big */ WARN_ON(len > (MTIP_MAX_TRIM_ENTRY_LEN * MTIP_MAX_TRIM_ENTRIES)); /* Trim request not aligned on 4k boundary */ WARN_ON(len % 8 != 0); /* Warn if vu_trim structure is too big */ WARN_ON(sizeof(struct mtip_trim) > ATA_SECT_SIZE); /* Allocate a DMA buffer for the trim structure */ buf = dmam_alloc_coherent(&dd->pdev->dev, ATA_SECT_SIZE, &dma_addr, GFP_KERNEL); if (!buf) return -ENOMEM; memset(buf, 0, ATA_SECT_SIZE); for (i = 0, sect_left = len, tlba = lba; i < MTIP_MAX_TRIM_ENTRIES && sect_left; i++) { tlen = (sect_left >= MTIP_MAX_TRIM_ENTRY_LEN ? MTIP_MAX_TRIM_ENTRY_LEN : sect_left); buf[i].lba = __force_bit2int cpu_to_le32(tlba); buf[i].range = __force_bit2int cpu_to_le16(tlen); tlba += tlen; sect_left -= tlen; } WARN_ON(sect_left != 0); /* Build the fis */ memset(&fis, 0, sizeof(struct host_to_dev_fis)); fis.type = 0x27; fis.opts = 1 << 7; fis.command = 0xfb; fis.features = 0x60; fis.sect_count = 1; fis.device = ATA_DEVICE_OBS; if (mtip_exec_internal_command(dd->port, &fis, 5, dma_addr, ATA_SECT_SIZE, 0, GFP_KERNEL, MTIP_TRIM_TIMEOUT_MS) < 0) rv = -EIO; dmam_free_coherent(&dd->pdev->dev, ATA_SECT_SIZE, buf, dma_addr); return rv; } /* * Get the drive capacity. * * @dd Pointer to the device data structure. * @sectors Pointer to the variable that will receive the sector count. * * return value * 1 Capacity was returned successfully. * 0 The identify information is invalid. */ static bool mtip_hw_get_capacity(struct driver_data *dd, sector_t *sectors) { struct mtip_port *port = dd->port; u64 total, raw0, raw1, raw2, raw3; raw0 = port->identify[100]; raw1 = port->identify[101]; raw2 = port->identify[102]; raw3 = port->identify[103]; total = raw0 | raw1<<16 | raw2<<32 | raw3<<48; *sectors = total; return (bool) !!port->identify_valid; } /* * Display the identify command data. * * @port Pointer to the port data structure. * * return value * None */ static void mtip_dump_identify(struct mtip_port *port) { sector_t sectors; unsigned short revid; char cbuf[42]; if (!port->identify_valid) return; strlcpy(cbuf, (char *)(port->identify+10), 21); dev_info(&port->dd->pdev->dev, "Serial No.: %s\n", cbuf); strlcpy(cbuf, (char *)(port->identify+23), 9); dev_info(&port->dd->pdev->dev, "Firmware Ver.: %s\n", cbuf); strlcpy(cbuf, (char *)(port->identify+27), 41); dev_info(&port->dd->pdev->dev, "Model: %s\n", cbuf); dev_info(&port->dd->pdev->dev, "Security: %04x %s\n", port->identify[128], port->identify[128] & 0x4 ? "(LOCKED)" : ""); if (mtip_hw_get_capacity(port->dd, §ors)) dev_info(&port->dd->pdev->dev, "Capacity: %llu sectors (%llu MB)\n", (u64)sectors, ((u64)sectors) * ATA_SECT_SIZE >> 20); pci_read_config_word(port->dd->pdev, PCI_REVISION_ID, &revid); switch (revid & 0xFF) { case 0x1: strlcpy(cbuf, "A0", 3); break; case 0x3: strlcpy(cbuf, "A2", 3); break; default: strlcpy(cbuf, "?", 2); break; } dev_info(&port->dd->pdev->dev, "Card Type: %s\n", cbuf); } /* * Map the commands scatter list into the command table. * * @command Pointer to the command. * @nents Number of scatter list entries. * * return value * None */ static inline void fill_command_sg(struct driver_data *dd, struct mtip_cmd *command, int nents) { int n; unsigned int dma_len; struct mtip_cmd_sg *command_sg; struct scatterlist *sg = command->sg; command_sg = command->command + AHCI_CMD_TBL_HDR_SZ; for (n = 0; n < nents; n++) { dma_len = sg_dma_len(sg); if (dma_len > 0x400000) dev_err(&dd->pdev->dev, "DMA segment length truncated\n"); command_sg->info = __force_bit2int cpu_to_le32((dma_len-1) & 0x3FFFFF); command_sg->dba = __force_bit2int cpu_to_le32(sg_dma_address(sg)); command_sg->dba_upper = __force_bit2int cpu_to_le32((sg_dma_address(sg) >> 16) >> 16); command_sg++; sg++; } } /* * @brief Execute a drive command. * * return value 0 The command completed successfully. * return value -1 An error occurred while executing the command. */ static int exec_drive_task(struct mtip_port *port, u8 *command) { struct host_to_dev_fis fis; struct host_to_dev_fis *reply = (port->rxfis + RX_FIS_D2H_REG); unsigned int to; /* Build the FIS. */ memset(&fis, 0, sizeof(struct host_to_dev_fis)); fis.type = 0x27; fis.opts = 1 << 7; fis.command = command[0]; fis.features = command[1]; fis.sect_count = command[2]; fis.sector = command[3]; fis.cyl_low = command[4]; fis.cyl_hi = command[5]; fis.device = command[6] & ~0x10; /* Clear the dev bit*/ mtip_set_timeout(port->dd, &fis, &to, 0); dbg_printk(MTIP_DRV_NAME " %s: User Command: cmd %x, feat %x, nsect %x, sect %x, lcyl %x, hcyl %x, sel %x\n", __func__, command[0], command[1], command[2], command[3], command[4], command[5], command[6]); /* Execute the command. */ if (mtip_exec_internal_command(port, &fis, 5, 0, 0, 0, GFP_KERNEL, to) < 0) { return -1; } command[0] = reply->command; /* Status*/ command[1] = reply->features; /* Error*/ command[4] = reply->cyl_low; command[5] = reply->cyl_hi; dbg_printk(MTIP_DRV_NAME " %s: Completion Status: stat %x, err %x , cyl_lo %x cyl_hi %x\n", __func__, command[0], command[1], command[4], command[5]); return 0; } /* * @brief Execute a drive command. * * @param port Pointer to the port data structure. * @param command Pointer to the user specified command parameters. * @param user_buffer Pointer to the user space buffer where read sector * data should be copied. * * return value 0 The command completed successfully. * return value -EFAULT An error occurred while copying the completion * data to the user space buffer. * return value -1 An error occurred while executing the command. */ static int exec_drive_command(struct mtip_port *port, u8 *command, void __user *user_buffer) { struct host_to_dev_fis fis; struct host_to_dev_fis *reply; u8 *buf = NULL; dma_addr_t dma_addr = 0; int rv = 0, xfer_sz = command[3]; unsigned int to; if (xfer_sz) { if (!user_buffer) return -EFAULT; buf = dmam_alloc_coherent(&port->dd->pdev->dev, ATA_SECT_SIZE * xfer_sz, &dma_addr, GFP_KERNEL); if (!buf) { dev_err(&port->dd->pdev->dev, "Memory allocation failed (%d bytes)\n", ATA_SECT_SIZE * xfer_sz); return -ENOMEM; } memset(buf, 0, ATA_SECT_SIZE * xfer_sz); } /* Build the FIS. */ memset(&fis, 0, sizeof(struct host_to_dev_fis)); fis.type = 0x27; fis.opts = 1 << 7; fis.command = command[0]; fis.features = command[2]; fis.sect_count = command[3]; if (fis.command == ATA_CMD_SMART) { fis.sector = command[1]; fis.cyl_low = 0x4F; fis.cyl_hi = 0xC2; } mtip_set_timeout(port->dd, &fis, &to, 0); if (xfer_sz) reply = (port->rxfis + RX_FIS_PIO_SETUP); else reply = (port->rxfis + RX_FIS_D2H_REG); dbg_printk(MTIP_DRV_NAME " %s: User Command: cmd %x, sect %x, " "feat %x, sectcnt %x\n", __func__, command[0], command[1], command[2], command[3]); /* Execute the command. */ if (mtip_exec_internal_command(port, &fis, 5, (xfer_sz ? dma_addr : 0), (xfer_sz ? ATA_SECT_SIZE * xfer_sz : 0), 0, GFP_KERNEL, to) < 0) { rv = -EFAULT; goto exit_drive_command; } /* Collect the completion status. */ command[0] = reply->command; /* Status*/ command[1] = reply->features; /* Error*/ command[2] = reply->sect_count; dbg_printk(MTIP_DRV_NAME " %s: Completion Status: stat %x, " "err %x, nsect %x\n", __func__, command[0], command[1], command[2]); if (xfer_sz) { if (copy_to_user(user_buffer, buf, ATA_SECT_SIZE * command[3])) { rv = -EFAULT; goto exit_drive_command; } } exit_drive_command: if (buf) dmam_free_coherent(&port->dd->pdev->dev, ATA_SECT_SIZE * xfer_sz, buf, dma_addr); return rv; } /* * Indicates whether a command has a single sector payload. * * @command passed to the device to perform the certain event. * @features passed to the device to perform the certain event. * * return value * 1 command is one that always has a single sector payload, * regardless of the value in the Sector Count field. * 0 otherwise * */ static unsigned int implicit_sector(unsigned char command, unsigned char features) { unsigned int rv = 0; /* list of commands that have an implicit sector count of 1 */ switch (command) { case ATA_CMD_SEC_SET_PASS: case ATA_CMD_SEC_UNLOCK: case ATA_CMD_SEC_ERASE_PREP: case ATA_CMD_SEC_ERASE_UNIT: case ATA_CMD_SEC_FREEZE_LOCK: case ATA_CMD_SEC_DISABLE_PASS: case ATA_CMD_PMP_READ: case ATA_CMD_PMP_WRITE: rv = 1; break; case ATA_CMD_SET_MAX: if (features == ATA_SET_MAX_UNLOCK) rv = 1; break; case ATA_CMD_SMART: if ((features == ATA_SMART_READ_VALUES) || (features == ATA_SMART_READ_THRESHOLDS)) rv = 1; break; case ATA_CMD_CONF_OVERLAY: if ((features == ATA_DCO_IDENTIFY) || (features == ATA_DCO_SET)) rv = 1; break; } return rv; } /* * Executes a taskfile * See ide_taskfile_ioctl() for derivation */ static int exec_drive_taskfile(struct driver_data *dd, void __user *buf, ide_task_request_t *req_task, int outtotal) { struct host_to_dev_fis fis; struct host_to_dev_fis *reply; u8 *outbuf = NULL; u8 *inbuf = NULL; dma_addr_t outbuf_dma = 0; dma_addr_t inbuf_dma = 0; dma_addr_t dma_buffer = 0; int err = 0; unsigned int taskin = 0; unsigned int taskout = 0; u8 nsect = 0; unsigned int timeout; unsigned int force_single_sector; unsigned int transfer_size; unsigned long task_file_data; int intotal = outtotal + req_task->out_size; int erasemode = 0; taskout = req_task->out_size; taskin = req_task->in_size; /* 130560 = 512 * 0xFF*/ if (taskin > 130560 || taskout > 130560) return -EINVAL; if (taskout) { outbuf = memdup_user(buf + outtotal, taskout); if (IS_ERR(outbuf)) return PTR_ERR(outbuf); outbuf_dma = pci_map_single(dd->pdev, outbuf, taskout, DMA_TO_DEVICE); if (pci_dma_mapping_error(dd->pdev, outbuf_dma)) { err = -ENOMEM; goto abort; } dma_buffer = outbuf_dma; } if (taskin) { inbuf = memdup_user(buf + intotal, taskin); if (IS_ERR(inbuf)) { err = PTR_ERR(inbuf); inbuf = NULL; goto abort; } inbuf_dma = pci_map_single(dd->pdev, inbuf, taskin, DMA_FROM_DEVICE); if (pci_dma_mapping_error(dd->pdev, inbuf_dma)) { err = -ENOMEM; goto abort; } dma_buffer = inbuf_dma; } /* only supports PIO and non-data commands from this ioctl. */ switch (req_task->data_phase) { case TASKFILE_OUT: nsect = taskout / ATA_SECT_SIZE; reply = (dd->port->rxfis + RX_FIS_PIO_SETUP); break; case TASKFILE_IN: reply = (dd->port->rxfis + RX_FIS_PIO_SETUP); break; case TASKFILE_NO_DATA: reply = (dd->port->rxfis + RX_FIS_D2H_REG); break; default: err = -EINVAL; goto abort; } /* Build the FIS. */ memset(&fis, 0, sizeof(struct host_to_dev_fis)); fis.type = 0x27; fis.opts = 1 << 7; fis.command = req_task->io_ports[7]; fis.features = req_task->io_ports[1]; fis.sect_count = req_task->io_ports[2]; fis.lba_low = req_task->io_ports[3]; fis.lba_mid = req_task->io_ports[4]; fis.lba_hi = req_task->io_ports[5]; /* Clear the dev bit*/ fis.device = req_task->io_ports[6] & ~0x10; if ((req_task->in_flags.all == 0) && (req_task->out_flags.all & 1)) { req_task->in_flags.all = IDE_TASKFILE_STD_IN_FLAGS | (IDE_HOB_STD_IN_FLAGS << 8); fis.lba_low_ex = req_task->hob_ports[3]; fis.lba_mid_ex = req_task->hob_ports[4]; fis.lba_hi_ex = req_task->hob_ports[5]; fis.features_ex = req_task->hob_ports[1]; fis.sect_cnt_ex = req_task->hob_ports[2]; } else { req_task->in_flags.all = IDE_TASKFILE_STD_IN_FLAGS; } force_single_sector = implicit_sector(fis.command, fis.features); if ((taskin || taskout) && (!fis.sect_count)) { if (nsect) fis.sect_count = nsect; else { if (!force_single_sector) { dev_warn(&dd->pdev->dev, "data movement but " "sect_count is 0\n"); err = -EINVAL; goto abort; } } } dbg_printk(MTIP_DRV_NAME " %s: cmd %x, feat %x, nsect %x," " sect/lbal %x, lcyl/lbam %x, hcyl/lbah %x," " head/dev %x\n", __func__, fis.command, fis.features, fis.sect_count, fis.lba_low, fis.lba_mid, fis.lba_hi, fis.device); /* check for erase mode support during secure erase.*/ if ((fis.command == ATA_CMD_SEC_ERASE_UNIT) && outbuf && (outbuf[0] & MTIP_SEC_ERASE_MODE)) { erasemode = 1; } mtip_set_timeout(dd, &fis, &timeout, erasemode); /* Determine the correct transfer size.*/ if (force_single_sector) transfer_size = ATA_SECT_SIZE; else transfer_size = ATA_SECT_SIZE * fis.sect_count; /* Execute the command.*/ if (mtip_exec_internal_command(dd->port, &fis, 5, dma_buffer, transfer_size, 0, GFP_KERNEL, timeout) < 0) { err = -EIO; goto abort; } task_file_data = readl(dd->port->mmio+PORT_TFDATA); if ((req_task->data_phase == TASKFILE_IN) && !(task_file_data & 1)) { reply = dd->port->rxfis + RX_FIS_PIO_SETUP; req_task->io_ports[7] = reply->control; } else { reply = dd->port->rxfis + RX_FIS_D2H_REG; req_task->io_ports[7] = reply->command; } /* reclaim the DMA buffers.*/ if (inbuf_dma) pci_unmap_single(dd->pdev, inbuf_dma, taskin, DMA_FROM_DEVICE); if (outbuf_dma) pci_unmap_single(dd->pdev, outbuf_dma, taskout, DMA_TO_DEVICE); inbuf_dma = 0; outbuf_dma = 0; /* return the ATA registers to the caller.*/ req_task->io_ports[1] = reply->features; req_task->io_ports[2] = reply->sect_count; req_task->io_ports[3] = reply->lba_low; req_task->io_ports[4] = reply->lba_mid; req_task->io_ports[5] = reply->lba_hi; req_task->io_ports[6] = reply->device; if (req_task->out_flags.all & 1) { req_task->hob_ports[3] = reply->lba_low_ex; req_task->hob_ports[4] = reply->lba_mid_ex; req_task->hob_ports[5] = reply->lba_hi_ex; req_task->hob_ports[1] = reply->features_ex; req_task->hob_ports[2] = reply->sect_cnt_ex; } dbg_printk(MTIP_DRV_NAME " %s: Completion: stat %x," "err %x, sect_cnt %x, lbalo %x," "lbamid %x, lbahi %x, dev %x\n", __func__, req_task->io_ports[7], req_task->io_ports[1], req_task->io_ports[2], req_task->io_ports[3], req_task->io_ports[4], req_task->io_ports[5], req_task->io_ports[6]); if (taskout) { if (copy_to_user(buf + outtotal, outbuf, taskout)) { err = -EFAULT; goto abort; } } if (taskin) { if (copy_to_user(buf + intotal, inbuf, taskin)) { err = -EFAULT; goto abort; } } abort: if (inbuf_dma) pci_unmap_single(dd->pdev, inbuf_dma, taskin, DMA_FROM_DEVICE); if (outbuf_dma) pci_unmap_single(dd->pdev, outbuf_dma, taskout, DMA_TO_DEVICE); kfree(outbuf); kfree(inbuf); return err; } /* * Handle IOCTL calls from the Block Layer. * * This function is called by the Block Layer when it receives an IOCTL * command that it does not understand. If the IOCTL command is not supported * this function returns -ENOTTY. * * @dd Pointer to the driver data structure. * @cmd IOCTL command passed from the Block Layer. * @arg IOCTL argument passed from the Block Layer. * * return value * 0 The IOCTL completed successfully. * -ENOTTY The specified command is not supported. * -EFAULT An error occurred copying data to a user space buffer. * -EIO An error occurred while executing the command. */ static int mtip_hw_ioctl(struct driver_data *dd, unsigned int cmd, unsigned long arg) { switch (cmd) { case HDIO_GET_IDENTITY: { if (copy_to_user((void __user *)arg, dd->port->identify, sizeof(u16) * ATA_ID_WORDS)) return -EFAULT; break; } case HDIO_DRIVE_CMD: { u8 drive_command[4]; /* Copy the user command info to our buffer. */ if (copy_from_user(drive_command, (void __user *) arg, sizeof(drive_command))) return -EFAULT; /* Execute the drive command. */ if (exec_drive_command(dd->port, drive_command, (void __user *) (arg+4))) return -EIO; /* Copy the status back to the users buffer. */ if (copy_to_user((void __user *) arg, drive_command, sizeof(drive_command))) return -EFAULT; break; } case HDIO_DRIVE_TASK: { u8 drive_command[7]; /* Copy the user command info to our buffer. */ if (copy_from_user(drive_command, (void __user *) arg, sizeof(drive_command))) return -EFAULT; /* Execute the drive command. */ if (exec_drive_task(dd->port, drive_command)) return -EIO; /* Copy the status back to the users buffer. */ if (copy_to_user((void __user *) arg, drive_command, sizeof(drive_command))) return -EFAULT; break; } case HDIO_DRIVE_TASKFILE: { ide_task_request_t req_task; int ret, outtotal; if (copy_from_user(&req_task, (void __user *) arg, sizeof(req_task))) return -EFAULT; outtotal = sizeof(req_task); ret = exec_drive_taskfile(dd, (void __user *) arg, &req_task, outtotal); if (copy_to_user((void __user *) arg, &req_task, sizeof(req_task))) return -EFAULT; return ret; } default: return -EINVAL; } return 0; } /* * Submit an IO to the hw * * This function is called by the block layer to issue an io * to the device. Upon completion, the callback function will * be called with the data parameter passed as the callback data. * * @dd Pointer to the driver data structure. * @start First sector to read. * @nsect Number of sectors to read. * @nents Number of entries in scatter list for the read command. * @tag The tag of this read command. * @callback Pointer to the function that should be called * when the read completes. * @data Callback data passed to the callback function * when the read completes. * @dir Direction (read or write) * * return value * None */ static void mtip_hw_submit_io(struct driver_data *dd, struct request *rq, struct mtip_cmd *command, int nents, struct blk_mq_hw_ctx *hctx) { struct host_to_dev_fis *fis; struct mtip_port *port = dd->port; int dma_dir = rq_data_dir(rq) == READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE; u64 start = blk_rq_pos(rq); unsigned int nsect = blk_rq_sectors(rq); /* Map the scatter list for DMA access */ nents = dma_map_sg(&dd->pdev->dev, command->sg, nents, dma_dir); prefetch(&port->flags); command->scatter_ents = nents; /* * The number of retries for this command before it is * reported as a failure to the upper layers. */ command->retries = MTIP_MAX_RETRIES; /* Fill out fis */ fis = command->command; fis->type = 0x27; fis->opts = 1 << 7; if (dma_dir == DMA_FROM_DEVICE) fis->command = ATA_CMD_FPDMA_READ; else fis->command = ATA_CMD_FPDMA_WRITE; fis->lba_low = start & 0xFF; fis->lba_mid = (start >> 8) & 0xFF; fis->lba_hi = (start >> 16) & 0xFF; fis->lba_low_ex = (start >> 24) & 0xFF; fis->lba_mid_ex = (start >> 32) & 0xFF; fis->lba_hi_ex = (start >> 40) & 0xFF; fis->device = 1 << 6; fis->features = nsect & 0xFF; fis->features_ex = (nsect >> 8) & 0xFF; fis->sect_count = ((rq->tag << 3) | (rq->tag >> 5)); fis->sect_cnt_ex = 0; fis->control = 0; fis->res2 = 0; fis->res3 = 0; fill_command_sg(dd, command, nents); if (unlikely(command->unaligned)) fis->device |= 1 << 7; /* Populate the command header */ command->command_header->opts = __force_bit2int cpu_to_le32( (nents << 16) | 5 | AHCI_CMD_PREFETCH); command->command_header->byte_count = 0; /* * Set the completion function and data for the command * within this layer. */ command->comp_data = dd; command->comp_func = mtip_async_complete; command->direction = dma_dir; /* * To prevent this command from being issued * if an internal command is in progress or error handling is active. */ if (unlikely(port->flags & MTIP_PF_PAUSE_IO)) { set_bit(rq->tag, port->cmds_to_issue); set_bit(MTIP_PF_ISSUE_CMDS_BIT, &port->flags); return; } /* Issue the command to the hardware */ mtip_issue_ncq_command(port, rq->tag); } /* * Sysfs status dump. * * @dev Pointer to the device structure, passed by the kernrel. * @attr Pointer to the device_attribute structure passed by the kernel. * @buf Pointer to the char buffer that will receive the stats info. * * return value * The size, in bytes, of the data copied into buf. */ static ssize_t mtip_hw_show_status(struct device *dev, struct device_attribute *attr, char *buf) { struct driver_data *dd = dev_to_disk(dev)->private_data; int size = 0; if (test_bit(MTIP_DDF_OVER_TEMP_BIT, &dd->dd_flag)) size += sprintf(buf, "%s", "thermal_shutdown\n"); else if (test_bit(MTIP_DDF_WRITE_PROTECT_BIT, &dd->dd_flag)) size += sprintf(buf, "%s", "write_protect\n"); else size += sprintf(buf, "%s", "online\n"); return size; } static DEVICE_ATTR(status, S_IRUGO, mtip_hw_show_status, NULL); /* debugsfs entries */ static ssize_t show_device_status(struct device_driver *drv, char *buf) { int size = 0; struct driver_data *dd, *tmp; unsigned long flags; char id_buf[42]; u16 status = 0; spin_lock_irqsave(&dev_lock, flags); size += sprintf(&buf[size], "Devices Present:\n"); list_for_each_entry_safe(dd, tmp, &online_list, online_list) { if (dd->pdev) { if (dd->port && dd->port->identify && dd->port->identify_valid) { strlcpy(id_buf, (char *) (dd->port->identify + 10), 21); status = *(dd->port->identify + 141); } else { memset(id_buf, 0, 42); status = 0; } if (dd->port && test_bit(MTIP_PF_REBUILD_BIT, &dd->port->flags)) { size += sprintf(&buf[size], " device %s %s (ftl rebuild %d %%)\n", dev_name(&dd->pdev->dev), id_buf, status); } else { size += sprintf(&buf[size], " device %s %s\n", dev_name(&dd->pdev->dev), id_buf); } } } size += sprintf(&buf[size], "Devices Being Removed:\n"); list_for_each_entry_safe(dd, tmp, &removing_list, remove_list) { if (dd->pdev) { if (dd->port && dd->port->identify && dd->port->identify_valid) { strlcpy(id_buf, (char *) (dd->port->identify+10), 21); status = *(dd->port->identify + 141); } else { memset(id_buf, 0, 42); status = 0; } if (dd->port && test_bit(MTIP_PF_REBUILD_BIT, &dd->port->flags)) { size += sprintf(&buf[size], " device %s %s (ftl rebuild %d %%)\n", dev_name(&dd->pdev->dev), id_buf, status); } else { size += sprintf(&buf[size], " device %s %s\n", dev_name(&dd->pdev->dev), id_buf); } } } spin_unlock_irqrestore(&dev_lock, flags); return size; } static ssize_t mtip_hw_read_device_status(struct file *f, char __user *ubuf, size_t len, loff_t *offset) { struct driver_data *dd = (struct driver_data *)f->private_data; int size = *offset; char *buf; int rv = 0; if (!len || *offset) return 0; buf = kzalloc(MTIP_DFS_MAX_BUF_SIZE, GFP_KERNEL); if (!buf) { dev_err(&dd->pdev->dev, "Memory allocation: status buffer\n"); return -ENOMEM; } size += show_device_status(NULL, buf); *offset = size <= len ? size : len; size = copy_to_user(ubuf, buf, *offset); if (size) rv = -EFAULT; kfree(buf); return rv ? rv : *offset; } static ssize_t mtip_hw_read_registers(struct file *f, char __user *ubuf, size_t len, loff_t *offset) { struct driver_data *dd = (struct driver_data *)f->private_data; char *buf; u32 group_allocated; int size = *offset; int n, rv = 0; if (!len || size) return 0; buf = kzalloc(MTIP_DFS_MAX_BUF_SIZE, GFP_KERNEL); if (!buf) { dev_err(&dd->pdev->dev, "Memory allocation: register buffer\n"); return -ENOMEM; } size += sprintf(&buf[size], "H/ S ACTive : [ 0x"); for (n = dd->slot_groups-1; n >= 0; n--) size += sprintf(&buf[size], "%08X ", readl(dd->port->s_active[n])); size += sprintf(&buf[size], "]\n"); size += sprintf(&buf[size], "H/ Command Issue : [ 0x"); for (n = dd->slot_groups-1; n >= 0; n--) size += sprintf(&buf[size], "%08X ", readl(dd->port->cmd_issue[n])); size += sprintf(&buf[size], "]\n"); size += sprintf(&buf[size], "H/ Completed : [ 0x"); for (n = dd->slot_groups-1; n >= 0; n--) size += sprintf(&buf[size], "%08X ", readl(dd->port->completed[n])); size += sprintf(&buf[size], "]\n"); size += sprintf(&buf[size], "H/ PORT IRQ STAT : [ 0x%08X ]\n", readl(dd->port->mmio + PORT_IRQ_STAT)); size += sprintf(&buf[size], "H/ HOST IRQ STAT : [ 0x%08X ]\n", readl(dd->mmio + HOST_IRQ_STAT)); size += sprintf(&buf[size], "\n"); size += sprintf(&buf[size], "L/ Commands in Q : [ 0x"); for (n = dd->slot_groups-1; n >= 0; n--) { if (sizeof(long) > sizeof(u32)) group_allocated = dd->port->cmds_to_issue[n/2] >> (32*(n&1)); else group_allocated = dd->port->cmds_to_issue[n]; size += sprintf(&buf[size], "%08X ", group_allocated); } size += sprintf(&buf[size], "]\n"); *offset = size <= len ? size : len; size = copy_to_user(ubuf, buf, *offset); if (size) rv = -EFAULT; kfree(buf); return rv ? rv : *offset; } static ssize_t mtip_hw_read_flags(struct file *f, char __user *ubuf, size_t len, loff_t *offset) { struct driver_data *dd = (struct driver_data *)f->private_data; char *buf; int size = *offset; int rv = 0; if (!len || size) return 0; buf = kzalloc(MTIP_DFS_MAX_BUF_SIZE, GFP_KERNEL); if (!buf) { dev_err(&dd->pdev->dev, "Memory allocation: flag buffer\n"); return -ENOMEM; } size += sprintf(&buf[size], "Flag-port : [ %08lX ]\n", dd->port->flags); size += sprintf(&buf[size], "Flag-dd : [ %08lX ]\n", dd->dd_flag); *offset = size <= len ? size : len; size = copy_to_user(ubuf, buf, *offset); if (size) rv = -EFAULT; kfree(buf); return rv ? rv : *offset; } static const struct file_operations mtip_device_status_fops = { .owner = THIS_MODULE, .open = simple_open, .read = mtip_hw_read_device_status, .llseek = no_llseek, }; static const struct file_operations mtip_regs_fops = { .owner = THIS_MODULE, .open = simple_open, .read = mtip_hw_read_registers, .llseek = no_llseek, }; static const struct file_operations mtip_flags_fops = { .owner = THIS_MODULE, .open = simple_open, .read = mtip_hw_read_flags, .llseek = no_llseek, }; /* * Create the sysfs related attributes. * * @dd Pointer to the driver data structure. * @kobj Pointer to the kobj for the block device. * * return value * 0 Operation completed successfully. * -EINVAL Invalid parameter. */ static int mtip_hw_sysfs_init(struct driver_data *dd, struct kobject *kobj) { if (!kobj || !dd) return -EINVAL; if (sysfs_create_file(kobj, &dev_attr_status.attr)) dev_warn(&dd->pdev->dev, "Error creating 'status' sysfs entry\n"); return 0; } /* * Remove the sysfs related attributes. * * @dd Pointer to the driver data structure. * @kobj Pointer to the kobj for the block device. * * return value * 0 Operation completed successfully. * -EINVAL Invalid parameter. */ static int mtip_hw_sysfs_exit(struct driver_data *dd, struct kobject *kobj) { if (!kobj || !dd) return -EINVAL; sysfs_remove_file(kobj, &dev_attr_status.attr); return 0; } static int mtip_hw_debugfs_init(struct driver_data *dd) { if (!dfs_parent) return -1; dd->dfs_node = debugfs_create_dir(dd->disk->disk_name, dfs_parent); if (IS_ERR_OR_NULL(dd->dfs_node)) { dev_warn(&dd->pdev->dev, "Error creating node %s under debugfs\n", dd->disk->disk_name); dd->dfs_node = NULL; return -1; } debugfs_create_file("flags", S_IRUGO, dd->dfs_node, dd, &mtip_flags_fops); debugfs_create_file("registers", S_IRUGO, dd->dfs_node, dd, &mtip_regs_fops); return 0; } static void mtip_hw_debugfs_exit(struct driver_data *dd) { if (dd->dfs_node) debugfs_remove_recursive(dd->dfs_node); } /* * Perform any init/resume time hardware setup * * @dd Pointer to the driver data structure. * * return value * None */ static inline void hba_setup(struct driver_data *dd) { u32 hwdata; hwdata = readl(dd->mmio + HOST_HSORG); /* interrupt bug workaround: use only 1 IS bit.*/ writel(hwdata | HSORG_DISABLE_SLOTGRP_INTR | HSORG_DISABLE_SLOTGRP_PXIS, dd->mmio + HOST_HSORG); } static int mtip_device_unaligned_constrained(struct driver_data *dd) { return (dd->pdev->device == P420M_DEVICE_ID ? 1 : 0); } /* * Detect the details of the product, and store anything needed * into the driver data structure. This includes product type and * version and number of slot groups. * * @dd Pointer to the driver data structure. * * return value * None */ static void mtip_detect_product(struct driver_data *dd) { u32 hwdata; unsigned int rev, slotgroups; /* * HBA base + 0xFC [15:0] - vendor-specific hardware interface * info register: * [15:8] hardware/software interface rev# * [ 3] asic-style interface * [ 2:0] number of slot groups, minus 1 (only valid for asic-style). */ hwdata = readl(dd->mmio + HOST_HSORG); dd->product_type = MTIP_PRODUCT_UNKNOWN; dd->slot_groups = 1; if (hwdata & 0x8) { dd->product_type = MTIP_PRODUCT_ASICFPGA; rev = (hwdata & HSORG_HWREV) >> 8; slotgroups = (hwdata & HSORG_SLOTGROUPS) + 1; dev_info(&dd->pdev->dev, "ASIC-FPGA design, HS rev 0x%x, " "%i slot groups [%i slots]\n", rev, slotgroups, slotgroups * 32); if (slotgroups > MTIP_MAX_SLOT_GROUPS) { dev_warn(&dd->pdev->dev, "Warning: driver only supports " "%i slot groups.\n", MTIP_MAX_SLOT_GROUPS); slotgroups = MTIP_MAX_SLOT_GROUPS; } dd->slot_groups = slotgroups; return; } dev_warn(&dd->pdev->dev, "Unrecognized product id\n"); } /* * Blocking wait for FTL rebuild to complete * * @dd Pointer to the DRIVER_DATA structure. * * return value * 0 FTL rebuild completed successfully * -EFAULT FTL rebuild error/timeout/interruption */ static int mtip_ftl_rebuild_poll(struct driver_data *dd) { unsigned long timeout, cnt = 0, start; dev_warn(&dd->pdev->dev, "FTL rebuild in progress. Polling for completion.\n"); start = jiffies; timeout = jiffies + msecs_to_jiffies(MTIP_FTL_REBUILD_TIMEOUT_MS); do { if (unlikely(test_bit(MTIP_DDF_REMOVE_PENDING_BIT, &dd->dd_flag))) return -EFAULT; if (mtip_check_surprise_removal(dd->pdev)) return -EFAULT; if (mtip_get_identify(dd->port, NULL) < 0) return -EFAULT; if (*(dd->port->identify + MTIP_FTL_REBUILD_OFFSET) == MTIP_FTL_REBUILD_MAGIC) { ssleep(1); /* Print message every 3 minutes */ if (cnt++ >= 180) { dev_warn(&dd->pdev->dev, "FTL rebuild in progress (%d secs).\n", jiffies_to_msecs(jiffies - start) / 1000); cnt = 0; } } else { dev_warn(&dd->pdev->dev, "FTL rebuild complete (%d secs).\n", jiffies_to_msecs(jiffies - start) / 1000); mtip_block_initialize(dd); return 0; } } while (time_before(jiffies, timeout)); /* Check for timeout */ dev_err(&dd->pdev->dev, "Timed out waiting for FTL rebuild to complete (%d secs).\n", jiffies_to_msecs(jiffies - start) / 1000); return -EFAULT; } static void mtip_softirq_done_fn(struct request *rq) { struct mtip_cmd *cmd = blk_mq_rq_to_pdu(rq); struct driver_data *dd = rq->q->queuedata; /* Unmap the DMA scatter list entries */ dma_unmap_sg(&dd->pdev->dev, cmd->sg, cmd->scatter_ents, cmd->direction); if (unlikely(cmd->unaligned)) up(&dd->port->cmd_slot_unal); blk_mq_end_request(rq, rq->errors); } static void mtip_abort_cmd(struct request *req, void *data, bool reserved) { struct driver_data *dd = data; dbg_printk(MTIP_DRV_NAME " Aborting request, tag = %d\n", req->tag); clear_bit(req->tag, dd->port->cmds_to_issue); req->errors = -EIO; mtip_softirq_done_fn(req); } static void mtip_queue_cmd(struct request *req, void *data, bool reserved) { struct driver_data *dd = data; set_bit(req->tag, dd->port->cmds_to_issue); blk_abort_request(req); } /* * service thread to issue queued commands * * @data Pointer to the driver data structure. * * return value * 0 */ static int mtip_service_thread(void *data) { struct driver_data *dd = (struct driver_data *)data; unsigned long slot, slot_start, slot_wrap, to; unsigned int num_cmd_slots = dd->slot_groups * 32; struct mtip_port *port = dd->port; while (1) { if (kthread_should_stop() || test_bit(MTIP_PF_SVC_THD_STOP_BIT, &port->flags)) goto st_out; clear_bit(MTIP_PF_SVC_THD_ACTIVE_BIT, &port->flags); /* * the condition is to check neither an internal command is * is in progress nor error handling is active */ wait_event_interruptible(port->svc_wait, (port->flags) && (port->flags & MTIP_PF_SVC_THD_WORK)); if (kthread_should_stop() || test_bit(MTIP_PF_SVC_THD_STOP_BIT, &port->flags)) goto st_out; if (unlikely(test_bit(MTIP_DDF_REMOVE_PENDING_BIT, &dd->dd_flag))) goto st_out; set_bit(MTIP_PF_SVC_THD_ACTIVE_BIT, &port->flags); restart_eh: /* Demux bits: start with error handling */ if (test_bit(MTIP_PF_EH_ACTIVE_BIT, &port->flags)) { mtip_handle_tfe(dd); clear_bit(MTIP_PF_EH_ACTIVE_BIT, &port->flags); } if (test_bit(MTIP_PF_EH_ACTIVE_BIT, &port->flags)) goto restart_eh; if (test_bit(MTIP_PF_TO_ACTIVE_BIT, &port->flags)) { to = jiffies + msecs_to_jiffies(5000); do { mdelay(100); } while (atomic_read(&dd->irq_workers_active) != 0 && time_before(jiffies, to)); if (atomic_read(&dd->irq_workers_active) != 0) dev_warn(&dd->pdev->dev, "Completion workers still active!"); spin_lock(dd->queue->queue_lock); blk_mq_tagset_busy_iter(&dd->tags, mtip_queue_cmd, dd); spin_unlock(dd->queue->queue_lock); set_bit(MTIP_PF_ISSUE_CMDS_BIT, &dd->port->flags); if (mtip_device_reset(dd)) blk_mq_tagset_busy_iter(&dd->tags, mtip_abort_cmd, dd); clear_bit(MTIP_PF_TO_ACTIVE_BIT, &dd->port->flags); } if (test_bit(MTIP_PF_ISSUE_CMDS_BIT, &port->flags)) { slot = 1; /* used to restrict the loop to one iteration */ slot_start = num_cmd_slots; slot_wrap = 0; while (1) { slot = find_next_bit(port->cmds_to_issue, num_cmd_slots, slot); if (slot_wrap == 1) { if ((slot_start >= slot) || (slot >= num_cmd_slots)) break; } if (unlikely(slot_start == num_cmd_slots)) slot_start = slot; if (unlikely(slot == num_cmd_slots)) { slot = 1; slot_wrap = 1; continue; } /* Issue the command to the hardware */ mtip_issue_ncq_command(port, slot); clear_bit(slot, port->cmds_to_issue); } clear_bit(MTIP_PF_ISSUE_CMDS_BIT, &port->flags); } if (test_bit(MTIP_PF_REBUILD_BIT, &port->flags)) { if (mtip_ftl_rebuild_poll(dd) == 0) clear_bit(MTIP_PF_REBUILD_BIT, &port->flags); } } st_out: return 0; } /* * DMA region teardown * * @dd Pointer to driver_data structure * * return value * None */ static void mtip_dma_free(struct driver_data *dd) { struct mtip_port *port = dd->port; if (port->block1) dmam_free_coherent(&dd->pdev->dev, BLOCK_DMA_ALLOC_SZ, port->block1, port->block1_dma); if (port->command_list) { dmam_free_coherent(&dd->pdev->dev, AHCI_CMD_TBL_SZ, port->command_list, port->command_list_dma); } } /* * DMA region setup * * @dd Pointer to driver_data structure * * return value * -ENOMEM Not enough free DMA region space to initialize driver */ static int mtip_dma_alloc(struct driver_data *dd) { struct mtip_port *port = dd->port; /* Allocate dma memory for RX Fis, Identify, and Sector Bufffer */ port->block1 = dmam_alloc_coherent(&dd->pdev->dev, BLOCK_DMA_ALLOC_SZ, &port->block1_dma, GFP_KERNEL); if (!port->block1) return -ENOMEM; memset(port->block1, 0, BLOCK_DMA_ALLOC_SZ); /* Allocate dma memory for command list */ port->command_list = dmam_alloc_coherent(&dd->pdev->dev, AHCI_CMD_TBL_SZ, &port->command_list_dma, GFP_KERNEL); if (!port->command_list) { dmam_free_coherent(&dd->pdev->dev, BLOCK_DMA_ALLOC_SZ, port->block1, port->block1_dma); port->block1 = NULL; port->block1_dma = 0; return -ENOMEM; } memset(port->command_list, 0, AHCI_CMD_TBL_SZ); /* Setup all pointers into first DMA region */ port->rxfis = port->block1 + AHCI_RX_FIS_OFFSET; port->rxfis_dma = port->block1_dma + AHCI_RX_FIS_OFFSET; port->identify = port->block1 + AHCI_IDFY_OFFSET; port->identify_dma = port->block1_dma + AHCI_IDFY_OFFSET; port->log_buf = port->block1 + AHCI_SECTBUF_OFFSET; port->log_buf_dma = port->block1_dma + AHCI_SECTBUF_OFFSET; port->smart_buf = port->block1 + AHCI_SMARTBUF_OFFSET; port->smart_buf_dma = port->block1_dma + AHCI_SMARTBUF_OFFSET; return 0; } static int mtip_hw_get_identify(struct driver_data *dd) { struct smart_attr attr242; unsigned char *buf; int rv; if (mtip_get_identify(dd->port, NULL) < 0) return -EFAULT; if (*(dd->port->identify + MTIP_FTL_REBUILD_OFFSET) == MTIP_FTL_REBUILD_MAGIC) { set_bit(MTIP_PF_REBUILD_BIT, &dd->port->flags); return MTIP_FTL_REBUILD_MAGIC; } mtip_dump_identify(dd->port); /* check write protect, over temp and rebuild statuses */ rv = mtip_read_log_page(dd->port, ATA_LOG_SATA_NCQ, dd->port->log_buf, dd->port->log_buf_dma, 1); if (rv) { dev_warn(&dd->pdev->dev, "Error in READ LOG EXT (10h) command\n"); /* non-critical error, don't fail the load */ } else { buf = (unsigned char *)dd->port->log_buf; if (buf[259] & 0x1) { dev_info(&dd->pdev->dev, "Write protect bit is set.\n"); set_bit(MTIP_DDF_WRITE_PROTECT_BIT, &dd->dd_flag); } if (buf[288] == 0xF7) { dev_info(&dd->pdev->dev, "Exceeded Tmax, drive in thermal shutdown.\n"); set_bit(MTIP_DDF_OVER_TEMP_BIT, &dd->dd_flag); } if (buf[288] == 0xBF) { dev_info(&dd->pdev->dev, "Drive indicates rebuild has failed.\n"); set_bit(MTIP_DDF_REBUILD_FAILED_BIT, &dd->dd_flag); } } /* get write protect progess */ memset(&attr242, 0, sizeof(struct smart_attr)); if (mtip_get_smart_attr(dd->port, 242, &attr242)) dev_warn(&dd->pdev->dev, "Unable to check write protect progress\n"); else dev_info(&dd->pdev->dev, "Write protect progress: %u%% (%u blocks)\n", attr242.cur, le32_to_cpu(attr242.data)); return rv; } /* * Called once for each card. * * @dd Pointer to the driver data structure. * * return value * 0 on success, else an error code. */ static int mtip_hw_init(struct driver_data *dd) { int i; int rv; unsigned int num_command_slots; unsigned long timeout, timetaken; dd->mmio = pcim_iomap_table(dd->pdev)[MTIP_ABAR]; mtip_detect_product(dd); if (dd->product_type == MTIP_PRODUCT_UNKNOWN) { rv = -EIO; goto out1; } num_command_slots = dd->slot_groups * 32; hba_setup(dd); dd->port = kzalloc_node(sizeof(struct mtip_port), GFP_KERNEL, dd->numa_node); if (!dd->port) { dev_err(&dd->pdev->dev, "Memory allocation: port structure\n"); return -ENOMEM; } /* Continue workqueue setup */ for (i = 0; i < MTIP_MAX_SLOT_GROUPS; i++) dd->work[i].port = dd->port; /* Enable unaligned IO constraints for some devices */ if (mtip_device_unaligned_constrained(dd)) dd->unal_qdepth = MTIP_MAX_UNALIGNED_SLOTS; else dd->unal_qdepth = 0; sema_init(&dd->port->cmd_slot_unal, dd->unal_qdepth); /* Spinlock to prevent concurrent issue */ for (i = 0; i < MTIP_MAX_SLOT_GROUPS; i++) spin_lock_init(&dd->port->cmd_issue_lock[i]); /* Set the port mmio base address. */ dd->port->mmio = dd->mmio + PORT_OFFSET; dd->port->dd = dd; /* DMA allocations */ rv = mtip_dma_alloc(dd); if (rv < 0) goto out1; /* Setup the pointers to the extended s_active and CI registers. */ for (i = 0; i < dd->slot_groups; i++) { dd->port->s_active[i] = dd->port->mmio + i*0x80 + PORT_SCR_ACT; dd->port->cmd_issue[i] = dd->port->mmio + i*0x80 + PORT_COMMAND_ISSUE; dd->port->completed[i] = dd->port->mmio + i*0x80 + PORT_SDBV; } timetaken = jiffies; timeout = jiffies + msecs_to_jiffies(30000); while (((readl(dd->port->mmio + PORT_SCR_STAT) & 0x0F) != 0x03) && time_before(jiffies, timeout)) { mdelay(100); } if (unlikely(mtip_check_surprise_removal(dd->pdev))) { timetaken = jiffies - timetaken; dev_warn(&dd->pdev->dev, "Surprise removal detected at %u ms\n", jiffies_to_msecs(timetaken)); rv = -ENODEV; goto out2 ; } if (unlikely(test_bit(MTIP_DDF_REMOVE_PENDING_BIT, &dd->dd_flag))) { timetaken = jiffies - timetaken; dev_warn(&dd->pdev->dev, "Removal detected at %u ms\n", jiffies_to_msecs(timetaken)); rv = -EFAULT; goto out2; } /* Conditionally reset the HBA. */ if (!(readl(dd->mmio + HOST_CAP) & HOST_CAP_NZDMA)) { if (mtip_hba_reset(dd) < 0) { dev_err(&dd->pdev->dev, "Card did not reset within timeout\n"); rv = -EIO; goto out2; } } else { /* Clear any pending interrupts on the HBA */ writel(readl(dd->mmio + HOST_IRQ_STAT), dd->mmio + HOST_IRQ_STAT); } mtip_init_port(dd->port); mtip_start_port(dd->port); /* Setup the ISR and enable interrupts. */ rv = devm_request_irq(&dd->pdev->dev, dd->pdev->irq, mtip_irq_handler, IRQF_SHARED, dev_driver_string(&dd->pdev->dev), dd); if (rv) { dev_err(&dd->pdev->dev, "Unable to allocate IRQ %d\n", dd->pdev->irq); goto out2; } irq_set_affinity_hint(dd->pdev->irq, get_cpu_mask(dd->isr_binding)); /* Enable interrupts on the HBA. */ writel(readl(dd->mmio + HOST_CTL) | HOST_IRQ_EN, dd->mmio + HOST_CTL); init_waitqueue_head(&dd->port->svc_wait); if (test_bit(MTIP_DDF_REMOVE_PENDING_BIT, &dd->dd_flag)) { rv = -EFAULT; goto out3; } return rv; out3: /* Disable interrupts on the HBA. */ writel(readl(dd->mmio + HOST_CTL) & ~HOST_IRQ_EN, dd->mmio + HOST_CTL); /* Release the IRQ. */ irq_set_affinity_hint(dd->pdev->irq, NULL); devm_free_irq(&dd->pdev->dev, dd->pdev->irq, dd); out2: mtip_deinit_port(dd->port); mtip_dma_free(dd); out1: /* Free the memory allocated for the for structure. */ kfree(dd->port); return rv; } static int mtip_standby_drive(struct driver_data *dd) { int rv = 0; if (dd->sr || !dd->port) return -ENODEV; /* * Send standby immediate (E0h) to the drive so that it * saves its state. */ if (!test_bit(MTIP_PF_REBUILD_BIT, &dd->port->flags) && !test_bit(MTIP_DDF_REBUILD_FAILED_BIT, &dd->dd_flag) && !test_bit(MTIP_DDF_SEC_LOCK_BIT, &dd->dd_flag)) { rv = mtip_standby_immediate(dd->port); if (rv) dev_warn(&dd->pdev->dev, "STANDBY IMMEDIATE failed\n"); } return rv; } /* * Called to deinitialize an interface. * * @dd Pointer to the driver data structure. * * return value * 0 */ static int mtip_hw_exit(struct driver_data *dd) { if (!dd->sr) { /* de-initialize the port. */ mtip_deinit_port(dd->port); /* Disable interrupts on the HBA. */ writel(readl(dd->mmio + HOST_CTL) & ~HOST_IRQ_EN, dd->mmio + HOST_CTL); } /* Release the IRQ. */ irq_set_affinity_hint(dd->pdev->irq, NULL); devm_free_irq(&dd->pdev->dev, dd->pdev->irq, dd); msleep(1000); /* Free dma regions */ mtip_dma_free(dd); /* Free the memory allocated for the for structure. */ kfree(dd->port); dd->port = NULL; return 0; } /* * Issue a Standby Immediate command to the device. * * This function is called by the Block Layer just before the * system powers off during a shutdown. * * @dd Pointer to the driver data structure. * * return value * 0 */ static int mtip_hw_shutdown(struct driver_data *dd) { /* * Send standby immediate (E0h) to the drive so that it * saves its state. */ mtip_standby_drive(dd); return 0; } /* * Suspend function * * This function is called by the Block Layer just before the * system hibernates. * * @dd Pointer to the driver data structure. * * return value * 0 Suspend was successful * -EFAULT Suspend was not successful */ static int mtip_hw_suspend(struct driver_data *dd) { /* * Send standby immediate (E0h) to the drive * so that it saves its state. */ if (mtip_standby_drive(dd) != 0) { dev_err(&dd->pdev->dev, "Failed standby-immediate command\n"); return -EFAULT; } /* Disable interrupts on the HBA.*/ writel(readl(dd->mmio + HOST_CTL) & ~HOST_IRQ_EN, dd->mmio + HOST_CTL); mtip_deinit_port(dd->port); return 0; } /* * Resume function * * This function is called by the Block Layer as the * system resumes. * * @dd Pointer to the driver data structure. * * return value * 0 Resume was successful * -EFAULT Resume was not successful */ static int mtip_hw_resume(struct driver_data *dd) { /* Perform any needed hardware setup steps */ hba_setup(dd); /* Reset the HBA */ if (mtip_hba_reset(dd) != 0) { dev_err(&dd->pdev->dev, "Unable to reset the HBA\n"); return -EFAULT; } /* * Enable the port, DMA engine, and FIS reception specific * h/w in controller. */ mtip_init_port(dd->port); mtip_start_port(dd->port); /* Enable interrupts on the HBA.*/ writel(readl(dd->mmio + HOST_CTL) | HOST_IRQ_EN, dd->mmio + HOST_CTL); return 0; } /* * Helper function for reusing disk name * upon hot insertion. */ static int rssd_disk_name_format(char *prefix, int index, char *buf, int buflen) { const int base = 'z' - 'a' + 1; char *begin = buf + strlen(prefix); char *end = buf + buflen; char *p; int unit; p = end - 1; *p = '\0'; unit = base; do { if (p == begin) return -EINVAL; *--p = 'a' + (index % unit); index = (index / unit) - 1; } while (index >= 0); memmove(begin, p, end - p); memcpy(buf, prefix, strlen(prefix)); return 0; } /* * Block layer IOCTL handler. * * @dev Pointer to the block_device structure. * @mode ignored * @cmd IOCTL command passed from the user application. * @arg Argument passed from the user application. * * return value * 0 IOCTL completed successfully. * -ENOTTY IOCTL not supported or invalid driver data * structure pointer. */ static int mtip_block_ioctl(struct block_device *dev, fmode_t mode, unsigned cmd, unsigned long arg) { struct driver_data *dd = dev->bd_disk->private_data; if (!capable(CAP_SYS_ADMIN)) return -EACCES; if (!dd) return -ENOTTY; if (unlikely(test_bit(MTIP_DDF_REMOVE_PENDING_BIT, &dd->dd_flag))) return -ENOTTY; switch (cmd) { case BLKFLSBUF: return -ENOTTY; default: return mtip_hw_ioctl(dd, cmd, arg); } } #ifdef CONFIG_COMPAT /* * Block layer compat IOCTL handler. * * @dev Pointer to the block_device structure. * @mode ignored * @cmd IOCTL command passed from the user application. * @arg Argument passed from the user application. * * return value * 0 IOCTL completed successfully. * -ENOTTY IOCTL not supported or invalid driver data * structure pointer. */ static int mtip_block_compat_ioctl(struct block_device *dev, fmode_t mode, unsigned cmd, unsigned long arg) { struct driver_data *dd = dev->bd_disk->private_data; if (!capable(CAP_SYS_ADMIN)) return -EACCES; if (!dd) return -ENOTTY; if (unlikely(test_bit(MTIP_DDF_REMOVE_PENDING_BIT, &dd->dd_flag))) return -ENOTTY; switch (cmd) { case BLKFLSBUF: return -ENOTTY; case HDIO_DRIVE_TASKFILE: { struct mtip_compat_ide_task_request_s __user *compat_req_task; ide_task_request_t req_task; int compat_tasksize, outtotal, ret; compat_tasksize = sizeof(struct mtip_compat_ide_task_request_s); compat_req_task = (struct mtip_compat_ide_task_request_s __user *) arg; if (copy_from_user(&req_task, (void __user *) arg, compat_tasksize - (2 * sizeof(compat_long_t)))) return -EFAULT; if (get_user(req_task.out_size, &compat_req_task->out_size)) return -EFAULT; if (get_user(req_task.in_size, &compat_req_task->in_size)) return -EFAULT; outtotal = sizeof(struct mtip_compat_ide_task_request_s); ret = exec_drive_taskfile(dd, (void __user *) arg, &req_task, outtotal); if (copy_to_user((void __user *) arg, &req_task, compat_tasksize - (2 * sizeof(compat_long_t)))) return -EFAULT; if (put_user(req_task.out_size, &compat_req_task->out_size)) return -EFAULT; if (put_user(req_task.in_size, &compat_req_task->in_size)) return -EFAULT; return ret; } default: return mtip_hw_ioctl(dd, cmd, arg); } } #endif /* * Obtain the geometry of the device. * * You may think that this function is obsolete, but some applications, * fdisk for example still used CHS values. This function describes the * device as having 224 heads and 56 sectors per cylinder. These values are * chosen so that each cylinder is aligned on a 4KB boundary. Since a * partition is described in terms of a start and end cylinder this means * that each partition is also 4KB aligned. Non-aligned partitions adversely * affects performance. * * @dev Pointer to the block_device strucutre. * @geo Pointer to a hd_geometry structure. * * return value * 0 Operation completed successfully. * -ENOTTY An error occurred while reading the drive capacity. */ static int mtip_block_getgeo(struct block_device *dev, struct hd_geometry *geo) { struct driver_data *dd = dev->bd_disk->private_data; sector_t capacity; if (!dd) return -ENOTTY; if (!(mtip_hw_get_capacity(dd, &capacity))) { dev_warn(&dd->pdev->dev, "Could not get drive capacity.\n"); return -ENOTTY; } geo->heads = 224; geo->sectors = 56; sector_div(capacity, (geo->heads * geo->sectors)); geo->cylinders = capacity; return 0; } static int mtip_block_open(struct block_device *dev, fmode_t mode) { struct driver_data *dd; if (dev && dev->bd_disk) { dd = (struct driver_data *) dev->bd_disk->private_data; if (dd) { if (test_bit(MTIP_DDF_REMOVAL_BIT, &dd->dd_flag)) { return -ENODEV; } return 0; } } return -ENODEV; } static void mtip_block_release(struct gendisk *disk, fmode_t mode) { } /* * Block device operation function. * * This structure contains pointers to the functions required by the block * layer. */ static const struct block_device_operations mtip_block_ops = { .open = mtip_block_open, .release = mtip_block_release, .ioctl = mtip_block_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = mtip_block_compat_ioctl, #endif .getgeo = mtip_block_getgeo, .owner = THIS_MODULE }; static inline bool is_se_active(struct driver_data *dd) { if (unlikely(test_bit(MTIP_PF_SE_ACTIVE_BIT, &dd->port->flags))) { if (dd->port->ic_pause_timer) { unsigned long to = dd->port->ic_pause_timer + msecs_to_jiffies(1000); if (time_after(jiffies, to)) { clear_bit(MTIP_PF_SE_ACTIVE_BIT, &dd->port->flags); clear_bit(MTIP_DDF_SEC_LOCK_BIT, &dd->dd_flag); dd->port->ic_pause_timer = 0; wake_up_interruptible(&dd->port->svc_wait); return false; } } return true; } return false; } /* * Block layer make request function. * * This function is called by the kernel to process a BIO for * the P320 device. * * @queue Pointer to the request queue. Unused other than to obtain * the driver data structure. * @rq Pointer to the request. * */ static int mtip_submit_request(struct blk_mq_hw_ctx *hctx, struct request *rq) { struct driver_data *dd = hctx->queue->queuedata; struct mtip_cmd *cmd = blk_mq_rq_to_pdu(rq); unsigned int nents; if (is_se_active(dd)) return -ENODATA; if (unlikely(dd->dd_flag & MTIP_DDF_STOP_IO)) { if (unlikely(test_bit(MTIP_DDF_REMOVE_PENDING_BIT, &dd->dd_flag))) { return -ENXIO; } if (unlikely(test_bit(MTIP_DDF_OVER_TEMP_BIT, &dd->dd_flag))) { return -ENODATA; } if (unlikely(test_bit(MTIP_DDF_WRITE_PROTECT_BIT, &dd->dd_flag) && rq_data_dir(rq))) { return -ENODATA; } if (unlikely(test_bit(MTIP_DDF_SEC_LOCK_BIT, &dd->dd_flag) || test_bit(MTIP_DDF_REBUILD_FAILED_BIT, &dd->dd_flag))) return -ENODATA; } if (req_op(rq) == REQ_OP_DISCARD) { int err; err = mtip_send_trim(dd, blk_rq_pos(rq), blk_rq_sectors(rq)); blk_mq_end_request(rq, err); return 0; } /* Create the scatter list for this request. */ nents = blk_rq_map_sg(hctx->queue, rq, cmd->sg); /* Issue the read/write. */ mtip_hw_submit_io(dd, rq, cmd, nents, hctx); return 0; } static bool mtip_check_unal_depth(struct blk_mq_hw_ctx *hctx, struct request *rq) { struct driver_data *dd = hctx->queue->queuedata; struct mtip_cmd *cmd = blk_mq_rq_to_pdu(rq); if (rq_data_dir(rq) == READ || !dd->unal_qdepth) return false; /* * If unaligned depth must be limited on this controller, mark it * as unaligned if the IO isn't on a 4k boundary (start of length). */ if (blk_rq_sectors(rq) <= 64) { if ((blk_rq_pos(rq) & 7) || (blk_rq_sectors(rq) & 7)) cmd->unaligned = 1; } if (cmd->unaligned && down_trylock(&dd->port->cmd_slot_unal)) return true; return false; } static int mtip_queue_rq(struct blk_mq_hw_ctx *hctx, const struct blk_mq_queue_data *bd) { struct request *rq = bd->rq; int ret; if (unlikely(mtip_check_unal_depth(hctx, rq))) return BLK_MQ_RQ_QUEUE_BUSY; blk_mq_start_request(rq); ret = mtip_submit_request(hctx, rq); if (likely(!ret)) return BLK_MQ_RQ_QUEUE_OK; rq->errors = ret; return BLK_MQ_RQ_QUEUE_ERROR; } static void mtip_free_cmd(void *data, struct request *rq, unsigned int hctx_idx, unsigned int request_idx) { struct driver_data *dd = data; struct mtip_cmd *cmd = blk_mq_rq_to_pdu(rq); if (!cmd->command) return; dmam_free_coherent(&dd->pdev->dev, CMD_DMA_ALLOC_SZ, cmd->command, cmd->command_dma); } static int mtip_init_cmd(void *data, struct request *rq, unsigned int hctx_idx, unsigned int request_idx, unsigned int numa_node) { struct driver_data *dd = data; struct mtip_cmd *cmd = blk_mq_rq_to_pdu(rq); u32 host_cap_64 = readl(dd->mmio + HOST_CAP) & HOST_CAP_64; /* * For flush requests, request_idx starts at the end of the * tag space. Since we don't support FLUSH/FUA, simply return * 0 as there's nothing to be done. */ if (request_idx >= MTIP_MAX_COMMAND_SLOTS) return 0; cmd->command = dmam_alloc_coherent(&dd->pdev->dev, CMD_DMA_ALLOC_SZ, &cmd->command_dma, GFP_KERNEL); if (!cmd->command) return -ENOMEM; memset(cmd->command, 0, CMD_DMA_ALLOC_SZ); /* Point the command headers at the command tables. */ cmd->command_header = dd->port->command_list + (sizeof(struct mtip_cmd_hdr) * request_idx); cmd->command_header_dma = dd->port->command_list_dma + (sizeof(struct mtip_cmd_hdr) * request_idx); if (host_cap_64) cmd->command_header->ctbau = __force_bit2int cpu_to_le32((cmd->command_dma >> 16) >> 16); cmd->command_header->ctba = __force_bit2int cpu_to_le32(cmd->command_dma & 0xFFFFFFFF); sg_init_table(cmd->sg, MTIP_MAX_SG); return 0; } static enum blk_eh_timer_return mtip_cmd_timeout(struct request *req, bool reserved) { struct driver_data *dd = req->q->queuedata; if (reserved) goto exit_handler; if (test_bit(req->tag, dd->port->cmds_to_issue)) goto exit_handler; if (test_and_set_bit(MTIP_PF_TO_ACTIVE_BIT, &dd->port->flags)) goto exit_handler; wake_up_interruptible(&dd->port->svc_wait); exit_handler: return BLK_EH_RESET_TIMER; } static struct blk_mq_ops mtip_mq_ops = { .queue_rq = mtip_queue_rq, .init_request = mtip_init_cmd, .exit_request = mtip_free_cmd, .complete = mtip_softirq_done_fn, .timeout = mtip_cmd_timeout, }; /* * Block layer initialization function. * * This function is called once by the PCI layer for each P320 * device that is connected to the system. * * @dd Pointer to the driver data structure. * * return value * 0 on success else an error code. */ static int mtip_block_initialize(struct driver_data *dd) { int rv = 0, wait_for_rebuild = 0; sector_t capacity; unsigned int index = 0; struct kobject *kobj; if (dd->disk) goto skip_create_disk; /* hw init done, before rebuild */ if (mtip_hw_init(dd)) { rv = -EINVAL; goto protocol_init_error; } dd->disk = alloc_disk_node(MTIP_MAX_MINORS, dd->numa_node); if (dd->disk == NULL) { dev_err(&dd->pdev->dev, "Unable to allocate gendisk structure\n"); rv = -EINVAL; goto alloc_disk_error; } /* Generate the disk name, implemented same as in sd.c */ do { if (!ida_pre_get(&rssd_index_ida, GFP_KERNEL)) { rv = -ENOMEM; goto ida_get_error; } spin_lock(&rssd_index_lock); rv = ida_get_new(&rssd_index_ida, &index); spin_unlock(&rssd_index_lock); } while (rv == -EAGAIN); if (rv) goto ida_get_error; rv = rssd_disk_name_format("rssd", index, dd->disk->disk_name, DISK_NAME_LEN); if (rv) goto disk_index_error; dd->disk->major = dd->major; dd->disk->first_minor = index * MTIP_MAX_MINORS; dd->disk->minors = MTIP_MAX_MINORS; dd->disk->fops = &mtip_block_ops; dd->disk->private_data = dd; dd->index = index; mtip_hw_debugfs_init(dd); memset(&dd->tags, 0, sizeof(dd->tags)); dd->tags.ops = &mtip_mq_ops; dd->tags.nr_hw_queues = 1; dd->tags.queue_depth = MTIP_MAX_COMMAND_SLOTS; dd->tags.reserved_tags = 1; dd->tags.cmd_size = sizeof(struct mtip_cmd); dd->tags.numa_node = dd->numa_node; dd->tags.flags = BLK_MQ_F_SHOULD_MERGE; dd->tags.driver_data = dd; dd->tags.timeout = MTIP_NCQ_CMD_TIMEOUT_MS; rv = blk_mq_alloc_tag_set(&dd->tags); if (rv) { dev_err(&dd->pdev->dev, "Unable to allocate request queue\n"); goto block_queue_alloc_tag_error; } /* Allocate the request queue. */ dd->queue = blk_mq_init_queue(&dd->tags); if (IS_ERR(dd->queue)) { dev_err(&dd->pdev->dev, "Unable to allocate request queue\n"); rv = -ENOMEM; goto block_queue_alloc_init_error; } dd->disk->queue = dd->queue; dd->queue->queuedata = dd; skip_create_disk: /* Initialize the protocol layer. */ wait_for_rebuild = mtip_hw_get_identify(dd); if (wait_for_rebuild < 0) { dev_err(&dd->pdev->dev, "Protocol layer initialization failed\n"); rv = -EINVAL; goto init_hw_cmds_error; } /* * if rebuild pending, start the service thread, and delay the block * queue creation and device_add_disk() */ if (wait_for_rebuild == MTIP_FTL_REBUILD_MAGIC) goto start_service_thread; /* Set device limits. */ set_bit(QUEUE_FLAG_NONROT, &dd->queue->queue_flags); clear_bit(QUEUE_FLAG_ADD_RANDOM, &dd->queue->queue_flags); blk_queue_max_segments(dd->queue, MTIP_MAX_SG); blk_queue_physical_block_size(dd->queue, 4096); blk_queue_max_hw_sectors(dd->queue, 0xffff); blk_queue_max_segment_size(dd->queue, 0x400000); blk_queue_io_min(dd->queue, 4096); blk_queue_bounce_limit(dd->queue, dd->pdev->dma_mask); /* Signal trim support */ if (dd->trim_supp == true) { set_bit(QUEUE_FLAG_DISCARD, &dd->queue->queue_flags); dd->queue->limits.discard_granularity = 4096; blk_queue_max_discard_sectors(dd->queue, MTIP_MAX_TRIM_ENTRY_LEN * MTIP_MAX_TRIM_ENTRIES); dd->queue->limits.discard_zeroes_data = 0; } /* Set the capacity of the device in 512 byte sectors. */ if (!(mtip_hw_get_capacity(dd, &capacity))) { dev_warn(&dd->pdev->dev, "Could not read drive capacity\n"); rv = -EIO; goto read_capacity_error; } set_capacity(dd->disk, capacity); /* Enable the block device and add it to /dev */ device_add_disk(&dd->pdev->dev, dd->disk); dd->bdev = bdget_disk(dd->disk, 0); /* * Now that the disk is active, initialize any sysfs attributes * managed by the protocol layer. */ kobj = kobject_get(&disk_to_dev(dd->disk)->kobj); if (kobj) { mtip_hw_sysfs_init(dd, kobj); kobject_put(kobj); } if (dd->mtip_svc_handler) { set_bit(MTIP_DDF_INIT_DONE_BIT, &dd->dd_flag); return rv; /* service thread created for handling rebuild */ } start_service_thread: dd->mtip_svc_handler = kthread_create_on_node(mtip_service_thread, dd, dd->numa_node, "mtip_svc_thd_%02d", index); if (IS_ERR(dd->mtip_svc_handler)) { dev_err(&dd->pdev->dev, "service thread failed to start\n"); dd->mtip_svc_handler = NULL; rv = -EFAULT; goto kthread_run_error; } wake_up_process(dd->mtip_svc_handler); if (wait_for_rebuild == MTIP_FTL_REBUILD_MAGIC) rv = wait_for_rebuild; return rv; kthread_run_error: bdput(dd->bdev); dd->bdev = NULL; /* Delete our gendisk. This also removes the device from /dev */ del_gendisk(dd->disk); read_capacity_error: init_hw_cmds_error: blk_cleanup_queue(dd->queue); block_queue_alloc_init_error: blk_mq_free_tag_set(&dd->tags); block_queue_alloc_tag_error: mtip_hw_debugfs_exit(dd); disk_index_error: spin_lock(&rssd_index_lock); ida_remove(&rssd_index_ida, index); spin_unlock(&rssd_index_lock); ida_get_error: put_disk(dd->disk); alloc_disk_error: mtip_hw_exit(dd); /* De-initialize the protocol layer. */ protocol_init_error: return rv; } static void mtip_no_dev_cleanup(struct request *rq, void *data, bool reserv) { struct driver_data *dd = (struct driver_data *)data; struct mtip_cmd *cmd; if (likely(!reserv)) blk_mq_complete_request(rq, -ENODEV); else if (test_bit(MTIP_PF_IC_ACTIVE_BIT, &dd->port->flags)) { cmd = mtip_cmd_from_tag(dd, MTIP_TAG_INTERNAL); if (cmd->comp_func) cmd->comp_func(dd->port, MTIP_TAG_INTERNAL, cmd, -ENODEV); } } /* * Block layer deinitialization function. * * Called by the PCI layer as each P320 device is removed. * * @dd Pointer to the driver data structure. * * return value * 0 */ static int mtip_block_remove(struct driver_data *dd) { struct kobject *kobj; mtip_hw_debugfs_exit(dd); if (dd->mtip_svc_handler) { set_bit(MTIP_PF_SVC_THD_STOP_BIT, &dd->port->flags); wake_up_interruptible(&dd->port->svc_wait); kthread_stop(dd->mtip_svc_handler); } /* Clean up the sysfs attributes, if created */ if (test_bit(MTIP_DDF_INIT_DONE_BIT, &dd->dd_flag)) { kobj = kobject_get(&disk_to_dev(dd->disk)->kobj); if (kobj) { mtip_hw_sysfs_exit(dd, kobj); kobject_put(kobj); } } if (!dd->sr) { /* * Explicitly wait here for IOs to quiesce, * as mtip_standby_drive usually won't wait for IOs. */ if (!mtip_quiesce_io(dd->port, MTIP_QUIESCE_IO_TIMEOUT_MS, GFP_KERNEL)) mtip_standby_drive(dd); } else dev_info(&dd->pdev->dev, "device %s surprise removal\n", dd->disk->disk_name); blk_freeze_queue_start(dd->queue); blk_mq_stop_hw_queues(dd->queue); blk_mq_tagset_busy_iter(&dd->tags, mtip_no_dev_cleanup, dd); /* * Delete our gendisk structure. This also removes the device * from /dev */ if (dd->bdev) { bdput(dd->bdev); dd->bdev = NULL; } if (dd->disk) { if (test_bit(MTIP_DDF_INIT_DONE_BIT, &dd->dd_flag)) del_gendisk(dd->disk); if (dd->disk->queue) { blk_cleanup_queue(dd->queue); blk_mq_free_tag_set(&dd->tags); dd->queue = NULL; } put_disk(dd->disk); } dd->disk = NULL; spin_lock(&rssd_index_lock); ida_remove(&rssd_index_ida, dd->index); spin_unlock(&rssd_index_lock); /* De-initialize the protocol layer. */ mtip_hw_exit(dd); return 0; } /* * Function called by the PCI layer when just before the * machine shuts down. * * If a protocol layer shutdown function is present it will be called * by this function. * * @dd Pointer to the driver data structure. * * return value * 0 */ static int mtip_block_shutdown(struct driver_data *dd) { mtip_hw_shutdown(dd); /* Delete our gendisk structure, and cleanup the blk queue. */ if (dd->disk) { dev_info(&dd->pdev->dev, "Shutting down %s ...\n", dd->disk->disk_name); if (test_bit(MTIP_DDF_INIT_DONE_BIT, &dd->dd_flag)) del_gendisk(dd->disk); if (dd->disk->queue) { blk_cleanup_queue(dd->queue); blk_mq_free_tag_set(&dd->tags); } put_disk(dd->disk); dd->disk = NULL; dd->queue = NULL; } spin_lock(&rssd_index_lock); ida_remove(&rssd_index_ida, dd->index); spin_unlock(&rssd_index_lock); return 0; } static int mtip_block_suspend(struct driver_data *dd) { dev_info(&dd->pdev->dev, "Suspending %s ...\n", dd->disk->disk_name); mtip_hw_suspend(dd); return 0; } static int mtip_block_resume(struct driver_data *dd) { dev_info(&dd->pdev->dev, "Resuming %s ...\n", dd->disk->disk_name); mtip_hw_resume(dd); return 0; } static void drop_cpu(int cpu) { cpu_use[cpu]--; } static int get_least_used_cpu_on_node(int node) { int cpu, least_used_cpu, least_cnt; const struct cpumask *node_mask; node_mask = cpumask_of_node(node); least_used_cpu = cpumask_first(node_mask); least_cnt = cpu_use[least_used_cpu]; cpu = least_used_cpu; for_each_cpu(cpu, node_mask) { if (cpu_use[cpu] < least_cnt) { least_used_cpu = cpu; least_cnt = cpu_use[cpu]; } } cpu_use[least_used_cpu]++; return least_used_cpu; } /* Helper for selecting a node in round robin mode */ static inline int mtip_get_next_rr_node(void) { static int next_node = -1; if (next_node == -1) { next_node = first_online_node; return next_node; } next_node = next_online_node(next_node); if (next_node == MAX_NUMNODES) next_node = first_online_node; return next_node; } static DEFINE_HANDLER(0); static DEFINE_HANDLER(1); static DEFINE_HANDLER(2); static DEFINE_HANDLER(3); static DEFINE_HANDLER(4); static DEFINE_HANDLER(5); static DEFINE_HANDLER(6); static DEFINE_HANDLER(7); static void mtip_disable_link_opts(struct driver_data *dd, struct pci_dev *pdev) { int pos; unsigned short pcie_dev_ctrl; pos = pci_find_capability(pdev, PCI_CAP_ID_EXP); if (pos) { pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &pcie_dev_ctrl); if (pcie_dev_ctrl & (1 << 11) || pcie_dev_ctrl & (1 << 4)) { dev_info(&dd->pdev->dev, "Disabling ERO/No-Snoop on bridge device %04x:%04x\n", pdev->vendor, pdev->device); pcie_dev_ctrl &= ~(PCI_EXP_DEVCTL_NOSNOOP_EN | PCI_EXP_DEVCTL_RELAX_EN); pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, pcie_dev_ctrl); } } } static void mtip_fix_ero_nosnoop(struct driver_data *dd, struct pci_dev *pdev) { /* * This workaround is specific to AMD/ATI chipset with a PCI upstream * device with device id 0x5aXX */ if (pdev->bus && pdev->bus->self) { if (pdev->bus->self->vendor == PCI_VENDOR_ID_ATI && ((pdev->bus->self->device & 0xff00) == 0x5a00)) { mtip_disable_link_opts(dd, pdev->bus->self); } else { /* Check further up the topology */ struct pci_dev *parent_dev = pdev->bus->self; if (parent_dev->bus && parent_dev->bus->parent && parent_dev->bus->parent->self && parent_dev->bus->parent->self->vendor == PCI_VENDOR_ID_ATI && (parent_dev->bus->parent->self->device & 0xff00) == 0x5a00) { mtip_disable_link_opts(dd, parent_dev->bus->parent->self); } } } } /* * Called for each supported PCI device detected. * * This function allocates the private data structure, enables the * PCI device and then calls the block layer initialization function. * * return value * 0 on success else an error code. */ static int mtip_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { int rv = 0; struct driver_data *dd = NULL; char cpu_list[256]; const struct cpumask *node_mask; int cpu, i = 0, j = 0; int my_node = NUMA_NO_NODE; unsigned long flags; /* Allocate memory for this devices private data. */ my_node = pcibus_to_node(pdev->bus); if (my_node != NUMA_NO_NODE) { if (!node_online(my_node)) my_node = mtip_get_next_rr_node(); } else { dev_info(&pdev->dev, "Kernel not reporting proximity, choosing a node\n"); my_node = mtip_get_next_rr_node(); } dev_info(&pdev->dev, "NUMA node %d (closest: %d,%d, probe on %d:%d)\n", my_node, pcibus_to_node(pdev->bus), dev_to_node(&pdev->dev), cpu_to_node(raw_smp_processor_id()), raw_smp_processor_id()); dd = kzalloc_node(sizeof(struct driver_data), GFP_KERNEL, my_node); if (dd == NULL) { dev_err(&pdev->dev, "Unable to allocate memory for driver data\n"); return -ENOMEM; } /* Attach the private data to this PCI device. */ pci_set_drvdata(pdev, dd); rv = pcim_enable_device(pdev); if (rv < 0) { dev_err(&pdev->dev, "Unable to enable device\n"); goto iomap_err; } /* Map BAR5 to memory. */ rv = pcim_iomap_regions(pdev, 1 << MTIP_ABAR, MTIP_DRV_NAME); if (rv < 0) { dev_err(&pdev->dev, "Unable to map regions\n"); goto iomap_err; } if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { rv = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); if (rv) { rv = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); if (rv) { dev_warn(&pdev->dev, "64-bit DMA enable failed\n"); goto setmask_err; } } } /* Copy the info we may need later into the private data structure. */ dd->major = mtip_major; dd->instance = instance; dd->pdev = pdev; dd->numa_node = my_node; INIT_LIST_HEAD(&dd->online_list); INIT_LIST_HEAD(&dd->remove_list); memset(dd->workq_name, 0, 32); snprintf(dd->workq_name, 31, "mtipq%d", dd->instance); dd->isr_workq = create_workqueue(dd->workq_name); if (!dd->isr_workq) { dev_warn(&pdev->dev, "Can't create wq %d\n", dd->instance); rv = -ENOMEM; goto block_initialize_err; } memset(cpu_list, 0, sizeof(cpu_list)); node_mask = cpumask_of_node(dd->numa_node); if (!cpumask_empty(node_mask)) { for_each_cpu(cpu, node_mask) { snprintf(&cpu_list[j], 256 - j, "%d ", cpu); j = strlen(cpu_list); } dev_info(&pdev->dev, "Node %d on package %d has %d cpu(s): %s\n", dd->numa_node, topology_physical_package_id(cpumask_first(node_mask)), nr_cpus_node(dd->numa_node), cpu_list); } else dev_dbg(&pdev->dev, "mtip32xx: node_mask empty\n"); dd->isr_binding = get_least_used_cpu_on_node(dd->numa_node); dev_info(&pdev->dev, "Initial IRQ binding node:cpu %d:%d\n", cpu_to_node(dd->isr_binding), dd->isr_binding); /* first worker context always runs in ISR */ dd->work[0].cpu_binding = dd->isr_binding; dd->work[1].cpu_binding = get_least_used_cpu_on_node(dd->numa_node); dd->work[2].cpu_binding = get_least_used_cpu_on_node(dd->numa_node); dd->work[3].cpu_binding = dd->work[0].cpu_binding; dd->work[4].cpu_binding = dd->work[1].cpu_binding; dd->work[5].cpu_binding = dd->work[2].cpu_binding; dd->work[6].cpu_binding = dd->work[2].cpu_binding; dd->work[7].cpu_binding = dd->work[1].cpu_binding; /* Log the bindings */ for_each_present_cpu(cpu) { memset(cpu_list, 0, sizeof(cpu_list)); for (i = 0, j = 0; i < MTIP_MAX_SLOT_GROUPS; i++) { if (dd->work[i].cpu_binding == cpu) { snprintf(&cpu_list[j], 256 - j, "%d ", i); j = strlen(cpu_list); } } if (j) dev_info(&pdev->dev, "CPU %d: WQs %s\n", cpu, cpu_list); } INIT_WORK(&dd->work[0].work, mtip_workq_sdbf0); INIT_WORK(&dd->work[1].work, mtip_workq_sdbf1); INIT_WORK(&dd->work[2].work, mtip_workq_sdbf2); INIT_WORK(&dd->work[3].work, mtip_workq_sdbf3); INIT_WORK(&dd->work[4].work, mtip_workq_sdbf4); INIT_WORK(&dd->work[5].work, mtip_workq_sdbf5); INIT_WORK(&dd->work[6].work, mtip_workq_sdbf6); INIT_WORK(&dd->work[7].work, mtip_workq_sdbf7); pci_set_master(pdev); rv = pci_enable_msi(pdev); if (rv) { dev_warn(&pdev->dev, "Unable to enable MSI interrupt.\n"); goto msi_initialize_err; } mtip_fix_ero_nosnoop(dd, pdev); /* Initialize the block layer. */ rv = mtip_block_initialize(dd); if (rv < 0) { dev_err(&pdev->dev, "Unable to initialize block layer\n"); goto block_initialize_err; } /* * Increment the instance count so that each device has a unique * instance number. */ instance++; if (rv != MTIP_FTL_REBUILD_MAGIC) set_bit(MTIP_DDF_INIT_DONE_BIT, &dd->dd_flag); else rv = 0; /* device in rebuild state, return 0 from probe */ /* Add to online list even if in ftl rebuild */ spin_lock_irqsave(&dev_lock, flags); list_add(&dd->online_list, &online_list); spin_unlock_irqrestore(&dev_lock, flags); goto done; block_initialize_err: pci_disable_msi(pdev); msi_initialize_err: if (dd->isr_workq) { flush_workqueue(dd->isr_workq); destroy_workqueue(dd->isr_workq); drop_cpu(dd->work[0].cpu_binding); drop_cpu(dd->work[1].cpu_binding); drop_cpu(dd->work[2].cpu_binding); } setmask_err: pcim_iounmap_regions(pdev, 1 << MTIP_ABAR); iomap_err: kfree(dd); pci_set_drvdata(pdev, NULL); return rv; done: return rv; } /* * Called for each probed device when the device is removed or the * driver is unloaded. * * return value * None */ static void mtip_pci_remove(struct pci_dev *pdev) { struct driver_data *dd = pci_get_drvdata(pdev); unsigned long flags, to; set_bit(MTIP_DDF_REMOVAL_BIT, &dd->dd_flag); spin_lock_irqsave(&dev_lock, flags); list_del_init(&dd->online_list); list_add(&dd->remove_list, &removing_list); spin_unlock_irqrestore(&dev_lock, flags); mtip_check_surprise_removal(pdev); synchronize_irq(dd->pdev->irq); /* Spin until workers are done */ to = jiffies + msecs_to_jiffies(4000); do { msleep(20); } while (atomic_read(&dd->irq_workers_active) != 0 && time_before(jiffies, to)); if (!dd->sr) fsync_bdev(dd->bdev); if (atomic_read(&dd->irq_workers_active) != 0) { dev_warn(&dd->pdev->dev, "Completion workers still active!\n"); } blk_set_queue_dying(dd->queue); set_bit(MTIP_DDF_REMOVE_PENDING_BIT, &dd->dd_flag); /* Clean up the block layer. */ mtip_block_remove(dd); if (dd->isr_workq) { flush_workqueue(dd->isr_workq); destroy_workqueue(dd->isr_workq); drop_cpu(dd->work[0].cpu_binding); drop_cpu(dd->work[1].cpu_binding); drop_cpu(dd->work[2].cpu_binding); } pci_disable_msi(pdev); spin_lock_irqsave(&dev_lock, flags); list_del_init(&dd->remove_list); spin_unlock_irqrestore(&dev_lock, flags); kfree(dd); pcim_iounmap_regions(pdev, 1 << MTIP_ABAR); pci_set_drvdata(pdev, NULL); } /* * Called for each probed device when the device is suspended. * * return value * 0 Success * <0 Error */ static int mtip_pci_suspend(struct pci_dev *pdev, pm_message_t mesg) { int rv = 0; struct driver_data *dd = pci_get_drvdata(pdev); if (!dd) { dev_err(&pdev->dev, "Driver private datastructure is NULL\n"); return -EFAULT; } set_bit(MTIP_DDF_RESUME_BIT, &dd->dd_flag); /* Disable ports & interrupts then send standby immediate */ rv = mtip_block_suspend(dd); if (rv < 0) { dev_err(&pdev->dev, "Failed to suspend controller\n"); return rv; } /* * Save the pci config space to pdev structure & * disable the device */ pci_save_state(pdev); pci_disable_device(pdev); /* Move to Low power state*/ pci_set_power_state(pdev, PCI_D3hot); return rv; } /* * Called for each probed device when the device is resumed. * * return value * 0 Success * <0 Error */ static int mtip_pci_resume(struct pci_dev *pdev) { int rv = 0; struct driver_data *dd; dd = pci_get_drvdata(pdev); if (!dd) { dev_err(&pdev->dev, "Driver private datastructure is NULL\n"); return -EFAULT; } /* Move the device to active State */ pci_set_power_state(pdev, PCI_D0); /* Restore PCI configuration space */ pci_restore_state(pdev); /* Enable the PCI device*/ rv = pcim_enable_device(pdev); if (rv < 0) { dev_err(&pdev->dev, "Failed to enable card during resume\n"); goto err; } pci_set_master(pdev); /* * Calls hbaReset, initPort, & startPort function * then enables interrupts */ rv = mtip_block_resume(dd); if (rv < 0) dev_err(&pdev->dev, "Unable to resume\n"); err: clear_bit(MTIP_DDF_RESUME_BIT, &dd->dd_flag); return rv; } /* * Shutdown routine * * return value * None */ static void mtip_pci_shutdown(struct pci_dev *pdev) { struct driver_data *dd = pci_get_drvdata(pdev); if (dd) mtip_block_shutdown(dd); } /* Table of device ids supported by this driver. */ static const struct pci_device_id mtip_pci_tbl[] = { { PCI_DEVICE(PCI_VENDOR_ID_MICRON, P320H_DEVICE_ID) }, { PCI_DEVICE(PCI_VENDOR_ID_MICRON, P320M_DEVICE_ID) }, { PCI_DEVICE(PCI_VENDOR_ID_MICRON, P320S_DEVICE_ID) }, { PCI_DEVICE(PCI_VENDOR_ID_MICRON, P325M_DEVICE_ID) }, { PCI_DEVICE(PCI_VENDOR_ID_MICRON, P420H_DEVICE_ID) }, { PCI_DEVICE(PCI_VENDOR_ID_MICRON, P420M_DEVICE_ID) }, { PCI_DEVICE(PCI_VENDOR_ID_MICRON, P425M_DEVICE_ID) }, { 0 } }; /* Structure that describes the PCI driver functions. */ static struct pci_driver mtip_pci_driver = { .name = MTIP_DRV_NAME, .id_table = mtip_pci_tbl, .probe = mtip_pci_probe, .remove = mtip_pci_remove, .suspend = mtip_pci_suspend, .resume = mtip_pci_resume, .shutdown = mtip_pci_shutdown, }; MODULE_DEVICE_TABLE(pci, mtip_pci_tbl); /* * Module initialization function. * * Called once when the module is loaded. This function allocates a major * block device number to the Cyclone devices and registers the PCI layer * of the driver. * * Return value * 0 on success else error code. */ static int __init mtip_init(void) { int error; pr_info(MTIP_DRV_NAME " Version " MTIP_DRV_VERSION "\n"); spin_lock_init(&dev_lock); INIT_LIST_HEAD(&online_list); INIT_LIST_HEAD(&removing_list); /* Allocate a major block device number to use with this driver. */ error = register_blkdev(0, MTIP_DRV_NAME); if (error <= 0) { pr_err("Unable to register block device (%d)\n", error); return -EBUSY; } mtip_major = error; dfs_parent = debugfs_create_dir("rssd", NULL); if (IS_ERR_OR_NULL(dfs_parent)) { pr_warn("Error creating debugfs parent\n"); dfs_parent = NULL; } if (dfs_parent) { dfs_device_status = debugfs_create_file("device_status", S_IRUGO, dfs_parent, NULL, &mtip_device_status_fops); if (IS_ERR_OR_NULL(dfs_device_status)) { pr_err("Error creating device_status node\n"); dfs_device_status = NULL; } } /* Register our PCI operations. */ error = pci_register_driver(&mtip_pci_driver); if (error) { debugfs_remove(dfs_parent); unregister_blkdev(mtip_major, MTIP_DRV_NAME); } return error; } /* * Module de-initialization function. * * Called once when the module is unloaded. This function deallocates * the major block device number allocated by mtip_init() and * unregisters the PCI layer of the driver. * * Return value * none */ static void __exit mtip_exit(void) { /* Release the allocated major block device number. */ unregister_blkdev(mtip_major, MTIP_DRV_NAME); /* Unregister the PCI driver. */ pci_unregister_driver(&mtip_pci_driver); debugfs_remove_recursive(dfs_parent); } MODULE_AUTHOR("Micron Technology, Inc"); MODULE_DESCRIPTION("Micron RealSSD PCIe Block Driver"); MODULE_LICENSE("GPL"); MODULE_VERSION(MTIP_DRV_VERSION); module_init(mtip_init); module_exit(mtip_exit);